
Predicate Private Set Intersection With Linear
Complexity

Yaxi Yang1, Jian Weng1, Yufeng Yi1, Changyu Dong2, Leo Yu Zhang3, and
Jianying Zhou4

1 Jinan University, Guangzhou, China
2 Guangzhou University, Guangzhou, China
3 Griffith University, Queensland, Australia

4 Singapore University of Technology and Design, Singapore

Abstract. Private Set Intersection (PSI) enables two parties to learn
the intersection of their input sets without exposing other items that
are not within the intersection. However, real-world applications often
require more complex computations than just obtaining the intersection.
In this paper, we consider the setting where each item in the input set
has an associated payload, and the desired output is a subset of the
intersection obtained by evaluating certain conditions over the payload.
We call this new primitive Predicate Private Set Intersection (PPSI) and
show its applicability in many different scenarios. While a PPSI protocol
can be obtained by combining existing circuit-PSI and generic circuit-
based secure computation, this naive approach is not efficient. Therefore,
we also provide a specially designed PPSI protocol with linear complexity
and good concrete efficiency. We implemented the protocol and evaluated
it with extensive experiments. The results validated the efficacy of our
PPSI protocol.

Keywords: Private set intersection · Secure comparison · Secure two-
party computation.

1 Introduction

Private set intersection (PSI) enables two parties C and S who have private
input sets x and y to get items that they have in common (i.e., x ∩ y) without
revealing other information. This technique can be applied to many applications,
such as matching in mobile apps [7], threat detection [30] and document search
[11]. Due to its versatility, many PSI protocols have been investigated [19,7,6,5].
Recent research on PSI focuses on improving its efficiency and the currently most
efficient PSI protocols are KKRT [19] and CM20 [5]. Even though PSI can solve
many real-world problems, in many other scenarios, a standard PSI protocol is
not sufficient because the application’s need may not be simply the intersection
of two sets. For example:
Advertising Campaigns. A Transaction Data Provider (TP) has a database
of the ids of customers and the amount they spend on transactions, denoted as

2 Y. Author et al.

(id, spending) [22]. An Advertisement Company (AdC) only has a database of
customer ids of which some have watched its advertisements. Rather than only
privately computing the intersection of customer ids to analyze the advertisement
conversion rates, AdC also wants to find among those click-through customers,
the high-value customers who spent above a threshold. This would allow the
AdC to better negotiate the commission and improve its advertisement strategy.
In this application, TP’s database needs to be kept private, and AdC’s customers
and the threshold are also private information since they relate to the company’s
commercial confidentiality.
Database Join. Join is a fundamental operation in databases. With the preva-
lence of distributed databases and vertical federated learning [24], secure join
over distributed data tables becomes notable [20,26]. Specifically, two database
owners each owns a table X and Y , respectively. They want to perform join
operations on the primary keys of X and Y to align data in the two tables and
filter the results with certain conditions. If we use Xj to denote the j-th column
of the table X, an example of an SQL-style join query is given as:

select X1 from X inner join Y on X1 = Y1 where Y2 > 23.3

As we can see, in those two applications, we are not interested in outputting
the intersection set, but rather a subset of the intersection that meets certain
conditions specified as a predicate over the payload associated with the ele-
ment in the intersection. In the first example, AdC wants to find the customers
who have watched the advertisement and also made a purchase on TP, and
the amount of purchase is higher than a pre-defined threshold. Similarly, in
the second example, X1 and Y1 can be seen as two sets, and items in Y2 are
corresponding payloads. The intended output is the set of items in Y , whose
primary keys are also in X1 and payloads satisfy the predicate Y2 > 23.3 (or
other arbitrary predicates). Consequently, existing PSI/PSI with payload com-
putation works [19,7,6,5,21,31,3,40] are not enough to meet the requirements of
the above-mentioned applications.

Motivated by this, we bring up a new primitive called Predicate Private Set
Intersection (PPSI). PPSI allows each item on an input set of one party to
have an associated payload, and another party can define a predicate over the
payload. Then, only those items that are in the intersection of the input sets and
whose corresponding payloads meet the constraints will be revealed. A naive way
to obtain a PPSI protocol is to use circuit-PSI proposed in [31,3]. In a circuit-
PSI protocol, two parties will receive shares of the intersection set instead of
learning the intersection in clear. Then, we can add a predicate computation on
the payloads and then feed the computation results and the shares to a circuit,
thus achieving the desired functionality of PPSI. However, this naive solution
is not efficient. Therefore we need a new design rather than trivially applying
circuit-PSI.

Our contribution in this paper can be summarized as follows.

– We present the definition of Predicate Private Set Intersection (PPSI) and a
concrete construction of the protocol. To avoid costly circuit-based compu-

Predicate Private Set Intersection With Linear Complexity 3

tation, we design a sub-protocol, which we call predicate masking. At a high
level, for two items each from a different input set, the two parties jointly
evaluate the predicate over the payload, if the result is true, the same ran-
dom value will be added to the two set items; if the evaluation result is false,
different random values will be added to the two set items. Hence, after that,
the two parties only need to perform a plain PSI protocol (e.g., KKRT &
CM20) and the intersection computed will contain only the items that meet
the condition.

– We demonstrate PPSI with two exemplar applications. Given the applica-
tions, we can apply further optimizations. We use a batched secure compar-
ison protocol (BatchComp) as a building block to achieve better efficiency
for predicate computation. This sub-protocol may be of independent interest
in its own right.

– We evaluate the performance of our PPSI protocol in two applications with
extensive experiments. The experimental results demonstrate that PPSI is
practical and scalable. We also compare our protocols with the state-of-the-
art circuit-PSI protocol CGS [3], and PPSI protocol is 3.9 ∼ 10× faster and
about 3.1× more communication efficient under different network settings.

The rest of the paper is organized as follows. In Sec. 2, we introduce PSI and
its various variants. In Sec. 3, we formally define PPSI and its goals in security
and efficiency. Sec. 4 and Sec. 5 present the technical foundation and details of
our PPSI protocol, respectively. Sec. 6 theoretically proves the security of PPSI
and Sec. 7 assesses its efficiency. Sec. 8 draws the conclusion of this paper.

2 Related Works

PSI was first introduced in [25]. Since then, lots of research about PSI has been
carried out [10,15,19,7,6,33,31,5,8,37,3].
PSI. The aforementioned long line of works [10,19,33,29,5] are based on oblivious
transfer to achieve PSI. And those protocols outperform other generic solutions.
The first work in this line is [10], which is based on OT extension and a specially
designed data structure called garbled Bloom filter. It achieves linear computa-
tional/communication complexity, and requires only a few public key operations
to bootstrap OT extension. In KKRT [19], the authors constructed a randomized
encoding protocol based on OT extension [17]. Based on the same techniques
in [19], Pinkas et al. [33] showed a detailed analysis of how different parameters
affect the communication cost. Next, Pinkas et al. [29] achieved a half communi-
cation cost than that of KKRT, but roughly 6− 7 times computation overhead
compared to KKRT. Then, in CM20 [5], the authors designed a PSI protocol that
is the fastest in a network with moderate bandwidth (e.g., 30–100 Mbps) and out-
performs [29] in both computation and computation cost. Nevertheless, KKRT
can still be viewed as a protocol optimized for the LAN setting, where band-
width is not a bottleneck, and it achieves better computation/communication
trade-offs. And CM20 targets and achieves better in the middle range bandwidth
(e.g., 30–100 Mbps) setting. Some other PSI works [7,6,8] in this category are

