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Abstract Zero-knowledge proofs are widely adopted in Confidential Transactions
(CTs). In particular, with these proofs, it is possible to prove the validity of transac-
tions without revealing sensitive information. This has become an attractive property
in public blockchain where transactions must be publicly verifiable. However, sev-
eral challenges must be addressed in order not to alter important properties of the
blockchain, such as not introducing trusted third parties and/or circuit-dependent
trusted setups. Moreover, there are limited proposals working on the standard account
model and considering extended payment models where multiple payees are involved
in one transaction. With this paper, we first present our concept of Multi-Transfer
(MT) in CTs settings, i.e., a transfer that involves multiple payees in a single trans-
action with privacy guarantees for balances and transfer amounts. Inspired by the
work of Zether, we design the MT zero-knowledge proof system, named MTproof,
by combining the aggregate version of Bulletproofs and several Σ-Protocols to prove
that an MT transaction is legit. We provide concrete evaluations of the MTproof in
terms of proof size, prover and verifier execution time.

1 INTRODUCTION

With the rise of the first digital currency of Bitcoin [17], blockchain technology has
become a growing active field of study in both academia and industry. Ethereum [5]
has extended the functionality of the blockchain with smart contracts. The transac-
tions enclosed in the blocks are executed according to the logic specified in smart
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contracts. The state updates produced in a smart contract are propagated to all nodes
of the network and immutably stored on the blockchain. This public announcement
brings the transaction information publicly visible. Further, a known problem is
that an adversary can link the user’s real-world identity and disclose transaction
information by analysing the public transaction graph [7, 13, 19]. In light of this, an
increasing body of research is focusing on privacy applications such as Confidential
Transactions (CTs), where guarantees on the anonymity of the entities involved in
a financial transfer and the confidentiality of the transfer amounts are considered.
Zero-Knowledge Proofs (ZKPs) are spreading widely in CTs, as they are capable
of revealing nothing except the validity of the statements being proved relating to
the transactions. Therefore, ZKPs are adopted in many privacy protocols, among the
most cited are MimbleWimble [18], Zerocash [22], Lelantus [15] and Monero [1].
Such proposals are designed on the UTXO (unspent transaction outputs) model and
move around a simple equation for a valid transaction: the total of the input amounts
must equal the total of the output amounts. To keep the amounts hidden, this equation
is then proved through the commitment to zero or a private computation linked to an
arithmetic circuit (e.g., zk-SNARK). On another side, there are privacy protocols
that move to the Ethereum account model: a model in which a transfer of funds
between two addresses has the effect that the payer’s account balance is debited and
the payee’s account balance is credited. In this setting, proposals of Zether [3] and
Quisquis [11] design schemes in which the balances kept in an encrypted form are
updated homomorphically. Moreover, Zether and Quisquis share the use of proof
systems such as Bulletproofs [4] for range proofs and Σ-Protocols to prove algebraic
statements under the DLOG assumption. Other solutions rely on proof systems for
more general computations inspired by Zerocash, examples are Blockmaze [14],
which has designed a specific private computation circuit for each transaction, and
ZETH [20] that has developed the logic of UTXO on top of the account model using
zk-SNARK to prove the transaction correctness.

Research question. Complex smart contracts can have more than two users,
opening scenarios for a new model of transaction taking place amongst a set of
participants. A similar concept is the ”redistribution of wealth” introduced in Quisquis
[11], where multiple account balances can be updated at the same time as the effect
of one UTXO transaction. However, there are few proposals for CTs in the standard
account model, and none consider such an extended payment model. Hence, we want
to ask the question: how can we design a zero-knowledge transfer in the account
model, where there are multiple payees in one transaction? Rather than having the
traditional payment model, we introduce our concept of Multi-Transfer (MT) in CTs,
i.e., a transfer that involves multiple payees with a single confidential transaction
with hidden amounts and balances. We first formulate the statements over an MT
zero-knowledge relation for which our proof is constructed, and then we design
our zero-knowledge proof system, called MTproof, satisfying that relation. Inspired
by the Σ-Bullets of Zether [3], our system is based on homomorphic primitives
and combines two well-known proof systems: the Aggregated Bulletproofs [4] to
construct one range proof of m aggregated values and several Σ-protocols [6] to prove
statements on the encryption of multiple transfer amounts together with the balance
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of the sender. Since the range proof is the most expensive component of the proof
system even for a single value, it turns out that a single range proof for m aggregated
values is more efficient.

