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Abstract. The outstanding performance of deep learning has prompted
the rise of Machine Learning as a Service (MLaaS), which significantly re-
duces the difficulty for users to train and deploy models. For privacy and
security considerations, most models in the MLaaS scenario only provide
users with black-box access. However, previous works have shown that
this defense mechanism still faces potential threats, such as model extrac-
tion attacks, which aim at stealing the function or parameters of a black-
box victim model. To further study the vulnerability of publicly deployed
models, we propose a novel model extraction attack named Generative-
Based Adaptive Model Extraction (GAME), which augments query data
adaptively in a sample limited scenario using auxiliary classifier GANs
(AC-GAN). Compared with the previous work, our attack has the follow-
ing advantages: adaptive data generation without original datasets, high
fidelity, high accuracy, and high stability under different data distribu-
tions. According to extensive experiments, we observe that: (1) GAME
poses a threat to victim models despite the model architectures and the
training sets; (2) synthetic samples closed to decision boundary without
deviating from the center of the target distribution can accelerate the ex-
traction process; (3) compared to state-of-the-art work, GAME improves
relative accuracy by 12% at much lower data and query costs without
the reliance on domain relevance of proxy datasets.

Keywords: Model extraction attack · Data augmentation · Adaptive
strategy · Auxiliary classifier GANs.

1 Introduction

Deep learning models have been deployed in more and more fields, such as com-
puter vision, natural language processing, and speech recognition, for their amaz-
ing ability to solve various challenging classification problems. Due to the high
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market demand for deep learning technology, the concept of Machine Learning
as a Service (MLaaS) has been rapidly promoted. More and more companies
train and deploy machine learning models in this way, which greatly lower the
software and hardware thresholds for individual developers and small businesses.
In the MLaaS scenario, the open deployment of the model can not only facili-
tate users but also enterprise. However, due to data breaches and laws, such as
the European Union’s General Data Protection Regulation (GDPR), this prac-
tice faces many restrictions. In recent years, much work has been done to study
the privacy and security issues of the MLaaS models, which includes: member-
ship inference attacks [11,23,24], model inversion attacks [5,22,34], and model
extraction attacks [1,10,18,20,21,27]. They respectively aim to infer whether a
particular sample is present in the training set, reconstruct the private training
data, and steal the function or parameters of the victim model.

Among these attacks, the first two attacks on sample privacy have been
widely studied, while the attacks on the model privacy is still in its infancy. In
model extraction attack, the attacker attempts to steal the function/parameters
of the victim black-box model, which will compromise the model owner’s inter-
ests. In addition, it can also be a stepping stone to other attacks, e.g., model
evasion attacks [20]. At present, most model extraction attacks use learning-
based methods: the prediction vector output by the model is used as the soft
label of the input sample to train the substitute model, which is similar to the
knowledge distillation technology [8] in the field of model compression [6]. To
evaluate the performance of the attack, two metrics, accuracy and fidelity [10],
are introduced into the field. The former focuses on classifying samples correctly,
while the latter focuses on improving the similarity between the predictions.

Based on our observations, three challenges prevent the implementation of
a model extraction attack: limited data, irrelevant proxy distribution, and ex-
pensive query cost. Firstly, for business and security considerations, the internal
information (including training data) of MLaaS models is often not publicly
released, making it hard for attackers to construct a query set. To this end,
many works have adopted the method of data-free knowledge distillation [4,15]
to attack. However, due to the black-box access to the victim model in the
model extraction scenario, the attacker needs to use gradient approximation
[3,31] for backpropagation. Unfortunately, this query-based gradient approxi-
mation method often increases the query budget exponentially. Secondly, it is
difficult to find a suitable distribution of proxy datasets. This cannot be ignored
because it directly affects the attacker’s query efficiency. To this end, some stud-
ies [30,36] have found that adversarial samples near the boundary can greatly
improve the attack performance. However, such works often only use attack suc-
cess rates (ASRs) of adversarial examples generated by the substitute model to
evaluate the stealing performance, which ignores the performance of substitute
models on the original task. Finally, to reduce the attack cost and the risk of
being intercepted by the defense mechanism, the attacker needs to design an
efficient query strategy to reduce the total number of queries without affecting
the extraction performance significantly. With regard to this, some works [18,19]
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try to use active learning methods to build a query queue from public datasets.
Unfortunately, the upper limit of its attack performance depends on the mutual
information between the chosen public dataset and the original training set.

