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the utility of data analysis, a weaker privacy definition with a more accurate estimate of
privacy risk may be a straightforward and effective solution. Total variation distance
(TVD) privacy is an appropriate tool for this issue, but it has not been adequately studied.
In this paper, we systematically study TVD privacy and explore its applications. We provide
a comprehensive theoretical analysis of TVD privacy and demonstrate its advantage in
measuring privacy risks with the example of membership inference attacks. Our work indi-
cates that TVD privacy is a helpful tool in estimating privacy risks and has the potential to
be widely used as a general privacy definition.
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1. Introduction

Inference attack, which aims to infer private information from data analysis tasks, is a significant threat to privacy-
preserving data analysis. Many kinds of inference attacks have been proposed, such as Membership Inference Attacks (MIAs)
[1,2], attribute inference attacks [3,4], and category inference attacks [5]. For example, MIAs train an inference model to dis-
tinguish the difference in predictions of the target model for trained and non-trained inputs, determining whether a given
record is a training sample. These attacks have been shown to cause huge privacy risks to services. Shokri et al. [1] have suc-
cessfully implemented MIAs for training services provided by Google and Amazon.

Differential privacy (DP) [6-13], the gold standard for privacy protection, is considered an effective approach to defend
against inference attacks. It requires that the privacy algorithms ensure that changes in individual records have little impact
on the analysis results. Since DP guarantees that analyzers have difficulty distinguishing whether a given record is in data-
sets. DP mechanisms are particularly well suited for defending against MIAs, intuitively. Many works [8,10,11,13] investi-
gated the effectiveness of DP mechanisms in defending against MIAs. Their works, both the theoretical upper bound on
privacy loss provided by DP and the empirical lower bound on privacy leakage of inference attacks, offer a theoretical basis
for designing and using privacy mechanisms in the real world.
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DP provides formal privacy guarantees but sometimes leads to unacceptable accuracy loss in data analysis. Recently,
some studies had negative views about DP machine learning mechanisms. Nasr et al. [8] verified that the upper bound of
privacy leakage for DP is tight when the adversary in machine learning has sufficient capabilities. In other words, for the
existing DP mechanisms in machine learning, it is difficult to reduce the noise by improving the theoretical analysis. Jayara-
man et al. [11] found that DP mechanisms have difficulty providing meaningful privacy guarantees while providing limited
accuracy loss in machine learning. These works reveal that it is difficult for the DP mechanisms to satisfy both the privacy
and utility needs of the model, and the issue is difficult to solve through theoretical analysis.

The above negative findings can be attributed to the strict privacy standards of DP. It is sometimes difficult to avoid large
noise in data analysis tasks for personal privacy. In addition, DP may overestimate some privacy risks. DP calculates a the-
oretical upper bound on the privacy risk based on the worst-case event of the mechanism distribution. However, the worst-
case event has a low probability for most distributions, such as the Gaussian distribution. DP can provide tight upper bounds
for some indicators that focus on worst-case events. However, for other indicators, such as the accuracy of MIAs, DP may give
loose measures and add excessive noise.

A weaker privacy definition with a more accurate estimate of privacy risks may be a straightforward and effective solu-
tion to improve the utility of data analysis. Total variation distance (TVD) privacy is an appropriate definition for this issue. It
was proposed as a weaker definition of privacy than DP, with more accurate estimates for some privacy risks. Recently, some
work [14,15] began demonstrating TVD’s potential application in measuring privacy risks. However, these works selectively
analyzed or exploited partial properties of TVD, while a comprehensive study of TVD privacy has not emerged. In this paper,
we systematically study TVD privacy and explore its applications.

Our work:

Comprehensive analysis of TVD privacy: We provide a comprehensive theoretical analysis of TVD privacy. We propose the
protection target of TVD privacy and provide several formal theorems, such as the post-processing theorem, composition
theorem, and privacy amplification theorem. These studies provide the theoretical basis for TVD privacy and demonstrate
that TVD privacy can be applied as a general privacy definition in real scenarios.

Private mechanisms analysis: We extend the application of TVD privacy. Specifically, we use TVD privacy to analyze the
Laplace and Gaussian mechanisms in single-dimensional numerical queries and the Gaussian mechanisms in multi-
dimensional numerical queries. TVD privacy can provide precise measures of these private mechanisms. This work con-
tributes to using TVD privacy as a general definition in many fields.