Our contribution. In this paper, we initiate the formalization of the Multi-Transfer
(MT) in the account model. We design the MTproof proof system for the correspond-
ing MT relation, which is provided by the following properties: (i) Multi-Transfer -
multiple payees receive funds from a single transaction; (ii) Confidential Transfers
- hide the amounts in the transaction and sender/recipients balances values; (iii)
Zero-Knowledge - verifier learns nothing about the secrets and witnesses of the trans-
action; (iv) Non-Interactive - can be transformed into a non-interactive version, i.e.,
no interactions from the verifier to the prover; (v) Trustless - no added trust derived
from the proof systems or trusted executors; (vi) Aggregation - single aggregate
proof for many statements related to the MT relation. As part of our contribution,
we implement the MTproof proof system using arkworks [2] Rust ecosystem. We
evaluate the MTproof concretely in terms of proof size, prover and verifier execution
time.

2 Preliminaries

In what follows, we denote with pp the public parameters and with λ the security

parameter of a scheme. We write a $←− S when a random variable a is uniformly
sampled from a set S .

Groups. Let G be a group-generation algorithm that on input 1λ outputs the tuple
(G, p,g), where G is a description of a cyclic group, p is a prime number and is
the order of the group and g ∈ G is a generator of the group. We consider groups
in which the discrete logarithm problem is computationally intractable. We refer
to the DLOG assumption and its variant of the Decisional Diffie-Hellman (DDH)
assumption for groups in which the discrete logarithm problem is hard.

Pedersen commitments A Pedersen commitments is defined over a finite cyclic
group G of prime order. The message space is from the set of integers modulo p,
Zp where p is a safe prime. Let g,h ∈G be two random public generators, m ∈ Zp

the message and r $←− Z∗p the blinding factor, the commitment is defined as: com
= Commit(m;r) = (gmhr) ∈G. We consider a non-interactive commitment scheme
in which a valid commitment is proved by the knowledge of the secret relating to
the commitment. A variant of this scheme is Pedersen vector commitments used to
commit multiple messages at once. The input messages are gathered in a vector and
a vector of generators is defined as well.

ElGamal homomorphic encryption. Considering a cyclic group G of prime
order p and generator g of that group, the encryption scheme has a private key in the

random integer x $←{1, . . . , p−1} and a public key of the form y= gx, then the public
parameters of the scheme are (G, p,g,y). Let r be a randomness uniformly sampled

in r $← {1, . . . , p− 1}, the ciphertext for a message m is: Enc(m) = (CL,CR) =
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(m · yr,gr). A more specific use case of the scheme can be considered as in Zether
[3]. Here, the message m to encrypt is an integer value a ∈ Zp which can be turned
into a group element using the simple mapping m = ga. Hence, the encryption
function can be rewritten as Enc(m) = (CL,CR) = (m · yr,gr) = (ga · yr,gr). An
additive homomorphism can be derived from the application of the group operator ·
between two ElGamal ciphertexts: (CL ·C′L = ga+a′ · yr+r′ ,CR ·C′R = gr+r′).

Zero-Knowledge Proofs. Let R be a binary relation for an instance x and a
witness w and L the corresponding language such that L = {x | ∃w : (x,w)∈R }. An
interactive proof is a protocol between a prover P and a verifier V in which P tries to
convince V that an instance x is in the language L for the given relation R . This can
be done through an interactive exchange of messages between P and V representing
the transcript, from which the verifier can accept or reject the conversation (namely
the proof). The proof is said to be zero-knowledge if it essentially reveals nothing
beyond the validity of the proof. An interactive proof is honest-verifier perfect zero-
knowledge (HVZK) if it has perfect completeness, special soundness and honest-
verifier perfect zero-knowledge properties. The HVZK protocol is called public coin
if all the verifier’s challenges sent to the prover are chosen uniformly at random and
are independent of the prover’s messages.