1.1 Our Contribution

To address the issues faced by model extraction attacks, we first propose a data
augmentation algorithm that combines active learning and dynamic updating
mechanisms. On the basis of this method, we design a novel Generative-Based
Adaptive Model Extraction (GAME) in a practical scenario, where the attacker
has no access to original training sets. Compared with previous works, GAME
has the following advantages: (i) The AC-GAN based data augmentation algo-
rithm can provide the attacker with enough query samples in the limited sam-
ples scenario. Besides, the class control mechanisms of AC-GAN can reduce the
granularity of synthesized samples. (ii) The category selection strategy based on
active learning works well with AC-GAN. Specifically, this strategy could help
the attacker generate query samples which have higher distillation efficiency.
(iii) The output distribution of the generator is adaptively fine-tuned according
to multiple feedback indicators. Theoretical analysis and extensive experiments
show that setting a reasonable feedback indicator can improve the GAME attack
performance. In summary, we make the following contributions:

– We first propose to use boundary samples without deviating from the tar-
get distribution to conduct model extraction attacks in the limited samples
scenario where it is difficult to obtain original sets or even public datasets.

– We propose an AC-GAN based data augmentation method for model ex-
traction attack, which combines two strategies, active learning and generator
dynamic updating, to increase the efficiency of stealing.

– We conducted extensive experiments to show that GAME can achieve higher
fidelity and accuracy compared with state-of-the-art methods, especially in
limited proxy samples scenarios. Furthermore, the effectiveness of the active
learning and generator dynamic updating strategy is also demonstrated.

1.2 Related Work

Model Extraction Attacks. The emergence of model extraction attacks stems
from the tension between the public access and model confidentiality of MLaaS
platforms. In 2016, Tramèr et al. [27] proposed equation-solving attack and path-
finding attack against simple models, demonstrating the feasibility of extraction
attacks. Following this, many works also studied model extraction attacks against
complex deep neural networks [1,10,12,18]. Most of the early works tried to find
methods that can exactly recover the weight of the victim model, such as [10] and
[21]. However, these methods are often inefficient and difficult to implement. To
this end, several works have turned their attention to model equivalent extraction
attacks [1,12,18], which only attempt to steal a functionally approximate model
without the requirements on model structure and parameters.
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The core idea of most model-equivalent extraction attacks originates from
knowledge distillation techniques [8], that is, query the victim model to ob-
tain soft labels for training substitute models. However, two problems faced by
knowledge distillation are also exacerbated in the field of model stealing: lim-
ited samples problem and query efficiency problem. In most MLaaS scenarios,
it is difficult for attackers to improve the performance of substitute models with
limited query samples. Jacobian-based data augmentation [20] is an earlier work
that attempted to solve this problem. In the work, original training samples
are perturbed with the Jacobian matrix to enlarge the query set. Another work
Black-Box Ripper [1] uses a generative evolution algorithm to generate high-
response samples. Differing from these methods, some works focus on data-free
model extraction attacks, which is close to the field of data-free knowledge dis-
tillation, such as [12,28,30]. This kind of work often uses gradient approximation
methods, which leads to excessive query costs.

On the other hand, considering the benefits and defense mechanisms, the at-
tacker needs to minimize the query cost without compromising stealing perfor-
mance. Knockoff [18] formalizes sample selection in model extraction attack as a
Multi-armed Bandit Problem and uses the Gradient Bandit Algorithm to choose
the most informative samples. The work ActiveThief [19] uses active learning
methods to reduce the query cost when using public data sets for model steal-
ing. We propose a high-fidelity model extraction attack GAME, which considers
the above two challenges at the same time.

Knowledge Distillation. Although the goal of knowledge distillation, which
is compressing large machine learning models, is different from that of model ex-
traction attacks, their execution processes are similar: using the teacher (victim)
model to label a series of samples for student (substitute) model training.