Privacy risk estimation: We demonstrate the advantage of TVD privacy in measuring privacy risks with the example of
MIAs. We first use TVD privacy to analyze the DP machine learning mechanism [6]. Then, we analyze four indicators (accu-
racy of MIAs, membership advantage, ROC curve, and positive predictive value) commonly used in MIAs. We prove that TVD
privacy can accurately estimate the accuracy of MIAs, thereby improving the utility of the training model. Under the same
MIA accuracy constraints, TVD privacy can reduce noise by more than 50% compared to DP. For the other metrics, TVD pri-
vacy and DP estimates are complementary. By combining TVD privacy and DP, users can more accurately understand the
privacy risks of machine learning. We provide source code ' for computing TVD privacy to help users set appropriate param-
eters in private machine learning.

In a word, our work demonstrates that TVD privacy is a helpful tool in estimating privacy risks and has the potential to be
widely used as a general privacy definition.

2. Preliminary
2.1. Differential Privacy

Differential privacy (DP) is a privacy definition for privacy-preserving data analysis. It constrains the impact of a single
record on the analysis results to protect individual privacy.

Definition 1 (Differential Privacy [16]). Let¢ > 0and ¢ € [0, 1). Arandomized mechanism .# : 2" — #satisfies (¢, §)-DP if for
any two datasets X, X’ € 2™ that differ in only one record, and any Y C %, it holds that
Priu(X) e Y| <ePriu(X')eY]+6.
The effect of a single record on the analysis results is limited by ¢ and . The parameter ¢ restricts the difference between

two output distributions. A larger ¢ indicates a higher privacy risk. J is usually a negligible value to count the part of the
output distributions differences that exceed &.

2.2. Mechanisms in Differential Privacy

We introduce two popular DP mechanisms: the Laplace and the Gaussian mechanisms. When computing function f, two
randomized mechanisms add a random noise drawn from the Laplace or Gaussian distributions to satisfy DP. The scale of the
noise is regulated by the global sensitivity Af.

! https://github.com/con-fide/TVDprivacy
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Definition 2 (Global Sensitivity [16]). Given any function f : " — RY, for any two datasets X, X’ ¢ " that differ in only one
record, the global sensitivity of function f is

Apf = max|If (X) = f X1,

where || - ||, denotes the [, norm.

Theorem 1 (Laplace Mechanism [16]). Given any function f:%" — RY the Laplace mechanism is defined
as/1(X) =f(X)+ (ny,---,n4), which satisfies (¢,0)-DP, where #; denotes random variables independently drawn from

Lap (AT‘f>

Theorem 2 (Gaussian Mechanism [16]). Given any function f:2" — RY the Gaussian mechanism is defined
as.#c(X) = f(X) + (n,---,nq), which satisfies (g, 5)-DP, where #; denotes random variables independently drawn from

N(0,A3f0?) with g — V2ELE,

2.3. Total Variation Distance

Total Variation Distance (TVD, also called the statistical difference or the statistical distance) is a distance measurement
between two probability distributions. For two probability measures P and Q on a random variable X, the TVD measure
between P and Q is defined as

Div(P.Q) = max|P(X) - Q(X).

2.4. Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence (also called relative entropy) is a measure of the difference between two probability dis-
tributions. For discrete probability distribution P,Q in the probability space X, KL divergence Dy, (P||Q) is defined to be

D (PIIQ) = ZP IOg(%)-

xeX

For continuous probability distribution P, Q, Di.(P||Q) is defined as

D (P||Q) = / P(x)log (422 )dx.

With the KL divergence, we can calculate the upper bound of TVD. For two probability distribution P, Q, if we have the KL
divergence Dg; (P||Q) and Dk (Q||P), we can calculate the upper bound of Dy, (P, Q) as follows:

Drv(P,Q) < max| /3D (PI|Q), /3 D (QIIP) |-
When DKL(PHQ) > 2 or Dy (Q||P) > 2, we can calculate the upper bound of TVD privacy as follows:
Drv(P,Q) < max[ 1 — e DuPlQ) /T — e Du@P) |.