4 Y. Author et al.

based on Homomorphic Encryption (HE) methods. Chen et al. [7] introduced
a PSI protocol based on Fan-Vercauteren leveled fully homomorphic encryption
scheme [12] that has a communication complexity logarithmic in the larger input
set size. Then, the security model of their work is strengthened in a follow-up
paper [6]. Those HE-based protocols focus on computing the intersection of the
unbalanced input sets and reducing communication overheads.
Circuit-PSI. The other line of work is circuit-PSI [15,31,37,3]. Huang et al. [15]
put forward a notion of circuit-PSI protocol based on garbled circuits, which
enables the secure computation of arbitrary functions f over the intersection.
Subsequently, some enhanced 2-party protocols [31,3] for circuit-PSI have been
proposed. In circuit-PSI [31,3], the intersection results are secret-shared between
two parties, then these two parties can take the results as inputs of circuits,
which achieve the functionality of f . The inputs of those circuits cannot only
be the intersection results, but also some associated payloads. Therefore, [31,3]
can compute on the associated payloads of the intersection items without leak-
ing the intersection. And [31,3] both claim O(n) complexity in the semi-honest
setting for PSI with computation. But the circuit-PSI proposed in [3] is state-of-
the-art and is 2.3× more communication efficient and around 2.3× faster than
the protocol in [31]. We can use the circuit-PSI protocol in [3] to perform the
same functionality as PPSI. However, our PPSI protocol achieves much better
efficiency than [3]. Besides, in [37], the author proposed a novel protocol, named
Conditional Private Set Intersection (CPSI), which can enforce additional con-
ditions for PSI. The authors utilized Trusted Execution Environments (TEEs)
and HE to construct their protocol. However, their protocol is subject to the
security issues of TEE [36] and the efficiency limitation of HE.
PSI with payload computation. Some other works have also considered the
application of PSI with payload computation [21,31,3,40]. Those works aim to
securely compute some desired functions on the payloads associated with items
that are in the intersection of the two input sets, and only reveal the computation
results of payloads to parties. For example, PSI-Sum, which has been considered
in many works [21,31,3,40], aims to compute the sum of the payloads for the items
in the intersection set and only return the sum result to parties. Therefore, in PSI
with payload computation, the parties are interested in the payload computation
results rather than the items in input sets, which is different from PPSI.

3 Problem Formulation

Before discussing the definition of our focused problem, we first introduce the
definition of Predicate Private Set Intersection (PPSI). Next, we identify the
design goal of our protocol.

3.1 Defining PPSI

We first present the definition of PPSI. Suppose one client C has a set x =
{x1, ..., xm} with the constraining value α, and one server S provides a set y =

Predicate Private Set Intersection With Linear Complexity 5

{y1, ...yn} with the associate payloads pS = {pS,1, ..., pS,n}. Rather than merely
computing the intersection set x∩y, we wish to further confine this result subject
to some constraints. Therefore, we define a predicate P : (α, pS,i) → {0, 1}, for
i ∈ [1, n]. This predicate represents the constraint agreed upon by the client C
and the server S. And it can be replaced by any secure two-party computation
protocol. After executing our PPSI protocol, C gets the results r = {r1, ...rm}.
If an item rj,j∈[1,m] = 1, there exists an item yi,i∈[1,n] ∈ y and xj = yi, and the
associated payloads are subject to the predicate P(α, pS,i) = 1, otherwise rj = 0
and P(·, ·) = 0. The ideal functionality FPPSI is shown in Figure 1.

FPPSI

Parameters: Number of items m for a receiver, n for a sender, and ℓ for the
length of each item.
Inputs: The client party C provides a set x = {x1, ..., xm} and a constraining
value α for a predicate P, the server S provides a set y = {y1, ..., yn} and the
associated payload vector pS = {pS,1, ..., pS,n}.

1. If there exist duplicated elements in sets x and y, send abort to both C and
S.

2. Define a predicate P operating on each item of α and pS , and then getting a
boolean value as the operating result.

3. Define a vector r = {r1, ..., rm}, for j ∈ [1,m], where rj = 1 if ∃ i ∈ [1, n],
{xj = yi ∈ (x ∩ y)} ∧ {P(α, pS,i) = 1}, else rj = 0.

Outputs: The receiver outputs r.

Fig. 1. Ideal functionality FPPSI.

3.2 Design Goal

In this work, our goal is to design an efficient predicate private set intersection
protocol in the semi-honest setting, the following objectives need to be achieved.

– Privacy preserving: The inputs of one party in our protocol are kept private
from the other party. Meanwhile, the size of the intersection set and access
pattern also should be preserved and not revealed to any party.

– Efficiency: We also focus on reducing computation and communication costs
to make this protocol as efficient as possible, as complex computation in-
evitably results in higher overhead. For computing set intersection with fur-
ther computation, it is better to make the computation and communication
overhead better than the generic circuit-PSI protocol.

6 Y. Author et al.

4 Preliminaries

In this section, we will review the cryptographic techniques utilized in this pa-
per, including secret sharing, cuckoo hashing, Oblivious Transfer (OT), secure
comparison and the circuit-PSI protocol, and we will give the blueprint of the
protocol [3].

4.1 Secret Sharing

Throughout our paper, we use 2-out-of-2 addictive secret sharing scheme over
the ring Z2ℓ . ⟨x⟩C and ⟨x⟩S are used to denote the addictive shares that belong
to party C and S respectively. And ⟨x⟩BC and ⟨x⟩BS represent boolean shares of
a binary value x for C and S, respectively. Then, we use Share(x) to denote the
algorithm that takes x in Z2ℓ as input and outputs the two shares ⟨x⟩C and ⟨x⟩S
over Z2ℓ , and ⟨x⟩C + ⟨x⟩S = x (where + denotes addition in Z2ℓ). In terms of
security, the shares ⟨x⟩C and ⟨x⟩S completely hide the secret x. Someone who
only has one share cannot infer any information about the secret, since the shares
are totally random [9].

4.2 Hashing Techniques

Cuckoo hashing. Cuckoo hashing [28] is used in our protocol to align all items
C and S owned and reduce the computation cost. In detail, cuckoo hashing uses
some universal hash functions to map n items in a set x = {x1, ..., xn} to a
cuckoo hash table T with b bins. Each bin only contains at most one item. In
our protocol, we choose a variant of cuckoo hashing [32], which uses three hash
functions h1, h2, h3. To insert an item xi into a cuckoo hash table T, the brief
procedure is as follows: 1) Check whether three bins indexed by h1(xi), h2(xi)
and h3(xi) have existing items or not; 2) If at least one of those bins is empty,
insert xi into the empty bin with the smallest index; 3) Otherwise, randomly
select one bin in h1(xi), h2(xi) or h3(xi), and evict the prior item in the selected
bin and place xi in it. 4) Recursively execute 1) − 3) to insert the evicted item
from the previous step into the table T. This procedure is repeated until all items
in x are inserted and no more evictions are needed. After a certain number of
iterations, if there are still some items that cannot be inserted into bins, it will
cause failure and abortion to this process. Similar to [33,3], we set b = 1.27n
and achieve a failure probability of less than 2−40. We utilize the formalization
in [13]:

Tx ← Cuckoobh1,h2,h3
(x), (1)

where h1, h2, h3: {0, 1}l → [b], and all items in x are inserted into a table Tx

with b bins.
Simple Hashing. In our paper, we use the same hashing functions used in
cuckoo hashing (i.e., h1, h2, and h3) to achieve simple hashing. To map an item
x to a hash table with simple hashing, this item will be put into three bins
indexed with h1(x), h2(x), and h3(x). Then, for mapping m items to a hash

Predicate Private Set Intersection With Linear Complexity 7

𝑥2

𝑥1, 𝑥6

…

𝑥4, 𝑥𝑚

𝑦1

𝑦5

…

𝑦𝑛

Cuckoo hashingSimple hashing

Phase 1 Phase 2 Phase 3

𝑝𝑠,1

𝑝𝑠,5

…

𝑝𝑠,𝑛

① Items Alignment ② Predicates Computation

𝑧1

𝑧5

…

𝑧𝑛

𝑧1
′

𝑧5
′

…

𝑧𝑛
′

𝐏 𝛼 , 𝑝𝑠,1

𝐏 𝛼 , 𝑝𝑠,5

…

𝐏 𝛼 𝑝𝑠,𝑛

④ Masking

③
𝑥2 + 𝑧1

𝑥1 + 𝑧5, 𝑥6 + 𝑧5

…

𝑥4 + 𝑧𝑛, 𝑥𝑚 + 𝑧𝑛

𝑦1 + 𝑧1
′

𝑦5 + 𝑧5
′

…

𝑦𝑛 + 𝑧𝑛
′

PSI
(KKRT/CM20)

⑤ Intersection Computation

Fig. 2. A toy example of our PPSI protocol.

table with b bins, each item will be put into three bins, and each bin may have
multiple items since collisions will happen. We assume the maximum number of
items in one certain bin is maxb. As suggested in [33], maxb is determined by
the size of the input set m, the number of bins b and the statistical parameters
via

P (“∃ bin with ≥ maxb items”) ≤ b · [
m∑

β=maxb

(
m

β

)
(
1

b
)β(1− 1

b
)m−β], (2)

where P represents the possibility and it should be no greater than 2−40.