Knowledge distillation faces the same problems as model extraction attacks.
One problem is insufficient query samples. Specifically, the model owner may

be unable to collect enough query samples for knowledge distillation. To deal with
this problem, the work [2] proposes a GAN-based Data-Free Learning (DAFL)
method. In [16], “Data impression”, was crafted from random noise to train a
substitute model. The work [35] uses a conditional generator to generate high-
confidence samples of specific classes for the teacher model.

Another problem is the low query efficiency. The work [29] proposes an active-
learning-based method combined with mix-up technology. Similarly, the work
[33] uses an uncertainty-based mix-up method to reduce the computation costs
of both the teacher and the student models.

Although there are some similarities between model extraction and knowl-
edge distillation, most solutions are hard to transfer to the model extraction
scenario due to the different access rights.

1.3 Organization

The rest of this paper is organized as follows: In Section 2, we introduce the
necessary preliminaries. In Section 3, we present the specific design of the GAME
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attack. In Section 4, GAME is evaluated under different dataset and model
architecture settings, and compared with SOTA works. The ablation study about
GAME is presented in Section 5. We conclude this paper in Section 6.

2 Preliminaries

2.1 Problem Formulation

In this subsection, we formalize the model extraction attack problem. Suppose
a victim model NV is deployed on an MLaaS platform, which only grants black-
box access rights to users (including malicious users). Any samples uploaded by
users will be fed into the victim model NV to get the prediction vector ypred:

ypred = NV (x). (1)

The attacker’s goal is to find a substitute model NS that is functionally equiva-
lent to NV in the victim’s domain DV . Formally, the objective of model extraction
attacks is:

argmax
NS

Px∼DV

[
argmax

i
N i

V (x) = argmax
i

N i
S(x)

]
, (2)

where i represents the component of the ith class of the prediction vector output
by the model, and x is the sample randomly sampled from the sample domain
DV . However, due to the confidentiality of the victim’s training set, it’s difficult
for the attacker to obtain the precise distribution of DV . A practical approach
for the attacker is to minimize the difference between the two models in the
proxy sample domain DP , that is:

argmin
NS

Ex∼DP
[L (NV (x), NS(x))] , (3)

where L represents the loss function, which is used to measure the distance
between the predictions of two models on the input x. It can be inferred that
when the correlation between DP and DV is higher, the substitute model trained
by the attacker has higher fidelity, according to the Eq. (2) and Eq. (3).

2.2 Adversary Capability

Attack surface. The attacker can only use the prediction API N∗
V provided

by the MLaaS platform to fit the decision boundary of the victim model, which
means that the internal information of the victim model is agnostic to the at-
tacker, including model structure, parameters, and training datasets. Therefore,
the attacker cannot perform back-propagation through the victim model. Be-
sides, due to the pay-per-use manner, the attacker has to pay for each query.
After the attacker pays for the query and sends x to N∗

V , the MLaaS platform
may have two different responses: (i) the whole prediction vector ypred of N∗

V ;
(ii) the top-1 class tpred = argmaxi y

i
pred. The attacker can get better perfor-

mance when the MLaaS platform returns the whole prediction vector ypred as it
contains more information.
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Proxy datasets. Depending on the adversary’s capability, the query datasets
used by the attacker can be divided into the following four categories: (i) The
whole original datasets, which means the attacker has the same training samples
as the victim model NV . This situation only occurs in scenarios where NV is
trained on public datasets. (ii) Part of original datasets. In this case, the attacker
has a low-density sampling of the original distribution (or original domain DV ).
The limited number of samples may reduce the generalization performance of the
substitute model in DV . (iii) Domain-related datasets. Due to the commercial
characteristics of the MLaaS platform, the service provider will not hide the task
information of the victim model, so the attacker can easily collect the relevant
public data sets as the proxy set. (iv) Domain-unrelated datasets. When no task
information about the victim model is provided, the attacker can only randomly
select some public dataset. In Section 5.3, we discuss in detail the effect of proxy
dataset distribution on GAME.

Model architecture. The architecture and hyper-parameters of the victim
model are also important private information for model extraction attacks. How-
ever, this information is often unavailable for MLaaS users (including attackers)
due to privacy concerns or business strategies. The model structure used by the
attacker can be divided into the following two categories: (i) Same architecture.
If the attacker knows the specific architecture of the victim model (although it
is challenging), he will adopt it to the substitute model. (ii) Task-related archi-
tecture. If the attacker has no information about the architecture of the victim
model, the substitute model could be designed by the task information.