Σ-Protocols. HVZK public-coin interactive proofs consisting of three messages
(a,c,z) where: a is the announcement computed by P and sent to V , c is the chal-
lenge randomly sampled by V and sent to P and z is the response computed by P
based on the challenge and sent back to V . From that structure, one can prove that
ciphertexts are well-formed, the knowledge of the opening of a commitment, the
knowledge of a secret behind encryption, or other statements relating to the discrete
logarithm. Moreover, any interactive zero-knowledge proof can be transformed in a
non-interactive zero-knowledge proof (NIZK) by means of the Fiat-Shamir heuristic
[12]. In such case, an honest prover tries to follow the protocol composed of the
messages (a,c,z) where the challenge c is replaced by a random oracle.

Zero-knowledge relation. The relation is a valid collection of instances-witnesses
together with the statements for which the zero-knowledge proof is constructed. We
use the notation Rel : {(x1, ...,xn ; w1, ...,wm) : f (x1, ...,xn,w1, ...,wm)} to specify
that prover and verifier know the public instances x1, ...,xn, and only the prover
knows the witnesses w1, ...,wm such that f (x1, ...,xn,w1, ...,wm) is true. f defines the
statements for the given instances-witnesses and can be expressed in algebraic form.

2.1 Zero-knowledge Multi-Transfer relation

The concept of Multi-Transfer in the confidential setting has been previously pre-
sented in our work ZeroMT [8]. The aim is to enable a single payer to transfer
currency to multiple payees within a single confidential transaction that has the effect
of multiple concurrent transfers. The ZeroMT transaction layer builds upon a user pro-
gram, defined as MTU, and a smart contract hosted on the account-model blockchain,
the MTSC smart contract. Users can utilise the MTU to initiate the multi-transfer
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transaction, the MTX transaction, towards n recipients. Each involved party i has
an encrypted balance of the form b[yi] = (CL = gbi · yr

i ,CR = gr) obtained by means
of an ElGamal public key yi = gski ∈ G, derived from a randomly sampled secret

key ski
$← Zp. Given a list a = (a1, . . . ,an) of plaintext amounts to be transferred,

what the MTU does is encrypting those values with the public key y of the sender
and the public keys ȳ = (ȳ1, . . . , ȳn) of the recipients. The result are respectively the
lists C = (C1, . . . ,Cn) and C̄ = (C̄1, . . . ,C̄n), where ∀i ∈ [1,n], Ency(ai) =Ci = gaiyr

and Encȳi(ai) = C̄i = gai ȳr
i . The two lists of ciphertexts are associated with the same

randomness value D = gr, where r $←Z∗p is a value uniformly sampled from the set of
inverses in Zp. In order to initiate a transaction, the MTU forwards the C and C̄ lists
to the MTSC along with a zero-knowledge proof π satisfying a zero-knowledge multi-
transfer relation, which (informally) states that: (i) the sender knows the secret key sk
for which the respective public key y encrypts the values in C; (ii) the sender knows
the randomness r used in the encryption process; (iii) the sender balance cannot be
overdraft; (iv) the i-th ciphertexts in both C and C̄ are well-formed and encrypt the
same amounts; (v) each of the transfer amounts in a is non-negative; (vi) the sender
remaining balance b′ is non-negative. For these statements, the MTU acts as a prover
and the MTSC as a verifier. Both share the public instances (y, ȳ,CL,CR,C, C̄,D,g),
while the witnesses (sk,a,b′,r) are known only by the prover. Further, we express the
statement for the range proofs in which we prove that ∀ai ∈ (a1, . . . ,an) each transfer
amount ai and the remaining sender’s balance b′ fall within the range of admissible
values [0,MAX ], where MAX is the upper limit equal to 2n−1 with n the bit length
of the values. After the proof π is successfully verified by the MTSC, all the requested
transfers are executed. The updates on the balances of the sender and each of the
recipients are made through the additive homomorphism of the ElGamal scheme on
the underlying group G: b[y] = b[y]◦ (C−1

tot ,D−1) where b[y] is the reference of the
sender’s balance, and ∀i ∈ [1,n], b[ȳi] = b[ȳi]◦ (C̄i,D) is the i-th receiver’s balance
increased by the corresponding amount in the C̄ list.