4.3 Oblivious Transfer

Oblivious Transfer (OT) is an essential primitive in cryptography and can be
used for constructing secure computation protocols. It is a two-party protocol
between a sender and a receiver. The sender can transfer some of the potentially
many pieces of messages to the receiver but remain oblivious as to which pieces
have been transferred. We use different types of OT functionalities in this pa-
per. The basic one is 1-out-of-2 OT

(
2
1

)
-OTℓ, where a sender inputs two strings

(x0, x1) with length ℓ and a receiver inputs a single bit σ. And the receiver re-
ceives the string xσ and learns nothing about x1−σ [17]. Then, we use

(
n
1

)
-OTℓ

to denote 1-out-of-n OT, which is extended from the 1-out-of-2 OT. The sender’s
inputs are n strings (x0, ..., xn) and the receiver receives the exact string xσ [18].
And

(
2
1

)
-ROTℓ is the random OT. The sender receives two random elements x0

and x1 with length ℓ and the receiver outputs xσ according to the chosen bit σ
[18].

Notably, a large number of OT instances can be efficiently implemented by
a few base OT instances with asymmetric key operations and symmetric key
operations [17,18], denoted as IKNP-style OT. As suggested in [16], the general
secure two-party computation can be upgraded by using VOLE-style OT exten-
sion, so the IKNP-style OT primitives in PPSI can be substituted by VOLE-style
OT. We will discuss this in Section 7.

8 Y. Author et al.

4.4 Secure Comparison

A secure comparison protocol takes x and y from two parties as inputs and
returns the boolean shares of 1{x < y} to each party. Notably, Rathee et al.
[34] propose a secure comparison protocol based on a recursive problem-solving
approach based on

(
n
1

)
-OTℓ and the functionality FAND. FAND take boolean

shares of values x, y ∈ {0, 1} as inputs and returns boolean shares of the com-
parison result x < y. Then the core idea of the secure comparison protocol in
CrypTFlow2 [34] is built on an observation

1{x < y} = 1{x1 < y1} ⊕ (1{x1 = y1} ∧ 1{x0 < y0}), (3)

where x, y ∈ Z2ℓ , x = x1||x0 and y = y1||y0. The basic OT protocol used in
CrypTFlow2 is IKNP-style OT protocol [18]. For more details and the imple-
mentation of this protocol can refer to Appendix 1.

4.5 Technique Overview of Circuit-PSI

Circuit-PSI is a protocol that can be used as a useful implementation of PPSI.
To illustrate the difference between our construction and circuit-PSI, we give a
general description of the state-of-the-art circuit-PSI protocol [3] in this section.

First, a party C will use cuckoo hashing to map all items of C’s input set
x to a hash table Tx. Then another party S uses a simple hashing method
to hash S’s set y to another hash table Ty with the same hash functions as
used in cuckoo hashing. For security purposes, C will use dummy items to pad
each bin to make sure each bin has the same number of items. Next, C and S
need to generate random values for each item in the bins of their hash tables.
Therefore, if an item is in the intersection of x ∩ y, then this item will exist
in the same bin of Tx and Ty. Then, the authors in [3] proposed an Oblivious
Programmable Pseudorandom Function (OPPRF) protocol and built a private
set membership protocol based on OPPRF. If the table Tx and Ty both have b
bins, for bin τ ∈ [1, b], C and S perform a private set membership protocol over
the bins with the same indexes. C and S compare all items in Tx[τ] and Ty[τ]
to get whether the item in Tx[τ] is exists in Ty[τ]. After this protocol, C and S
will get the secret-shared boolean results, which can be used as input for other
subsequent computations (e.g., circuit-based computation, associated payloads
computation).

5 The Construction of PPSI

In this section, we present our PPSI protocol. Before delving into the details, we
first give a high-level overview of PPSI, which achieves the ideal functionality
of PPSI. Then we introduce the technical description of PPSI and the details of
our main sub-protocols. Finally, we discuss the applications of PPSI.

Predicate Private Set Intersection With Linear Complexity 9

5.1 High-level Overview

In our PPSI protocol, first, the party S will use cuckoo hashing to map all items
of S’s input set y and payload set to a hash table. Then the other party C uses
a simple hashing method to hash all items in x to another hash table with the
same hash functions as used in cuckoo hashing. The process can align all items
of x and y. Then, C and S perform a secure two-party computation according
to the predicate P. The inputs of P are the constraining value α from C and
payloads from S. The outputs of P are boolean values and secret-shared to C
and S. If the boolean value is equal to 1, C gets a random value z and S will get
z′, where z = z′. If the boolean value is equal to 0, C and S also get z and z′

respectively, while z ̸= z′. Next, C and S can add those random values z and z′

to the items in their sets. Therefore, if an item s is in the intersection set x∩ y,
and the corresponding payload of the item is p and P(α, p) = 1, then C and S
will add z and z′ to this item in their sets to get new sets. It is obvious that
s + z = s + z′ if z = z′. Finally, C and S will perform a plain PSI protocol on
their new sets. Therefore, this process can be seen as a filter in PPSI, and it can
filter items that are in the intersection but do not satisfy the predicate.

5.2 Technical Description

In this section, we present a description of our PPSI protocol. We assume two
parties (C and S) need to perform PPSI, the process of PPSI can be divided into
three phases as follows.

Phase 1) Items Alignment. In this phase, two parties use hashing techniques
to align their input items. Similar to circuit-PSI protocols, two parties first map
their items to hash tables, which consist of multiple bins. If an input item is in the
intersection result, both parties map it to the same bin. This process can reduce
the computation cost of subsequent phases. To be specific, S uses cuckoo hashing
to hash the items in y into a hash table Ty, i.e., Ty ← Cuckoobh1,h2,h3

(y). And
the table Ty has b bins. According to the definition of cuckoo hashing, there
is only one item in each bin of Ty. Then, C uses simple hashing functions h1,
h2 and h3 to hash the items in x into a two-dimension hash table Tx with b
bins. That is, an item xj ∈ x will exist in three hash bins indexed by h1(xj),
h2(xj) and h3(xj). In each bin of Tx, there will be multiple items since collisions
will happen. In terms of privacy concerns, if any two or three of h1(xj), h2(xj)
and h3(xj) collide and are mapped to one bin, then C needs to map one or two
dummy items any other bin to ensure that C maps 3m items in all bins. Other-
wise, S would know that a collision has happened when C aligns his/her items.
We assume the bin Tx[τ] has maxbτ items, where τ ∈ [1, b]. Next, S also maps
the associated payloads to a hash table TpS with the same mapping method.
That is, if items yj ∈ y appear in the bin h2(yj), then the associated payload
pS,j is also in the same bin h2(yj) of TpS . At the end of this phase, C and S
have aligned all items they own. For an item in the intersection x∩ y, this item
will be mapped into the same bins of Tx and Ty. Therefore, C and S only need

10 Y. Author et al.

to compare the items in bins with the same indexes in Tx and Ty.

Phase 2) Predicate Masking. In this phase, a predicate P operating on the
constraining value α and payloads pS is computed between C and S. The pred-
icate P takes α from C and a payload from TpS as inputs, and outputs boolean
results for this payload, indicating whether this payload meets the constraints
or not. We assume τ ∈ [1, b], and compute P(α,TpS [τ]) → p∗τ and p∗τ ∈ {0, 1}.
And P could be any secure two-party computation protocol executed between
C and S, as long as the final results are boolean values and secret-shared to C
and S. We will give three applications of different secure two-party protocols in
Section. 5.5.