2.3 Auxiliary Classifier GANs

In this subsection we detail the basics aboutauxiliary classifier GANs (AC-GAN)
[17] as it is the core of our proposed data augmentation algorithm. AC-GAN em-
ploys label conditioning in GAN training to improve the quality of the generated
samples and control the specific categories of samples.

Like traditional GAN, AC-GAN is also composed of two parts: a generator
and a discriminator. The difference is that the generator of AC-GAN needs to
input a label yg in addition to the latent noise z. Besides, the output of the
discriminator includes both the probability distribution over source P (S|X) and
the probability distribution over class labels P (C|X). The objective function
of AC-GAN can be divided into two parts, (i) the log-likelihood of the correct
source, LS , and (ii) the log-likelihood of the correct class, LC , which are as
follows:

LS = E [logP (S = real | Xreal )] + E [logP (S = fake | Xfake )] , (4)

LC = E [logP (C = c | Xreal )] + E [logP (C = c | Xfake )] . (5)
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Then the goal of the discriminator and generator can be defined by the following
two formulas:

G = argmax
G

LC − LS , (6)

D = argmax
D

LC + LS . (7)

Solving the formula above through an iterative training method allows the gen-
erator G to simulate the original dataset distribution.

3 Design of GAME

3.1 Core Idea

The goal of the model extraction attack is to obtain a replica of the victim model.
Specifically, it attempts to ensure that the two models can output similar predic-
tion vectors of any input, as denoted in the Eq. (2) above. From the perspective
of the model decision boundary, the attacker needs to fit the boundary of the
victim model to improve the performance (the similarity to the victim model)
of the substitute model on seen and unseen samples. As shown in Fig. 1(b), it
is difficult to achieve this due to the lack of original data. Data augmentation
is a way to handle the problem but still faces two challenges: similarity and
efficiency. Similarity means that the synthesized samples should have a similar
distribution to the real samples in the victim domain. Efficiency means that the
attacker attempts to achieve higher fidelity with the same query costs.

(a) (b) (c) (d)

Fig. 1: The strategy of Data Augmentation: (a) Original decision boundary (blue
dotted line) of victim model. (b) Using samples at the center of the distribution
(yellow dots & green triangles) can only approximate a rough boundary (red
solid line). (c) GAME uses augmented samples (blue cross) to obtain boundary
information more efficiently and precisely. (d) The stolen decision boundary is
very close to the original decision boundary.

To address the challenges mentioned above, this work proposed a model ex-
traction algorithm based on an adaptive data augmentation strategy. The core
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Active selection

Adversarial

Fine-tuning

Active selection

Adversarial

Fine-tuning

Fig. 2: Framework overview of GAME.

idea of the strategy is to generate samples close to the key part of the decision
boundary without deviating from the center of the target distribution, as shown
in Fig. 1(c) - (d). To achieve this goal, the attacker takes four steps: (i) Learning
the distribution of the proxy dataset. Due to the confidentiality of the training
sets used by the victim model, attackers can only obtain a proxy dataset. Then
the distribution of proxy dataset is learned with the AC-GAN model, part of
which cloud be regarded as the initial version of the generator for subsequent
steps. (ii) Selecting categories based on active learning strategy. Due to the dif-
ference in the distribution of the original training set and the proxy dataset,
it is a wise choice to adjust the class distribution of the synthetic samples.
GAME adopts an active learning-based approach, which is described in detail in
Section 3.2. (iii) Generating boundary samples with an adaptive strategy. The
category selected in the previous step is used as the condition of AC-GAN for
sample generation. Meanwhile, we proposed an adversarial fine-tuning algorithm
to generate samples near the boundary. (iv) Distilling victim model with syn-
thetic samples. Finally, using the samples generated in the previous step, the
knowledge of the victim model can be transferred to the local substitute model.