3 MTproof: Multi-Transfer zero-knowledge proof system

In our context of the previous section, a zero-knowledge proof must guarantee that
the MTX transaction is well-formed and legit, i.e., the balance transfer goes to the
right payee and the payer has enough money to spend in his/her wallet. To this end,
we design the interactive zero-knowledge proof system, called MTproof, satisfying
the multi-transfer relation. The main idea is to combine the Aggregated Inner Product
Range Proof and several Σ−Protocols as follows. We generate one aggregated range
proof for m = n+1 values, such that the m−1 values correspond to each transfer
amount ai and one value b′ to the remaining balance; we use Σ−Protocol to prove the
statements for the two lists of n encrypted transfer amounts (Ci,D)n

i=1 and (C̄i,D)n
i=1

and for the sender’s remaining balance. Using the above combination of proof
systems, we generalise the Σ-Bullets protocol [3] of Zether to the case of n transfers
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per epoch instead of one. Our proof system benefits from short and logarithmic-sized
proofs as well as trustless property. We organize this section as follows: we present
the key concepts of the Bulletproofs theory; we show how we modify Bulletproofs in
our MTproof proof system; we present the Σ-protocols that compose the remaining
part of MTproof.

Bulletproofs review. First, we summarise some notations of Bulletproofs [4], used
in our proof system. Zp is the ring of integers modulo p prime (Z∗p is Zp/{0}). g and
h are generators of a cyclic group G of prime order p. Capitalised are commitments
and Greek letters are blinding factors, e.g., A = ga · hα is a Pedersen commitment
to the value a with blinding factor α. In bold are vectors, e.g., a ∈ Zn

p is a vector
with elements in Zp of dimension n. The inner-product of two vectors having size
n is ⟨a,b⟩ = ∑

n
i=1 ai · bi. The Hadamard product of two vectors having size n is

a◦b = (a1 ·b1, ...,an ·bn). The following is useful for Pedersen vector commitments:
let g = (g1, ...,gn) ∈Gn be a vector of generators then A = ga = ∏

n
i=1 gai

i is binding
(but not hiding) commitment to the vector a ∈ Zn

p. Slices of vectors are denoted
with a[:k] = (a1, ...,ak) ∈ Fk and a[k:] = (ak+1, ...,an) ∈ Fn−k. A vector polynomial
p(X) ∈ Zn

p[X ] is defined as p(X) = ∑
d
i=0 pi ·X i, where pi ∈ Zn

p and d is the degree
of the polynomial. For a complete description, refer to section 2.3 of [4]. With
Bulletproofs, a prover can convince a verifier that a value v is in range, in particular,
0 ≤ v < 2n. Given as public parameters the generators g and h and the Pedersen
commitment V = hγgv of the value v using randomness γ, the system ends up proving
that the inner-product of two committed vectors l, r is a certain value t̂, then the
equality t̂ = ⟨l,r⟩ is valid if and only if v∈ [0,2n−1]. This is the final step of the range
proof in which the prover and verifier engage in the Inner-Product Argument (IPA)
protocol. We now present a high-level overview of the previous steps. The prover first
creates two commitments, A commitment to the vectors aL and aR where ⟨aL,2n⟩= v
and aR = aL−1n, S commitment to blinding terms sL and sR. The prover receives
from the verifier two challenge points y and z and creates T1 and T2 commitments to
the coefficients t1 and t2 of the polynomial t(X). The prover honestly constructs the
polynomial t(X) from the inner product of two vector polynomials l(X) and r(X),
which in turn have a special form derived from a linear combination of the vectors
aL and aR respectively and the verifier’s challenges. The prover does not commit to
the zero-coefficient t0 of t(x) and sends to the verifier only T1,2. Instead, the prover
proves the opening of the commitments, sending the evaluation t̂ = t(x) at a random
point x from the verifier. The verifier can calculate the zero-coefficient himself from
the commitment V of the value v and the challenges. After receiving the challenge x,
together with t̂ the prover also sends to the verifier a blinding value τx for t̂, the two
blinded vectors l = l(x) and r = r(x) and a blinding factor µ for the commitments A
and S. Now the verifier can verify the Pedersen commitment V of the value v, that A
and S are valid and that t̂ = ⟨l,r⟩ is correct. Transmitting l and r has a linear cost in n
(bits of ranges). Using the IPA protocol with l and r becoming witnesses and some
adjustments explained in section 4.2 of [4], we obtain a logarithmic proof size in n.
Moreover, an aggregated range proof can be used to perform one proof for m values.
This implies some modifications, in particular the prover computes aL ∈ Zm·n