After C and S have executed the predicate P, it will generate a boolean
value for the payload in each bin of TpS . And this boolean value is secret-shared
between C and S. Then, C and S need to call a predicate masking functionality
FPM that we designed to securely compute a random value for masking the items
in each bin of Tx and Ty according to the result of P. The functionality of FPM

is formalized as Figure 3. Our FPM takes as input boolean shares of choice bits
p∗τ , and returns two random values zτ and z′τ to C and S. If the corresponding

choice bit is equal to 1, then zτ = z′τ , else zτ ̸= z′τ
$← Z2ℓ . This random value

leaks no information about the inputs. Next, for τ ∈ [1, b] and β ∈ [1,maxbτ], C
adds zτ to the item Tx[τ][β], and maps this new item to the bin T′

x[τ] of a new
two-dimension hash table T′

x. At the same time, S adds z′τ to the item Ty[τ],
and maps those new items into the same bin of a new hash table T′

y.

The core idea of this phase is that, if an item xj ∈ x is equal to the item
yi ∈ y and the associated payload meets the constraints p∗i = 1, then we add the
same random value to both xj and yi. Otherwise, we add different random values
to xj and yi. After that, we can filter out the items that are in the intersection
but whose payloads do not meet the constraint predicate P.

FPM

Inputs: On inputs ⟨p∗⟩BC from C, and ⟨p∗⟩BS from S, where p∗ ∈ {0, 1}.

1. Define two random values R0, R1 $← {0, 1}ℓ.
2. Define z and z′, where z = R⟨p

∗⟩BC . If p∗ = 1, then z′ = z. Otherwise,

z′ = R1−⟨p∗⟩BC .

Outputs: C outputs z, and S outputs R0, R1, z′.

Fig. 3. Ideal functionality FPM.

Predicate Private Set Intersection With Linear Complexity 11

Phase 3) Intersection Computation. In this phase, C performs a plain PSI
protocol (KKRT [19] or CM20 [5]) protocol with S. C and S take the items in
T′

x and T′
y as inputs to PSI. And there are n items in T′

y and 3m items in T′
x.

It is worth noting that, we consider the scenario of C being a receiver. However,
our PPSI protocol is flexible. S can also be set as a receiver, who gets the final
result. And C plays the role of a sender. Therefore, this flexibility enables our
protocol to meet more practical application requirements.

A toy example. We give an example of PPSI in Figure 2. All green tables
represent the hash tables of C, and blue tables belong to S. First, they map all
the items and payloads in Tx, Ty, TpC and TpS . Second, C and S perform a
predicate computation for each payload and the constraining value α. Third,
they invoke the PM protocol to get pairs of random values. If P(α, pS,1) = 1,
then z1 = z′1. Next, C and S mask their items with those random values, and
input the items in Tx and Ty to a PSI protocol. Consequently, if x2 = y1
and P(α, pS,1) = 1, we can get x2 + z1 = y1 + z′1 and this value is still in the
intersection set.

FBatchComp

Parameters: Size of a vector n.
Inputs: On inputs α ≥ 0 from C, and p = {p1, ..., pn} and from S.

1. Define a vector p∗ = {p∗1, ..., p∗n}, where p∗i = 1 if pi > α and p∗i = 0 otherwise.
2. Get the boolean shared vectors ⟨p∗⟩BC and ⟨p∗⟩BS from Share(p∗).

Outputs: C outputs ⟨p∗⟩BC , and S outputs ⟨p∗⟩BS .

Fig. 4. Ideal functionality FBatchComp.

5.3 The Predicate Masking Protocol

In this section, we will introduce our Predicate Masking protocol (PM). It
achieves the ideal functionality FPM as shown in Figure 3. This protocol aims
to generate random values for two parties according to a secret-shared boolean
value. Then, two parties can use random values output by FPM to mask their own
items for other computation. Therefore, this protocol can be used as a building
block in other secure two-party computation.

Next, we give a detailed description of our protocol for realizing FPM. When
C has a boolean value ⟨p∗⟩C , and S gets ⟨p∗⟩S , they invoke the functionality
FPM as shown in Algorithm 1. As we can see, the main part of this algorithm
is based on a ROT protocol. At the end of this algorithm, C outputs z, and S

12 Y. Author et al.

Algorithm 1 Predicate Masking, FPM

Input: C holds a boolean value ⟨p∗⟩BC ;
S holds a boolean vector ⟨p∗⟩BS .

Output: C learns z, and S learns z′, s.t., z = z′ if p∗ = 1, else zτ , z
′
τ

$← {0, 1}ℓ.
1: C and S invoke an instance of

(
2
1

)
-ROT where C is the receiver with a choose bit

⟨p∗⟩BC and S is the sender. Then, S gets R0, R1 $← Z2ℓ , and C receives R⟨p
∗⟩BC .

2: C sets z = R⟨p
∗⟩BC .

3: if ⟨p∗⟩BS = 0 then
4: S sets z′ = R1.
5: else
6: S sets z′ = R0.
7: end if
8: C outputs z; S outputs z′.

gets z′. If C and S want to call this functionality n times to generate n pairs of
different random values, it can be efficiently achieved by one round of end-to-end
communication. The security of this protocol is based on the ROT protocol.

5.4 The Batched Secure Comparison Protocol

The Batched Secure Comparison protocol (BatchComp) is to realize batch se-
cure comparisons at one time. Consider a case where C inputs a variable α and
S inputs a set {p1, ..., pn}. And they wish to obtain the boolean shared values
of the comparison results {1{α < p1}, ...,1{α < pn}}. We present the ideal
functionality of BatchComp protocol in Figure 4. Inspired from [17,27], instead
of repeating n times secure comparison protocol in CrypTFlow2 [34], we pro-
pose an efficient secure comparison protocol (BatchComp) to do those secure
comparisons at once.

As defined in Figure 4, after this protocol, C and S will get a boolean share
of a vector, and each item of this vector indicates whether each item of S’s set is
bigger than α. Here, we give a detailed explanation of our BatchComp protocol
as Algorithm 5.2. There are four stages for our BatchComp protocol:

Splitting stage: In step 1-2, C and S splitting their input values as q parts.
And we assume q = ℓ/k. Therefore, there are 2k possibilities for each part of
input values;
Masking stage: In steps 3-8, S chooses two random values for all the parts of
its input sets p, and masks the random values with a bit value;
Choosing stage: In steps 9-13, C and S invoke the

(
n
1

)
-OTℓ extension protocol,

and C chooses corresponding random values according to his/her input. This
stage can compute the shares of the inequalities ⟨ltt0,j⟩C,S and equalities ⟨eqt0,j⟩C,S
of the values at the leaf level;
Merging stage: Based on the same idea in Equation 3 above, recursively com-
pute the shares of the inequalities and equalities of each node (steps 14-19). Then
the values of the roots indicate the final output (step 20). Therefore, C and S

Predicate Private Set Intersection With Linear Complexity 13

Algorithm 2 Batched Comparison, FBatchComp

Input: C and S hold variable α ∈ {0, 1}ℓ and variables p = {p1, ..., pn} ∈ {0, 1}ℓ,
respectively.

Output: C and S learn {⟨1{α < p1}⟩C , ..., ⟨1{α < pn}⟩C} and
{⟨1{α < p1}⟩S , ..., ⟨1{α < pn}⟩S}, respectively.

1: C parses its input as α = αq−1||...||α0, and for j ∈ [1, n], S parses its inputs as
pj = pq−1

j ||...||p0j , where αt, ptj ∈ {0, 1}k, for t ∈ [1, q − 1].

2: q = ℓ/k, K = 2k.
3: for t = {0, ..., q − 1} do
4: for j = {1, ..., n} do
5: S samples ⟨ltt0,j⟩S , ⟨eqt

0,j⟩S
$← {0, 1}.

6: for u = {0, ...,K − 1} do
7: S sets stj,u = ⟨ltt0,j⟩S ⊕ 1{u < yt

j}.
8: S sets vt

j,u = ⟨eqt
0,j⟩S ⊕ 1{u = yt

j}.
9: end for
10: end for
11: C&S invoke an instance of

(
K
1

)
-OT where S is the sender with inputs

{st1,u||...||stn,u}u∈[0,K−1], and C is the receiver with input αt. Then, C receives
{st1,αt ||...||stn,αt}.