3.2 Framework

As shown in Fig. 2, the GAME framework consists of 6 modules: generator G,
discriminator D, victim model NV , substitute model NS , adversarial fine-tuning
module, and active selection module. The arrow in the figure shows the data flow
of the framework, and it can be divided into four phases: Target Distribution
Learning (TDL), Active Categories Selecting (ACS), Adaptive Generator Up-
dating (AGU), and Generative Model Distillation (GMD). The whole process of
GAME attack is shown in Algorithm 1.
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Algorithm 1 GAME attack
Input: Proxy data set Dp = (Xp, Yp), victim model API N∗

V .
Output: Substitute model NS

1: Initialize generator G and discriminator D
2: Target Distribution Learning
3: G,D ← TrainG,D(Xp, Yp) // Train ACGAN with Dp

4: Active Categories Selecting
5: Updating Pπ

6: Yg ∼ Pπ // Generating with active learning strategy
7: X0 ← ∅
8: for i← 1 to n_epochs do
9: Substitute Model Distillation

10: Xg ← G(z, Yg)
11: YV ← N∗

V (Xg)
12: Xall ← Xall ∪Xg , Yall ← Yall ∪ YV

13: NS ← TrainNS (Xg, YV )
14: AC-GAN Dynamically Updating
15: Xg ← G(z, Yg)
16: LossTotal ← β1 × Lres + β2 × Lbou + β3 × Ladv + β4 × Ldif

17: θG ← θG − ∂LossTotal
∂θG

18: Update generator G with θG
19: end for
20: NS ← TrainNS (Xall, Yall)) // Final train
21: return NS

Target Distribution Learning. In the TDL phase, the AC-GAN is used to
learn the distribution of the proxy dataset Dp = {(xi, yi)|i = 1, ..., N} owned
by the attacker. In this phase, the generator G and discriminator D are trained
normally, as denoted in Eq. (4) - Eq. (7). Specifically, in every iteration, the
generator G needs to get a latent noise z and a target generation label yg as
input to generate sample xg. Then the discriminator D will output the prediction
vector yd, which consists of two parts: yd = (ys, yc). The ys represents the validity
probability, and yc represents the prediction vector. Hence G could be updated
to improve the validity probability ys and decrease the distance between yg and
yc. Then the discriminator needs to be updated to learn the difference between
the synthetic sample and the initial dataset Dp. After enough rounds of iterative
training, the generator G can generate samples that fit the distribution of Dp.

Active Categories Selecting. Before AC-GAN generates query samples, the
category yg of the synthetic samples needs to be determined by the active learn-
ing strategy. Two active learning strategies are proposed: (i) Prediction uncer-
tainty, which expects to select the class with the highest uncertainty to the
substitute model NS . The probability that the ith category is selected can be
calculated with:

P i
unc =

ci∑N
t=1 ct

, ci = 1−max{softmax[NS(G(z, i))]}, (8)
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where ci represents the unconfidence of NS for the sample of the ith class. (ii)
Deviation distance, which represents the size of the predicted distance of NS and
NV for the same sample. It could be calculated by:

P i
dev =

di∑N
t=1 dt

, di = KL[NS(G(z, i)), N∗
V (G(z, i))]. (9)

Additionally, KL-divergence, denoted as KL, is used to measure the distance
between the two outputs.

Generative Model Distillation. After the categories of synthetic samples are
determined, generative knowledge distillation is implemented using AC-GAN,
which includes three steps: (i) generating query samples; (ii) querying the victim
model to get the prediction; (iii) training substitute model on the query sample
set. Some tricks are introduced to improve the performance of distillation: in the
first step, the target label yg is randomly assigned to ensure the balance between
classes; during the second step, the whole prediction vector yc (instead of the
top-1 class of yc) output by the discriminator D is used as a soft label of input
sample xg; during the third step, we use the Kullback-Leibler divergence loss to
obtain more information contained in soft labels.

Adaptive Generator Updating. As stealing progresses, the substitute model
NS exhibits increasingly similar behavior to the victim model NV . Therefore NS

could be regarded as the shadow model of NV for fine-tuning the generator G,
instead of requiring white-box access to the victim model for backpropagation.
Thus, to improve the knowledge transfer efficiency, GAME introduces the fol-
lowing indicators to fine-tuning the generator G.