p such
that ⟨2n,aL[( j−1)·n: j·n−1]⟩= v j for all j ∈ [1,m]. The prover modifies the constructions
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of l(X) and r(X) such that they stay in Zm·n
p [X ] and τx to include the randomness of

each Vj commitment of the v j value. Finally, verifier modifies the verification of t̂ to
include all the Vj commitments and the verification of A,S commitments respect to
the new r ∈ Zm·n

p .
Using Bulletproofs in MTproof . We now outline the modifications of the Bul-

letproofs protocol required in MPproof, in order to prove that each transfer amount
ai of the vector a = (a1, . . . ,an) is non-negative and the sender remaining balance
b′ after the transfer is also non-negative. More specifically, we generate an aggre-
gated range proof valid for a vector of m values, where the first value is b′ and the
m−1 remaining values are those in a. The range domain within which these values
must be proved valid is [0,2n−1]. The protocol is initiated by the prover creating
the commitments A = hα · gaL ·haR ∈ G and S = hρ · gsL ·hsR ∈ G, where g,h are
vectors of generators, h ∈G is the blinding generator and α,ρ the blinding random
values. The commitment A to the vectors aL and aR is generated from the binary rep-
resentation of b′ and a, respectively: ⟨aL[:n],2n⟩ = b′ and ⟨aL[( j−1)·n: j·n],2n⟩ = a j−1
∀ j ∈ [2,m]. Then, by subtracting from aL the vector of powers of 1 we obtain:
aR = aL−1m·n ∈ {0,−1}m·n. The commitment S is a commitment to the randomly
sampled blinding terms in sL,sR ∈ Zm·n

p . The prover then sends these commitments
to the verifier, which responds with the random challenges y,z. The prover then con-
structs the commitments: T1 = gt1 ·hτ1 ∈G and T2 = gt2 ·hτ2 ∈G. Both commitments
consist of two uniformly random values τ1,τ2 ∈ Zp and the coefficients t1, t2 of the
polynomial t(X) = t0+ t1 ·X + t2 ·X2 ∈Zp[X ]. Such t(X) polynomial is derived from
the inner product of two polynomials l(X),r(X) ∈ Zm·n

p [X ], both built from a linear
combination of the challenges of the verifier and the vectors aL,aR,sL,sR. After
receiving the commitments T1 and T2 from the prover, the verifier responds with
the randomly sampled challenge x. The prover calculates the polynomial evaluation
t̂ = t(x), and two blinding factors, one for t̂ and one for the commitments A and
S, respectively: τx = τ1 · x+ τ2 · x2 ∈ Zp and µ = α+ρ · x ∈ Zp. Simply replacing
Pedersen commitment with ElGamal encryption is not sufficient at this point. In
Bulletproofs, the equality to be verified, which includes commitments V, T1 and
T2, exploits the additive homomorphic property of the Pedersen commitment, and
this cannot be done with ElGamal encryptions under different keys. We follow the
same intuition of Zether to combine Bulletproofs with a Σ-Protocol: instead of giving
to the verifier the opening of polynomial commitments to t(X), knowledge of the
opening is proved. This corresponds to proving knowledge of the blinding value τx
for the commitments T1,2. To include this statement, our proof system now generates
a proof for the following zero-knowledge multi-transfer relation (formally):