12: C&S invoke an instance of
(
K
1

)
-OT where S is the sender with inputs

{vt
1,u||...||vt

n,u}u∈[0,K−1] and C is the receiver with input αt. Then, C receives
{vt

1,αt ||...||vt
n,αt}.

13: for j = {1, ..., n} do
14: C sets ⟨ltt0,j⟩C ← stj,αt .

15: C sets ⟨eqt
0,j⟩C ← vt

j,αt .
16: end for
17: end for
18: for j = {1, ..., n} do
19: for i = {1, ..., logq} do
20: for t = {0, ..., (q/2i)− 1} do
21: C invokes FAND with inputs ⟨lt2ti−1,j⟩C and ⟨eq2t+1

i−1,j⟩C to learn output
⟨temp⟩C .

22: S invokes FAND with inputs ⟨lt2ti−1,j⟩S and ⟨eq2t+1
i−1,j⟩S to learn output

⟨temp⟩S .
23: C sets ⟨ltti,j⟩C = ⟨lt2t+1

i−1,j⟩C ⊕ ⟨temp⟩C .
24: S sets ⟨ltti,j⟩S = ⟨lt2t+1

i−1,j⟩S ⊕ ⟨temp⟩S .
25: C invokes FAND with inputs ⟨eq2t

i−1,j⟩C and ⟨eq2t+1
i−1,j⟩C to learn output

⟨eqt
i,j⟩C .

26: S invokes FAND with inputs ⟨eq2t
i−1,j⟩S and ⟨eq2t+1

i−1,j⟩S to learn output

⟨eqt
i,j⟩S .

27: end for
28: end for
29: C sets ⟨p∗j ⟩C = ⟨1{α < pj}⟩C ← ⟨lt0logq,j⟩C , and S sets ⟨p∗j ⟩S = ⟨1{α < pj}⟩S ←

⟨lt0logq,j⟩S
30: end for

14 Y. Author et al.

get the shared values of the comparison results p∗ = {1{α < p1}, ..., 1{α < pn}}.
The core idea behind our protocol is that we replace the

(
K
1

)
-OTℓ protocol

in the Choosing stage with a batched OT protocol proposed in [27]. As we can
see from this algorithm, in step 9, C has a choose bit αt and S has a n×K matrix
{st1,u||...||stn,u}u∈[1,K−1], then C and S need to perform the

(
K
1

)
-OTℓ protocol n

times if we use the secure comparison protocol in CrypTFlow2 [34]. However,
for the fixed choices, we only need to perform the

(
K
1

)
-OTℓ protocol once if we

use the batch OT protocol [27]. Therefore, we can reduce half of the bandwidth
requirement and make a 2.1x running time improvement than [34].

5.5 Applications of PPSI

In this section, we will give two general applications of our PPSI protocol as
mentioned in Section 1. The first application is when the predicate P is a com-
parison computation, and the second is when P is a combination of multiple
constraints.

Application 1: Advertising Campaigns. An AdC (C), who has a database
of customers id, wants to launch a query on a transaction database of a TP (S).
AdC wants to find those customers who have seen the advertisement and also
purchased on TP and the purchased amount is greater than α. We modelize this
problem as: C has a query set x = {x1, ..., xm}, a payload value α and S provides
a set y = {y1, ...yn}, and for i ∈ [1, n], each item yi has an associate payload
pS = {pS,1, ..., pS,n}, and the predicate P is defined as a secure comparison
computation. After executing our PPSI protocol, C gets the query result r =
{r1, ...rm}, where each item rj indicates whether xj is in the intersection set
x∩y and the associate payload of it is bigger than the constraining value α. For
j ∈ [1,m] and i ∈ [1, n], then we enumerate all possible cases:

if ∃ yi : (xj = yi) ∧ (α < pS,i), then rj = 1;

if ∃ yi : (xj = yi) ∧ (α ≥ pS,i), then rj = 0;

if ∀ yi : (xj ̸= yi) ∧ (α < pS,i), then rj = 0;

if ∀ yi : (xj ̸= yi) ∧ (α ≥ pS,i), then rj = 0.

An Optimization. We propose an optimization method when C and S perform
the PPSI protocol in this application. After C and S align all items and pay-
loads, they need to perform a secure comparison protocol with their inputs α
and pS,i. We can use the state-of-the-art secure comparison protocol proposed in
CrypTFlow2 [34]. Therefore, C and S invokes the secure comparison protocol of
CrypTFlow2 b times. As we can see, α stays unchanged in those b times compar-
isons. Then, instead of running b times secure comparison protocol, we propose
a Batched Secure Comparison protocol (BatchComp), which can do b times se-
cure comparison in one time. The ideal functionality of BatchComp FBatchComp

is shown as Figure 4. And we give the details of FBatchComp in Section 5.4.

Predicate Private Set Intersection With Linear Complexity 15

Application 2: Database Join. In this application, we give an example of
database join. To demonstrate different situations, this example is a combination
of multiple predicates. For example, an SQL-styled query is as follows:

select X1 from X inner join Y on X1 = Y1 where α < Y2 < γ

In this example, the predicates are defined as determining whether the payloads
are in a certain range [α, γ]. We can divide this constraining range into two
separate predicates: the first is to compare α and Y2, and the second is to compare
γ and Y2. Therefore, we can perform the Phase 2 of PPSI two times to add
different pairs of random values to the items of input sets. We formalize this
problem as follows:

Suppose C has a query set x = {x1, ..., xm}, two values α and γ, which defined
a constraining range [α, γ], S provides a set y = {y1, ...yn} and an associated
payload pS = {pS,1, ..., pS,n}. C aims to get the result r = {r1, ...rm}, where each
item rj indicates whether xj is in the intersection set x ∩ y and the associate
payload of it is between the constraining range [α, γ]. Then C and S run PPSI.
The same as depicted in Section 5, in Phase 1, C and S will align all items with
simple hashing and cuckoo hashing to get Tx, Ty and TpS (b bins), respectively.
The only difference is in Phase 2, C and S will take secure comparison protocol
as predicate P and perform BatchComp to securely compare the value α and
the item in pS to get the secret-shared values of boolean results p∗

1 = {p∗1,τ}bτ=1,
where p∗1,τ = 1{α < TpS [τ]}. Next, C and S invoke the PM protocol to get b
random values z1,τ and z′1,τ (τ ∈ [1, b]) respectively, and add those random values
to their corresponding items in Tx[τ] and Ty[τ]. Then, C and S will perform
BatchComp again with different inputs to check whether all the payload values
are less than γ. That is, C and S securely compute p∗2,τ = 1{γ > TpS [τ]} to

get p∗
2 = {p∗2,τ}bτ=1, and then perform PM protocol with the input p∗. After C

gets b random values z2,τ and S gets z′2,τ (τ ∈ [1, b]), C and S add those random
values to the corresponding items in Tx[τ] and Ty[τ] again. At last, C and S
perform PSI with inputs Tx and Ty in Phase 3.

As we can see from this application, the different predicates are constraints
for those items in the intersection set. Therefore, we only need to perform all
protocols in Phase 2 multiple times to filter those items whose payloads cannot
meet the constraints.

6 Security Analysis

In this section, we analyze the security of the proposed sub-protocols. Under the
assumption that all parties are semi-honest, we use simulation-based to prove
the security of PPSI. Next, we show that our protocols satisfy our design goals.
Under the honest-but-curious assumption, the adversary is allowed to corrupt
the client C or the server S. To prove that a protocol is secure, the view of the
corrupted party is simulatable by given its input and output of this protocol
[23,14].

16 Y. Author et al.

Definition 1 A protocol is secure and can achieve the functionality F if there
exists a probabilistic polynomial-time simulator Sim that can generate a view
for the adversary Adv in the real world and the view is computationally indis-
tinguishable from its view in the ideal world.

To prove the security of our protocols, we then give the important lemma
used in our security analysis.

Lemma 1. For a random element r
$← Z2ℓ and any independent element r′ ∈

Z2ℓ , r ± r′ is uniformly random and independent from the element r′.