(i) Model responsivity Lres. Synthetic samples should be as close as possible
to some key features of the victim domain. GAME achieves this by increasing
the non-negative logits layer output of NS , which is denoted as fS :

Lres = −
N∑
i=1

max(0, f i
S). (10)

(ii) Boundary distance Lbou. As described in Section 3.1, GAME uses bound-
ary samples to improve extraction efficiency. It is achieved by minimizing the
distance between the top-2 prediction vector components of substitute model
NS , which could be denoted as:

Lbou = NS(x)
top1 −NS(x)

top2. (11)

(iii) Adversarial correction Ladv. As a complement to Lres, we also introduce
an indicator Ladv based on the idea of adversarial examples, which aims to help
the generator generate samples that cross the decision boundary. Formally, the
adversarial correction indicator can be defined as follows:

Ladv = −CE(NS(x), argmax
i

NS(x)
i). (12)
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(iv) Prediction difference Ldif . We also introduce the indicator Ldif , which
accelerates the stealing process by increasing the disagreement of synthetic sam-
ples for both the victim model and the substitute model. Concretely, it can be
defined as:

Ldif = −KL(NS(x), NV (x)). (13)

Therefore, the total loss function of the generator in the iterative update
process is denoted as:

LossTotal = β1 × Lres + β2 × Lbou + β3 × Ladv + β4 × Ldif . (14)

Where βi in the formula is a manually adjusted weighting factor to balance the
effect of each loss term on the total loss. The attacker needs to minimize this loss
function to get better performance of the generator G. Since the parameters of
the substitute model NS will change at each iteration, the generator also needs
to recalculated the loss function to update its parameters.

4 Performance Evaluation

4.1 Experiments Settings

Datasets and victim model. In this experiment, we use two pairs of datasets
for experiments: (i) MNIST [14] as the original dataset and Fashion-MNIST [32]
as the proxy dataset; (ii) BelgiumTSC [26] as the original dataset and GTSRB [9]
as the proxy dataset. For each dataset, we resize all images to 32×32 and shuffle
the order. We use LeNet [14] and AlexNet [13] as the architecture of the victim
model in the MNIST and BelgiumTSC experiments, respectively. These victim
models were trained for 15 epochs on MNIST and 20 epochs on BelgiumTSC
with ADAM at an initial learning rate of 0.001.

Attacker model. We use 4 different architectures for the attacker model: half-
LeNet and VGG-16 [25] for Fashion-MNIST, half-AlexNet, and ResNet-18 [7]
for GTSRB. These models were trained for 40 epochs with ADAM. The initial
learning rate is 0.1 for half-LeNet and 0.01 for VGG-16. The query budget is
8k for Fashion-MNIST and 6k for GTSRB. For the generator, we adopt a struc-
ture consisting of 3 convolutional layers, interleaved with up-sampling layers,
batch normalization layers, and ReLU activations. The discriminator had five
convolutional layers, interleaved with ReLU activations, dropout layers (with
0.25 probability), and batch normalization layers (except for the last layer).

Evaluation metric. We evaluate the performance by two metrics: (i) Fidelity:
the similarity of the top-1 class of the output vector between the substitute
model and the victim model. (ii) Accuracy: computed on the top-1 class of the
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prediction with true labels. Formally, these two metrics could be defined as:

Fidelity(NS) =
1

|Dtest|
∑

(x,y)∈Dtest

I(tNS
(x) = tN∗

V
(x)), (15)

Accuracy(NS) =
1

|Dtest|
∑

(x,y)∈Dtest

I(tNS
(x) = y), (16)

tf (x) = argmax
i

f(x)i. (17)

Where I(·) represents the indicator function, and tf (x) represents the largest
component of the output of the function f .

4.2 Results

We compare the attack performance of GAME with the other three attacks: (i)
Baseline, which randomly selects samples from the proxy dataset for querying,
and then uses the output as soft labels to train the substitute model. (ii) Knock-
off [18], which uses an active sample selection method based on the gradient
bandit algorithm to improve the query efficiency. (iii) JBDA [20], which utilizes
Jacobian-based dataset augmentation to augment the query sets. All compar-
isons were performed under the same settings (including learning rate, model
architecture, query budget, number of training epochs, etc.). Each experiment
was run at least three times. In addition to the two metrics mentioned in Sec-
tion 4.1, we also introduce relative accuracy, relative(×), to show the difference
in accuracy between the substitute model and the victim model. The detailed
results are shown in Table 1 and Table 2.

Table 1: Comparison of fidelity, accuracy and relative accuracy obtained from
various attacks on the MNIST & Fashion-MNIST datasets.