RelCon f MultiTrans f er : { (y, ȳ,CL,CR,C, C̄,D,g,z, t̂,δ(y,z); sk,a,b′,r,τx) :
(Ci = gaiyr ∧C̄i = gai ȳr

i ∧D = gr)n
i=1∧

CL/
n

∏
i=1

Ci = gb′(CR/
n

∏
i=1

D)sk ∧ y = gsk∧

gt̂−δ(y,z)−b′·z2−∑
n
i=1 ai·z2+i

hτx = T1,2}

(1)
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Hence, the prover also calculates a blinding commitment At = g−kab · hkτ , where
kab and kτ are two uniformly random scalars. At this point, the prover sends the
values t̂,µ and At to the verifier, and after receiving the random challenge c from the
verifier, the prover generates and sends the scalars sab and sτ such that: sab = kab +
c · (b′ · z2 +∑

m−1
i=1 ai · z2+i) ∈ Zp and sτ = kτ + c · τx ∈ Zp. The verifier uses them in

the final proof of knowledge check: gc(t̂−δ(y,z))−sab ·hsτ
?
= AtT c·x

1 T c·x2

2 where δ(y,z) =
(z−z2) · ⟨1m·n,ym·n⟩−∑

m
j=1 z2+ j · ⟨1m·n,2m·n⟩. From this point, MTproof follows with

the IPA protocol to prove that the inner product t̂ = ⟨l,r⟩ of the committed vectors
l and r is valid. We use the logarithmic-sized proof optimization and the verifier
multi-exponentiation technique from the IPA protocol of Bulletproofs. Hence, the
prover and verifier engage in the IPA protocol on the inputs (g,h′,Ph−µ, t̂; l,r), where

h′ = (h1,h
y−1

2 ,hy−2

3 , ...,hy−m·n+1
m·n ) and P = ASx ·g−z ·h′z·ym·n ·∏m

j=1 h′z
1+ j ·2n

[( j−1)·n: j·n].
Using Σ-Protocol in MTproof . We present the remaining part of MTproof relat-

ing to the Σ-protocols. In particular, we design four Σ-proofs, each for one of the
equalities in conjunction in relation (1), except for the last one (the Bulletproofs
proof of knowledge of the opening of the polynomial commitment). In the following,
we parse the statements and we show the corresponding Σ-proof.

Σ-proof-sk for statement: the sender knows a secret key sk for which the respective
public key y encrypts the values in C and the public key is well-formed

1: input: (g,y ∈G; sk ∈ Zp) : y = gsk

2: P ’s input : (g,sk)
3: V ’s input : (g,y)
4: output: {V accepts or V rejects}
5: P → V : Ay where Ay = gksk ∈G and ksk

$← Zp

6: V → P : c $← Zp
7: P → V : ssk where ssk = ksk + c · sk ∈ Zp

8: V : gssk ?
= Ayyc ∈G if yes, V accepts; otherwise rejects

Σ-proof-r for statement: the sender knows a randomness r used in the encryption

1: input: (g,D ∈G; r ∈ Zp) : D = gr

2: P ’s input : (g,r)
3: V ’s input : (g,D)
4: output: {V accepts or V rejects}
5: P → V : AD where AD = gkr ∈G and kr

$← Zp

6: V → P : c $← Zp
7: P → V : sr where sr = kr + c · r ∈ Zp

8: V : gsr ?
= ADDc ∈G if yes, V accepts; otherwise rejects

Σ-proof-ab for statement: the sender balance cannot be overdraft, i.e., the sender
remaining balance is equal to the subtraction between the sender balance and all of
the (m−1) transfer amounts in C



Zero-knowledge Multi-Transfer based on range proofs and homomorphic encryption 9

1: input: (g,D,CL,CR ∈G, C ∈Gm−1; sk,b′ ∈ Zp,a ∈ Zm−1
p ) :

CL/∏
m−1
i=1 Ci = gb′(CR/∏

m−1
i=1 D)sk

2: P ’s input : (g,D,CR,sk,a,b′)
3: V ’s input : (g,D,CL,CR,C)
4: output: {V accepts or V rejects}
5: V → P : z $← Z∗p
6: P computes:
7: ksk,kab