The complete proof of this lemma can refer to [14,2]. Based on Definition 1
and Lemma 1, we prove that our sub-protocols can be perfectly simulated as
follows:

Theorem 1. The Predicate Masking protocol is secure against semi-honest ad-
versaries.

The proof of this theorem is presented in Appendix 2.

Theorem 2. The Batched Secure Comparison protocol is secure against semi-
honest adversaries.

The proof of this theorem is shown in Appendix 2.
Privacy preserving: As we can deduce from the security proof, the inputs of
C and S are kept private from each other in our protocol. Meanwhile, the size
of intersection set x ∩ y are kept private from C and S, since all intermediate
results are secure-shared between C and S. Besides, when C launches a query in
the database of S, all access pattern are kept private from S since each item in
S are involved in the computation and S can not know which items that C gets.

Table 1. The running time in s and com-
munication in MB of the protocol PM
(IKNP-style OT based).

n 214 216 218 220 222

Time
LAN 0.003 0.012 0.026 0.092 0.29
WAN 0.32 0.44 0.82 2.34 8.5

Comm. 0.5 1.5 5.25 20.5 81.5

Table 2. The running time in s and com-
munication in MB of the protocol PM
(VOLE-style OT based).

n 214 216 218 220 222

Time
LAN 0.001 0.004 0.001 0.044 0.157
WAN 0.081 0.082 0.088 0.113 0.255

Comm. 0.002 0.009 0.04 0.16 0.64

7 Performance Evaluation

In this section, we first give the details about the environment of our experiments
and the parameters used in our protocol. Then, we evaluate the building blocks
of PPSI. Final, we evaluate the efficiency of PPSI and compare it with the
state-of-art circuit-PSI protocol and other PSI-related protocols from different
aspects.

Predicate Private Set Intersection With Linear Complexity 17

n 210 215 220

Time
CrypTFlow2 0.014 0.21 6.81

BatchComp (IKNP) 0.006 0.1 3.32
BatchComp (VOLE) 0.004 0.058 2.24

Comm.
CrypTFlow2 0.47 15.05 481.5

BatchComp (IKNP) 0.23 7.05 225.5
BatchComp (VOLE) 0.04 1.12 36.57

Table 3. The running time in s and communication in MB of BatchComp and the
secure comparison protocol of CrypTFlow2 in the LAN setting, and the items for
comparison are 32-bit long. IKNP represents the IKNP-style OT based BatchComp
protocol, and VOLE represents the VOLE-style OT based BatchComp protocol.

m vs n 212 vs 214 213 vs 214 214 vs 214 212 vs 218 213 vs 218 218 vs 218 212 vs 222 213 vs 222 222 vs 222

Breakdown

LAN

Alignment < 10−3 < 10−3 < 10−3 0.023 0.024 0.024 1.18 1.18 1.22
P + FPM 0.007 0.087 1.39

PSI(KKRT) 0.037 0.046 0.062 0.2 0.2 0.69 2.98 3.03 14.1
PSI(CM20) 0.23 0.31 0.33 0.98 0.97 4.52 13.6 97.7 54.94

WAN

Alignment < 10−3 < 10−3 < 10−3 0.023 0.024 0.024 1.18 1.18 1.22
P + FPM 0.4 0.77 3.91

PSI(KKRT) 1.12 1.27 1.41 1.87 2.1 8.1 12.72 12.86 113.63
PSI(CM20) 1.17 1.3 1.58 2.14 2.09 6.39 14.95 17.03 102.27

Table 4. The running time in s of the first application of PPSI, and the BatchComp
and PM protocols are based on VOLE-style OT.

m vs n 212 vs 214 213 vs 214 214 vs 214 212 vs 218 213 vs 218 218 vs 218 212 vs 222 213 vs 222 222 vs 222

Time
LAN

KKRT 0.052 0.06 0.077 0.38 0.38 0.86 6.78 6.83 17.91
CM20 0.24 0.32 0.35 1.16 1.15 4.7 17.35 17.44 110.16

WAN
KKRT 2.1 2.25 2.71 4.23 4.47 10.46 35.54 27.18 136.49
CM20 2.15 2.28 2.89 4.5 4.44 8.75 27.77 31.36 125.13

Comm.
KKRT 2.69 3.97 5.21 20.88 22.91 81.31 317.87 319.15 1303.99
CM20 2.31 3.5 4.65 16.31 17.78 73.01 237.87 239.1 1181.13

Table 5. The running time in s and communication in MB of the first application of
PPSI, and the BatchComp protocol and PM protocol are based on IKNP-style OT.

7.1 Implementation Details

Our PPSI protocol is implemented in C++ and the code is available at https://www.ppsi.cn.
For the cuckoo hashing method used in our protocol, we adopt the parameter
used in [31,3]. When mapping n items to a hash table with b bins via three hash
functions, we set b = 1.27n for the stash-less setting. In addition, we test two
different OT protocols to implement our protocols. One is IKNP-style OT pro-
tocol [18], and another is VOLE-style OT protocol [39], which achieves better
performance in some circumstances. The statistical security parameter in our
implementation is σ = 40, and the computational security parameter is λ = 128.

7.2 Experimental Environment

All the following experiments are conducted on virtual Linux machines running
with AMD Ryzen 5 3600 3:60GHz CPU and 16GB of memory. All our programs

https://github.com/cmZoO/PPSI

18 Y. Author et al.

Network Setting LAN WAN

m = n 214 216 218 220 222 214 216 218 220 222

CGS-PSM1 0.7 1.65 6.07 24.78 100.12 7.73 16.49 42.85 162.61 652.35

CGS-PSM2 0.95 1.68 5.22 20.29 80.65 9.27 13.55 32.97 116.02 456.59

PPSI (Ours) 0.077 0.23 0.86 4.35 17.91 2.71 3.21 10.46 31.62 136.49

Table 6. Running time in seconds of PPSI and CGS (CGS-PSM1, CGS-PSM2) [3].
We set the sizes of sets are equal and items in sets are of 64-bit length.

m = n 214 216 218 220 222

CGS-PSM1 24.33 99.48 397.65 1700.82 6824.49

CGS-PSM2 17.24 68.9 273.3 1155.7 4637.68

PPSI (Ours) 5.21 20.65 81.31 326.14 1303.99
Table 7. Communication in MB of PPSI and CGS.

are implemented in C++. And we ran our protocols in two network settings. The
bandwidth between the two virtual Linux machines was about 10 GBps (LAN
setting) and 100 Mbps (WAN setting), respectively. The round-trip time was
about 0.02ms (LAN setting) and 80ms (WAN setting), respectively. The network
setting is simulated based on the Cheetah framework [16,1]. Our implementation
is built on top of the open-source Cheetah framework [1] provided by the authors
of [16], the source code of CM20 [4], a library for private set intersection [35],
and the EMP toolkit [38]. Besides, we evaluate the work [3] under the same
environment as ours to show the efficiency of our protocols.

7.3 Evaluation for the Applications of PPSI

In this section, we will breakdown PPSI into individual components and give
both theoretical and experimental analysis when applying our PPSI protocol in
a scenario as depicted in Section 5.5. Then, we present the performance of our
PM protocol and BatchComp protocol based on different network settings and
OT protocols. Next, we combine those components together and evaluate the
whole process.

In our first application, we assume the predicate P is a secure comparison
protocol. We evaluate the running times of our PPSI based on different PSI
protocols (KKRT [19] and CM20 [5]) in both LAN/WAN settings. we breakdown
all individual components and present the execution times of the application of
PPSI as shown in Table 4. Besides, we not only perform our PPSI for equal
input sizes upto 222 items, but also the unequal sizes. In Phase 1, C and S will
align their items. We present the time for alignment with different input sizes.
Then, in Phase 2, C and S perform a secure comparison in this application,
which performs our BatchComp protocol. Besides, C and S use the results from
BatchComp to perform the PM protocol. Because C and S need to execute b
times of secure comparison and PM protocols, and b is only related to the size of

Predicate Private Set Intersection With Linear Complexity 19

n, the running times of this phase are the same when n keeps unchanged. As we
can see, if we use CM20 protocol in Phase 3 of PPSI, it has less communication
cost. In LAN setting, it can achieve better efficiency if we choose KKRT protocol
as a component of PPSI.