Dataset Architecture Method Fidelity(%) Accuracy(%) Relative(×)
MNIST LeNet Victim model 100 98.74 1.00

Fashion-MNIST
(Proxy)

half-LeNet

Baseline 75.42± 1.93 75.12± 1.97 0.76
Knockoff[18] 83.30± 3.90 82.93± 3.84 0.84
JBDA[20] 79.85± 3.74 79.44± 3.73 0.80

GAME (Ours) 90.93± 1.61 90.36± 1.67 0.92

VGG-16

Baseline 81.25± 1.83 80.96± 1.85 0.82
Knockoff[18] 81.02± 2.23 80.70± 2.22 0.82
JBDA[20] 69.76± 0.83 69.42± 0.91 0.70

GAME (Ours) 86.41± 1.44 85.97± 1.47 0.87

MNIST & Fashion-MNIST. We present the fidelity and accuracy of ex-
tracted models across various attacks for Fashion-MNIST in Table 1. In this
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experiment, the victim model achieved an accuracy of 98.74% after training for
15 epochs on the MNIST dataset. We find that each method showed advantages
over the baseline in the half-LeNet experiment. Among these attacks, GAME
gets the highest fidelity (90.93%) and accuracy (90.36%), which achieves a rel-
ative accuracy of 0.92. When the substitute model architecture is changed to
VGG-16, the performance of all method is reduced, but GAME still leads other
attacks with the fidelity of 86.41%.

BelgiumTSC & GTSRB. GAME shows similar advantages in the second
pair of dataset experiments, as shown in Table 2. In this experiment, the vic-
tim model achieved an accuracy of 98.29% after training for 20 epochs on the
BelgiumTSC dataset. When the structure of the substitute model is set to half-
AlexNet, all methods have more than 10% improvement compared to the base-
line, and GAME achieves the best attack performance. Besides, regardless of the
substitute model architecture, the GAME attack exhibits certain stability: the
standard deviation of fidelity and accuracy are relatively small, especially in the
experiments of ResNet-18.

Table 2: Comparison of fidelity, accuracy and relative accuracy obtained from
various attacks on the BelgiumTSC & GTSRB datasets.

Dataset Architecture Method Fidelity(%) Accuracy(%) Relative(×)
BelgiumTSC AlexNet Victim model 100 98.29 1.00

GTSRB (Proxy)

half-AlexNet

Baseline 63.79± 0.56 63.20± 0.53 0.64
Knockoff[18] 74.33± 1.83 73.39± 1.86 0.75
JBDA[20] 74.09± 1.93 73.39± 1.99 0.75

GAME (Ours) 76.74± 1.06 75.88± 1.07 0.77

ResNet-18

Baseline 66.79± 0.98 65.92± 1.18 0.67
Knockoff[18] 73.26± 1.99 72.16± 2.04 0.73
JBDA[20] 69.34± 0.78 68.49± 0.72 0.70

GAME (Ours) 74.52± 0.37 73.77± 0.46 0.75

5 Ablation Study

5.1 Impact of Category Selection Strategies

To evaluate the impact of different category selection strategies on attack ef-
ficiency, we evaluated the performance on two pairs of datasets while keeping
the experiment settings consistent with Section 4.1. To improve the reliability
of the results, each experiment was run for 6 rounds and the average value is
shown in Fig. 3. Due to the high accuracy of the two victim models (98.74%
for the MNIST model and 98.29% for the BelgiumTSC model), the fidelity and
accuracy of each substitute model are close.
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According to the first row (experiments on MNIST&Fashion-MNIST) of
Fig. 3, the uncertainty-based active learning strategy outperforms others with
the query budget increasing. When the query budget is increased to 5k, the
deviation-based strategy achieves better performance than that of the random
strategy.

As for the second row (experiments on BelgiumTSC&GTSRB) of Fig. 3, the
uncertainty-based strategy also gets a good performance. However, the perfor-
mance of the deviation strategy is weaker than that of the random strategy when
the query budget is greater than 3k. We believe that it may be related to the
distribution of the substitute dataset compared to the original dataset, which is
further discussed in Section 5.3. In conclusion, choosing the uncertainty-based
strategy is the best practice for launching a GAME attack.