$← Zp
8: Aab = ((CR/∏

m−1
i=1 D)z2 ·∏m−1

i=1 Dzi+2
)ksk ·gkab ∈G

9: end P
10: P → V : Aab

11: V → P : c $← Zp
12: P computes:
13: ssk = ksk + c · sk ∈ Zp
14: sab = kab + c · (b′z2 +∑

m−1
i=1 (aizi+2)) ∈ Zp

15: end P
16: P → V : ssk,sab

17: V : gsab(( CR
∏

m−1
i=1 D

)z2 ·∏m−1
i=1 Dz2+i

)ssk ?
= Aab((

CL
∏

m−1
i=1 Ci

)z2 ·∏m−1
i=1 Cz2+i

i )c ∈G

18: if yes, V accepts; otherwise rejects

Σ-proof-y for statement: the i-th values in both C and C̄ are well-formed and
correspond to the encryption of the i-th amount to be transferred

1: input: (y ∈G, ȳ,C, C̄ ∈Gm−1; r ∈ Zp) :
(Ci = gaiyr ∧C̄i = gai ȳr

i ∧D = gr)m−1
i=1

2: P ’s input : (y, ȳ,r)
3: V ’s input : (y, ȳ,C, C̄)
4: output: {V accepts or V rejects}
5: P → V : Aȳ where Aȳ = ∏

m−1
i=1 (y · ȳ−1

i )kr ∈G and kr
$← Zp

6: V → P : c $← Zp
7: P → V : sr where sr = kr + c · r ∈ Zp

8: V : ∏
m−1
i=1 (y · ȳ−1

i )sr ?
= Aȳ · (∏m−1

i=1 Ci/C̄i)
c

9: if yes, V accepts; otherwise rejects

4 MTproof implementation and evaluation

In this section, we evaluate MTproof using our code implementation in Rust and the
arkworks [2] library suites. The source code of MTproof can be found on GitHub
[10]. The elliptic curve, underlying all the operations on elements of G, is the Bar-
reto–Naehrig curve BN-254. The modular structure of MTproof allows us to conduct
accurate and modular benchmarks to estimate each execution time for the prover
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and verifier functions and the associated proofs’ sizes. The results of the evaluations
are shown in Table 1. The benchmarks are executed multiple times with different
values for n and m, equal to powers of two. All the measurements are carried on a
machine with an Intel Core i7-10750H (12 threads and 6 cores at 2.60GHz, with
turbo frequencies at 5.00GHz) CPU and 16 GB of RAM, running the Rust compiler.

Table 1: MTproof evaluation results

n m Proving time (ms) Verifying time (ms) Proof size (bytes)
16 2 534 202 1,584
16 4 1,000 379 1,712
16 8 2,030 718 1,840
16 16 3,941 1,389 1,968
16 32 7,815 2,680 2,096
16 64 15,192 5,327 2,224

32 2 967 348 1,712
32 4 1,891 686 1,840
32 8 3,753 1,329 1,968
32 16 7,431 2,626 2,096
32 32 14,844 5,259 2,224
32 64 30,052 10,460 2,352

64 2 1,899 679 1,840
64 4 3,762 1,320 1,968
64 8 7,496 2,619 2,096
64 16 14,980 5,218 2,224
64 32 29,794 10,478 2,352
64 64 61,430 21,533 2,480

Comparison with concurrent work and results. We consider one concurrent work,
Anonymous Zether in [9]. Anonymous Zether enhances the Basic Zether scheme
by introducing the many-out-of-many primitive to build an anonymity set for the
unlinkability of addresses. Proof size, proving time, and verifying time are provided
with respect to the growth of the anonymity set. These evaluations are carried out by
setting a fixed number of two aggregate 32-bit range values. Compared with MTproof,
it is possible to notice the same logarithmic growth with the increase of m (aggregate
values) and the increase of the anonymity set size, as shown in Fig. 1 for the proof
size. Similar observation also applies to the proving and verifying times. Hence, for
the considerations that follow, we consider our proof system evaluation as the lower
limit Ω(log M), where M = m∗ k with m the number of aggregate values and n = k
the bit range constant factor. The benchmark results in Table 1 highlight that as the
number of aggregated values grows, hence m, the execution times and proof sizes
become more and more convenient than those resulting from multiple and separate
executions of the proving or verifying functions. Therefore, a consideration arises
of how convenient it is to provide an aggregate proof for multiple values instead of
providing proof for each of those values. For instance, considering a 64 bit range, the
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time required to generate a proof for multiple aggregated values (from a number of
2 up to 64 values) is between 33,97% and 48,65% smaller than the time required
to generate one proof for each of such values. In the same way, the time required to
verify a proof for multiple aggregated values is between 35,20% and 49,66% smaller
than the time required to verify the proofs individually. Furthermore, considering
the same bit range, the size of an aggregated proof is between 64,35% and 97,86%
smaller than all single proofs combined together.
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Fig. 1: Proof size comparison MTproof and Anon. Zether.