Next, we can combine all individual components together and present the
overall execution times of application 2 of PPSI as shown in Table 5. Similarly,
we evaluate the running times of our PPSI based on KKRT and CM20 in both
LAN/WAN settings. In the experiment of application 1, we use the VOLE-style
OT to achieve BatchComp and PM protocols, which have better performance.
However, we want to compare our PPSI with CGS [3], which is built based on
IKNP-style OT. It would be unfair to use the VOLE-style OT to build our PPSI
and compare it with CGS. Therefore, in this application, we evaluate the run-
ning time and communication cost of PPSI based on IKNP-style OT. Then, we
show the comparison of PPSI and CGS in Section 7.5.

Performance of PM protocol. In PPSI, the number of times PM is run is
related to the number of bins of the cuckoo hash tables b in our application.
Therefore, the PM protocol is run b = 1.27n times when n = 214, 216, ..., 222. In
Table 1 and Table 2, we evaluate the performance of our PM protocol based on
IKNP-style OT and VOLE-style OT protocols. As we can see, the VOLE-style
OT based PM protocol has reduced communication costs and is much more ef-
ficient than the IKNP-style OT based PM protocol.

Performance of BatchComp protocol. For the BatchComp protocol, we
show the results in Table 3. First, we compare BatchComp (IKNP-style OT
based) with the comparison protocol in CrypTFlow2 in the LAN setting. As we
can see, our protocol is about 2.1x better than CrypTFlow2 in both communi-
cation cost and running time. It is easy to learn that our BatchComp protocol
is mainly relied on the OT protocol, therefore, except using IKNP-style OT pro-
tocol as a main building block of BatchComp, we also implement it based on
VOLE-style OT protocol, which only has 1-bit communication cost for an in-
stance of ROT protocol. And this VOLE-style OT based BatchComp protocol
is about 1 order of magnitude efficient than IKNP-style OT based in terms of
communication.

7.4 Theoretical Analyses

As described in Section 5.5, in Phase 1, S performs cuckoo hashing to map
n items to a table with b bins and b = 1.27n. Then, C uses simple hashing to
get hash tables with b bins. In Phase 2, C and S performing our BatchComp
protocol for b times comparison instead of b instances of the secure comparison
protocol in CrypTFlow2. The communication cost of b instances of

(
K
1

)
−OT

is reduced from b(2λ + K) bits to (2λ + bK) bits, for λ = 128. And the com-
munication cost for FAND in step 14-22 in Algorithm 5.2 is b(λ + 20)⌈log q⌉ +
b(2λ + 22)(q − 1 − ⌈log q⌉) bits. Therefore, the communication for performing
BatchComp in Phase 2 is 2λ+bK+b(λ+20)⌈log q⌉+b(2λ+22)(q−1−⌈log q⌉)

20 Y. Author et al.

bits, where q = 8 in our application of PPSI. Then, the communication cost for
performing b times of PM protocol is bλ bits.

7.5 Performance Comparison With CGS

In Table 6 and Table 7, we compare PPSI with CGS [3], one of the state-of-art
circuit-PSI protocols. CGS considers the situation that both parties have equal
sizes of input sets, so we also perform experiments when m = n. There are
two protocols proposed in CGS (CGS-PSM1 & CGS-PSM2). We use those two
protocol in CGS to achieve the same functionality as shown in Application
2, and compare our PPSI protocol with those two protocols in CGS. And the
running time and communication cost of PPSI shown in those two tables are
IKNP-style OT based. Table 6 shows the running time of PPSI and CGS in
the LAN and WAN settings. Under the LAN setting, our protocol is around
5−10x faster than CGS. And for the WAN setting, the end-to-end running time
of PPSI is up to 3.9x faster. And Table 7 presents the communication cost of
both protocols. Our communication cost is about 3.1x than CGS. Overall, our
protocol outperforms CGS in all network settings and different sizes.

Specifically, if a different predicate P is applied to PPSI and CGS, we only
need to trivially substitute the running time of predicate computation in the
final results to evaluate the performance. Therefore, the predicate computation
would not affect the comparison results. As we can see, our PPSI protocol out-
performance CGS in terms of running time and communication costs in different
network settings.

8 Conclusion

We presented a two-party efficient PPSI protocol, which has substantial savings
of computation cost and communication cost compared to circuit-PSI protocols.
PPSI protocol is desirable in many real-world applications. According to dif-
ferent network settings, we have offered different methods to achieve the best
performance of PPSI. As suggested in [16,3], we also tested PPSI based on the
VOLE-style OT protocol to reduce communication costs. Based on performance
analysis, we believe PPSI has a more practical use. For future work, we will try
to build a PPSI protocol that is secure against malicious adversaries. One of
the main challenges would be ensuring correctness when the adversaries become
malicious.

Acknowledgments. This work was supported by Major Program of Guangdong
Basic and Applied Research Project under Grant No. 2019B030302008, National
Natural Science Foundation of China under Grant Nos. 61825203, U22B2028 and
62072132, National Key Research and Development Plan of China under Grant
No. 2020YFB1005600, Guangdong Provincial Science and Technology Project
under Grant No. 2021A0505030033, Science and Technology Major Project of

Predicate Private Set Intersection With Linear Complexity 21

Tibetan Autonomous Region of China under Grant No. XZ202201ZD0006G, Na-
tional Joint Engineering Research Center of Network Security Detection and Pro-
tection Technology, Guangdong Key Laboratory of Data Security and Privacy-
Preserving, and Guangdong Hong Kong Joint Laboratory for Data Security and
Privacy Protection. We would also thank the anonymous reviewers for their
valuable comments.

22 Y. Author et al.

Appendix 1: Secure Comparison

To compare x ∈ {0, 1}ℓ provided by C and y ∈ {0, 1}ℓ provided by S, the secure
comparison protocol performs the following four stages:
Splitting stage: C and S split their inputs x and y equally into q parts, and
q is a power of 2. Each part has k bits, and assume k divides ℓ. Let K be a
parameter and K = 2k. That is x = xq−1||...||x0 and y = yq−1||...||y0, where
xt, yt ∈ {0, 1}k, t ∈ [0, q − 1].

Masking stage: For each part t ∈ [0, q− 1], C prepares ⟨ltt0⟩BC , ⟨eqt0⟩BC
$← {0, 1}.

For all u ∈ [0,K−1], C sets stu = ⟨ltt0⟩BC ⊕1{xt < u} and vtu = ⟨eqt0⟩BC ⊕1{xt = u}.
Choosing stage: C and S invoke an instance of

(
K
1

)
-OTℓ where C inputs

{stu}u∈[0,K−1] and S inputs the choose bit yt. Then S gets the output ⟨ltt0⟩BS . Sim-

ilarly, C and S invoke another instance of
(
K
1

)
-OTℓ where C inputs {vtu}u∈[0,K−1]

and S inputs the choose bit yt. Then S gets the output ⟨eqt0⟩BS .
Merging stage: C and S recursively compute the shares they have using the
idea of Equation (3). For i ∈ [1, logq] and t ∈ [1, (q/(2i) − 1)], C and S invoke
FAND to compute ⟨ltti⟩BC = ⟨lt2ti−1⟩BC ∧⟨eq

2t+1
i−1 ⟩BC ⊕⟨lt

2t+1
i−1 ⟩BC and ⟨ltti⟩BS = ⟨lt2ti−1⟩BS ∧

⟨eq2t+1
i−1 ⟩BS ⊕⟨lt

2t+1
i−1 ⟩BS . Then C and S can compute ⟨eqti⟩BC = ⟨lt2ti−1⟩BC ∧⟨eq

2t+1
i−1 ⟩BC

and ⟨eqti⟩BS = ⟨lt2ti−1⟩BS ∧ ⟨eq
2t+1
i−1 ⟩BS . Final, C gets ⟨lt0i ⟩BC and S gets ⟨lt0i ⟩BS .

After the above four stages, C and S get the boolean shares of the comparison
result of x and y.