Fig. 3: Comparison of different active learning strategies. The first row shows the
attack performance on the MNIST&Fashion-MNIST dataset, and the second
row shows the performance on the BelgiumTSC&GTSRB dataset, which are
evaluated from three indicators: fidelity, accuracy, and relative accuracy.

5.2 Impact of Fine-tuning Indicators

We compare the performance of the fine-tuning indicators and their combination
strategies. For a fair comparison, we keep all configurations unchanged except
the fine-tuning indicators. Furthermore, to eliminate the impact of generator
performance on experiments, we use the same pre-trained AC-GAN model for all
experiments, i.e., updating on the same initial generator. For multiple indicators
experiments, we use coefficients βi to control the proportion of each item to
balance each indicator, as shown in Eq. (14). Each experiment was run multiple
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none res bou dif adv

none res bou dif adv

Fig. 4: Synthetic samples of different indicators. The first row shows the synthetic
Fashion-MNIST images. The second row show the synthetic GTSRB images.

times to ensure correctness. The results are shown in Fig. 5, where n represents
the number of indices to be combined, and none represents the attack with
pre-trained AC-GAN without fine-tuning. We also show samples generated by
different indicators, as shown in Fig. 4. The displayed samples are randomly
generated without manual screening.

Fig. 5: The performance of fine-tuning indicators combination strategies.

According to Fig. 5, all feedback items show better performance than none,
which illustrates the positive effect of fine-tuning. Among them, the res item
achieved the best performance, which leads the other items by a large margin. In
Fig. 5(b), the combination of res and bou achieves the best results, and they also
achieved good performance in Fig. 5(a), respectively. However, the combination
of res and dif does not show a corresponding advantage, although they perform
well in Fig. 5(a). In the experiment of three indicators, res+ bou+ dif achieves
the best performance, in which the substitute model fidelity reaches 94.42%.
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Fig. 6: Performance of different attacks with different proxy distribution and
proxy size. The first row shows the performance with size-unlimited proxy sets.
The second row shows the performance with size-limited proxy sets.

5.3 Impact of the Proxy Dataset Distribution & Size

We measure the fidelity and stability of four attacks under different proxy dataset
assumptions about two aspects: distribution and size. First, we selected three
datasets (MNIST, EMNIST-digits, and Fashion-MNIST) to simulate different
proxy set distribution corresponding to different attacker capabilities. Secondly,
we test the performance of all attacks on size-unlimited and size-limited proxy
sets, the latter of which makes the attack more difficult.

In the size-unlimited proxy set experiments (the first row of Fig. 6), all set-
tings keep the same as that in Section 4.1, except the pre-training epochs of
AC-GAN is modified according to the dataset complexity. In the size-limited
proxy set experiments (the second row of Fig. 6), all attackers can only get a
proxy set of size 4k, which is half of the query budget. For both experiments,
every sub-experiment was run 10 times. We use two metrics to evaluate these
four attacks, fidelity (median of the box) and stability (length of the box).

From the fidelity view, all attacks are sensitive to proxy set distribution,
except for GAME, as shown in the first row of Fig. 6. With the proxy dataset
becomes less relevant to the task domain, the average fidelity achieved by the
other three attacks tends to decrease. A similar phenomenon occurs when the
size of proxy set is limited, as shown in the second row of Fig. 6. From the view
of stability, both of the GAME and baseline attacks get a good performance
regardless of how the distribution and size of proxy sets change, as their boxes
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are shorter in length. The other two attack methods are less stable, especially
when the proxy data distribution is set to the original distribution. In summary,
the GAME attack can achieve the best fidelity among these attacks and is more
stable to different distribution and size of the proxy sets.

6 Conclusion

In this paper, we introduce GAME, a novel model extraction attack, which allows
an attacker to use only a small amount of public proxy data for adaptive data
augmentation, even if the attacker does not know the architecture of the victim
model. To cope with the limited samples problem often faced by model extraction
attackers, we design a data augmentation algorithm based on AC-GAN, which
can efficiently generate query samples of specified categories. To address the
issue of query efficiency, we propose an active learning-based category selection
module and a feedback indicator-based adaptive generator updating strategy,
respectively. According to extensive experiments, the GAME scheme exhibits
excellent stealing ability with higher stability.
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