5 Conclusion and future work

MTproof is the zero-knowledge proof system aimed at realizing the Multi-Transfer,
proposing aggregation, correctness and confidentiality in transactions. The system
is based on Bulletproofs and Σ-protocol proof systems and has been implemented
according to the tools of the research community. The evaluations highlight benefits
from the aggregation, in terms of generation and verification times, and size of the
proof. As future work, an optimization can be integrated into MTproof in its IPA
component, which may lead to significant savings in execution time. Moreover, we
will evaluate MTproof in real scenarios involving streams of sensor data [21, 16, 23].

Acknowledgment

We acknowledge the master student Francesco Pio Stelluti for his contribution to the
codebase of MTproof.



12 Scala et al.

References

1. K. M. Alonso et al. Zero to monero, 2020.
2. arkworks rs. arkworks.
3. B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart contract

world. In International Conference on Financial Cryptography and Data Security, pages
423–443. Springer, 2020.

4. B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short
proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 315–334. IEEE, 2018.

5. V. Buterin et al. A next-generation smart contract and decentralized application platform.
6. D. Butler, D. Aspinall, and A. Gascón. On the formalisation of σ-protocols and commitment

schemes. In POST, pages 175–196, 2019.
7. W. Chan and A. Olmsted. Ethereum transaction graph analysis. In 2017 12th International

Conference for Internet Technology and Secured Transactions (ICITST), pages 498–500. IEEE,
2017.

8. F. Corradini, L. Mostarda, and E. Scala. Zeromt: Multi-transfer protocol for enabling privacy
in off-chain payments. In International Conference on Advanced Information Networking and
Applications, pages 611–623. Springer, 2022.

9. B. E. Diamond. Many-out-of-many proofs and applications to anonymous zether. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1800–1817. IEEE, 2021.

10. EmanueleSc. Zeromt.
11. P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi. Quisquis: A new design for anonymous

cryptocurrencies. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 649–678. Springer, 2019.

12. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Conference on the theory and application of cryptographic techniques, pages
186–194. Springer, 1986.

13. M. Fleder, M. S. Kester, and S. Pillai. Bitcoin transaction graph analysis. arXiv preprint
arXiv:1502.01657, 2015.

14. Z. Guan, Z. Wan, Y. Yang, Y. Zhou, and B. Huang. Blockmaze: An efficient privacy-preserving
account-model blockchain based on zk-snarks. IEEE Transactions on Dependable and Secure
Computing, 2020.

15. A. Jivanyan. Lelantus: Towards confidentiality and anonymity of blockchain transactions from
standard assumptions. IACR Cryptol. ePrint Arch., 2019:373, 2019.

16. N. Q. Mehmood, R. Culmone, and L. Mostarda. Modeling temporal aspects of sensor data for
MongoDB NoSQL database. Journal of Big Data, 4(1), Mar. 2017.

17. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot, 2019.
18. A. Poelstra. Mimblewimble. 2016.
19. D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In Inter-

national Conference on Financial Cryptography and Data Security, pages 6–24. Springer,
2013.

20. A. Rondelet and M. Zajac. Zeth: On integrating zerocash on ethereum. arXiv preprint
arXiv:1904.00905, 2019.

21. G. Russello, L. Mostarda, and N. Dulay. A policy-based publish/subscribe middleware for
sense-and-react applications. Journal of Systems and Software, 84(4):638–654, Apr. 2011.

22. E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE, 2014.

23. C. Vannucchi, M. Diamanti, G. Mazzante, D. Cacciagrano, R. Culmone, N. Gorogiannis,
L. Mostarda, and F. Raimondi. Symbolic verification of event–condition–action rules in
intelligent environments. Journal of Reliable Intelligent Environments, 3(2):117–130, Feb.
2017.