Appendix 2: Security Proof

The proof of Theorem 1 is as follows.

Proof. As shown in Algorithm 1, for C, the view during the protocol execution
will be viewC = (⟨p∗⟩BC , z). Since z is generated by ROT protocol and is a
random value, according to Lemma 1, it is trivial to see that all values of C’s
view are uniformly random. C outputs nothing during this protocol. Therefore,
viewC and outputC can be simulated by a simulator SimC . Then SimC can
generate a view for the adversary AdvC , who can not distinguish the generated
view from its real view.

For S, the view during the protocol execution will be viewS = (⟨p∗⟩BS).
Then S outputs R0, R1 during this protocol. Since R0, R1 is generated by ROT
protocol and are random values, according to Lemma 1, all values of S’s view
are uniformly random. Therefore, viewS and outputS can be simulated by a
simulator SimS . Then SimS can generate a view for the adversary AdvS , who
can not distinguish the generated view from its real view.

The proof of Theorem 2 is as follows.

Proof. As shown in Algorithm 5.2, for C, the view in the protocol execution will
be viewC = (α, {st1,αt ||...||stn,αt}, {vt1,αt || ...||vtn,αt}). Since {st1,αt ||...||stn,αt}, {vt1,αt ||...||vtn,αt}
are generated from the random elements (step 7-8 in Algorithm 5.2), according

Predicate Private Set Intersection With Linear Complexity 23

to Lemma 1, it is trivial to see that all values of C’s view are uniformly ran-
dom. The output of C is outputC = ⟨1{α < pi}⟩C , which is generated from the
random values {st1,αt ||...||stn,αt}, {vt1,αt ||...||vtn,αt} (step 14-20 in Algorithm 5.2).
Therefore, viewC and outputC can be simulated by a simulator SimC . Then
SimC can generate a view for the adversary AdvC , who can not distinguish the
generated view from its real view.

For S, the view in the protocol execution will be viewS = (p, ⟨ltt0,j⟩, ⟨eqt0,j⟩}).
Since {⟨ltt0,j⟩, ⟨eqt0,j⟩} are generated from the random elements (step 5 in Al-
gorithm 5.2), all values of S’s view are uniformly random. The output of S is
outputS = ⟨1{α < pi}⟩S , which is generated from the random values {⟨ltt0,j⟩, ⟨eqt0,j⟩}
(step 6-8 in Algorithm 5.2). Therefore, viewS and outputS can be simulated
by a simulator SimS . Then SimS can generate a view for the adversary AdvS ,
who can not distinguish the generated view from its real view.

References

1. Alibaba-Gemini-Lab: Opencheetah. https://github.com/Alibaba-Gemini-Lab/

OpenCheetah (2022)

2. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. International Journal of Informa-
tion Security 11(6), 403–418 (2012)

3. Chandran, N., Gupta, D., Shah, A.: Circuit-psi with linear complexity via relaxed
batch opprf. Proceedings on Privacy Enhancing Technologies 1, 353–372 (2022)

4. Chase, M., Miao, P.: Oprf-psi. https://github.com/peihanmiao/OPRF-PSI (2020)

5. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight
oblivious prf. In: Annual International Cryptology Conference. pp. 34–63. Springer,
Springer, Santa Barbara, CA, USA (2020)

6. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled psi from fully homomorphic
encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1223–1237. ACM,
Los Angeles, CA, USA (2018)

7. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1243–1255. ACM, New York, NY, United States
(2017)

8. Cong, K., Moreno, R.C., da Gama, M.B., Dai, W., Iliashenko, I., Laine, K., Rosen-
berg, M.: Labeled psi from homomorphic encryption with reduced computation and
communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1135–1150. ACM, New York, NY, United
States (2021)

9. Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

10. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM SIGSAC Conference on Computer and
Communications Security. pp. 789–800. ACM, Berlin, Germany (2013)

11. EdalatNejad, K., Raynal, M., Lueks, W., Troncoso, C.: Private set matching pro-
tocols. arXiv preprint arXiv:2206.07009 (2022)

https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/peihanmiao/OPRF-PSI

24 Y. Author et al.

12. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

13. Garimella, G., Mohassel, P., Rosulek, M., Sadeghian, S., Singh, J.: Private set
operations from oblivious switching. In: IACR International Conference on Public-
Key Cryptography. pp. 591–617. Springer (2021)

14. Huang, K., Liu, X., Fu, S., Guo, D., Xu, M.: A lightweight privacy-preserving cnn
feature extraction framework for mobile sensing. IEEE Transactions on Dependable
and Secure Computing 18(3), 1441–1455 (2019)

15. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS. San Diego, California, USA (2012)

16. Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: Lean and fast secure two-party
deep neural network inference. Cryptology ePrint Archive (2022)

17. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Annual International Cryptology Conference. pp. 145–161. Springer,
Santa Barbara, California, USA (2003)

18. Kolesnikov, V., Kumaresan, R.: Improved ot extension for transferring short se-
crets. In: Annual Cryptology Conference. pp. 54–70. Springer, Santa Barbara, CA,
USA (2013)

19. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
prf with applications to private set intersection. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 818–829.
ACM, New York, USA (2016)

20. Laur, S., Talviste, R., Willemson, J.: From oblivious aes to efficient and secure
database join in the multiparty setting. In: International Conference on Applied
Cryptography and Network Security. pp. 84–101. Springer (2013)

21. Le, P.H., Ranellucci, S., Gordon, S.D.: Two-party private set intersection with an
untrusted third party. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2403–2420. ACM, New York, USA
(2019)

22. Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join and compute
from pir with default. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 605–634. Springer, Singapore (2021)

23. Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique. Tu-
torials on the Foundations of Cryptography pp. 277–346 (2017)

24. Liu, Y., Zhang, X., Wang, L.: Asymmetrical vertical federated learning. arXiv
preprint arXiv:2004.07427 (2020)

25. Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In: 1986 IEEE Symposium on
Security and Privacy. pp. 134–134. IEEE (1986)

26. Mohassel, P., Rindal, P., Rosulek, M.: Fast database joins and psi for secret shared
data. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1271–1287 (2020)

27. Mohassel, P., Rosulek, M., Trieu, N.: Practical privacy-preserving k-means clus-
tering. Cryptology ePrint Archive (2019)

28. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004)

29. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Spot-light: Lightweight private set
intersection from sparse ot extension. In: Annual International Cryptology Con-
ference. pp. 401–431. Springer (2019)

Predicate Private Set Intersection With Linear Complexity 25

30. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Psi from paxos: fast, malicious private
set intersection. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 739–767. Springer, Zagreb, Croatia (2020)

31. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based psi
with linear communication. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 122–153. Springer, Darmstadt,
Germany (2019)

32. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based psi via
cuckoo hashing. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 125–157. Springer, Israel (2018)

33. Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on ot
extension. ACM Transactions on Privacy and Security (TOPS) 21(2), 1–35 (2018)

34. Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., Sharma,
R.: Cryptflow2: Practical 2-party secure inference. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 325–
342. ACM, New York, USA (2020)

35. Rindal, P.: libpsi. https://github.com/osu-crypto/libPSI (2020)
36. Taassori, M., Shafiee, A., Balasubramonian, R.: Vault: Reducing paging overheads

in sgx with efficient integrity verification structures. In: Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. pp. 665–678. ACM, New York, USA (2018)

37. Takeshita, J., Karl, R., Mohammed, A., Striegel, A., Jung, T.: Provably secure
contact tracing with conditional private set intersection. In: International Confer-
ence on Security and Privacy in Communication Systems. pp. 352–373. Springer
(2021)

38. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

39. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated ot with small communication. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1607–1626. ACM, New
York, USA (2020)

40. Ying, J.H., Cao, S., Poh, G.S., Xu, J., Lim, H.W.: Psi-stats: private set intersection
protocols supporting secure statistical functions. In: International Conference on
Applied Cryptography and Network Security. pp. 585–604. Springer, Rome, Italy
(2022)

https://github.com/osu-crypto/libPSI
https://github.com/emp-toolkit

	Predicate Private Set Intersection With Linear Complexity