2.5. Inference Attacks

In an inference attack, the adversary usually uses the output of the data analysis task and the background knowledge to
infer the attribute, category, or other sensitive information about a given record. In recent years, some inference attacks [1-
5] started to use training models to expose sensitive information of training samples. Some inference attacks do not require
strong assumptions and can infer some sensitive information with a high probability just through a black-box APIL

In this paper, we use membership inference attacks (MIAs) as an example to analyze the ability of privacy definition to
estimate privacy risks. In machine learning, MIAs aim to infer whether a given record is a training sample. Shokri et al. [1]
first proposed MIAs and assumed that the adversary has black-box model access and a given dataset. They successfully
implemented their attacks on services and suggested using MIA as a metric for choosing a training model. We use the mem-
bership experiment proposed by Yeom et al. [9] to formalize the MIAs.

Experiment 1. (Membership experiment Exp™ (<7, .4 ,n,D)[9]). Let .=/ be an adversary, .# be a learning algorithm, n be a
positive integer, and D be a distribution over data points (x,y). The membership experiment proceeds as follows:
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Sample S ~ D, and let .#s = .4 (S).

(1)
(2)Choose b < {0, 1} uniformly at random.
(3)Drawz~51fb Oorz~Difb=1.

(4)ExpM (o, .4(,1,D) is 1 if o/ (z, .4s,n,D) = b and 0 otherwise. ..# must output either 0 or 1.

3. Differential Privacy Performance on Estimating Inference Attacks

DP parameters (¢, J) measure the randomness of private mechanisms in the worst case. However, when users aim to esti-
mate the privacy risks for some specific attacks, these parameters sometimes do not provide an accurate estimation. We
explain this issue with an inference experiment.

Experiment 2. (Inference experiment Exp'(«/,./,Xo,X1)) Let 7 be an adversary, ./ be a randomized mechanism, and X, and
X1 be two possible inputs. The inference experiment proceeds as follows:

(1) Choose b — {0, 1} such that b = 0 with probability P, and b = 1 with probability P;.
(2) Compute y = .#(Xp).
(3) Exp' (o, M, X0, X1) is 1 if o/ (y,.#,Xo,X1) = b and O otherwise. ..# must output either 0 or 1.

Let X, and X; correspond to inputs O and 1 and Py = P; = 1/2. Suppose we can use the Laplace or Gaussian mechanisms to
protect privacy. These two mechanisms add the noise drawn from Lap(1) and N(0, 2) to the output. We first show how an
adversary would design its inference strategy. The adversary has the balance prior probabilities on the input. It needs to

design an inference strategy to maximize the inference accuracy, i.e., to maximize E (Exp’). We assume that the adversary

infers .«7(y) = 0 for any y € y, and infers .«/(y) = 1 for any y € y,, where y, and y, are complementary. E(Exp') is calculated
as follows:

E(Exp') = / Py - Pr</(y) = 0]X = 0]dy + ‘ Py -Pri</(y) = 1)1X = 1]dy
“Yo Y1
=Py Pri.#/(0) € yo] + Py - Pri.z/(1) € y4]

= S (PrL0) € yo] + PrLa(1) € i)

To maximize E(Exp’), the adversary infers «/(y) =0 when Pr[.#(0) =y] > Prl.#(1)=y] and infers /(y)=1 when

Pr[.#(0) =y] < Pr[.#(1) = y]. Using this inference strategy, the adversary has a correct probability of 0.697 for the Laplace
mechanism and a correct probability of 0.639 for the Gaussian mechanism.
However, DP provides the opposite suggestion. The Laplace mechanism is (1,0)-DP, and the Gaussian mechanism is

(3.4, 10’5>-DP. Under the metric of DP, the Laplace mechanism is more private than the Gaussian mechanism. For any

(&,6)-DP mechanism, the upper bound of E(Exp') 2

E(Exp') = Py - Pri.#(0) € yo] + Py - Pri.#/(1) € y4]

SRR R S WS LA B S

ST+ 3G g (1-9+9) 1)
eﬁ

— 1=+

Therefore, the upper bound of E(Exp') of the Gaussian mechanism is 0.97, and that of the Laplace mechanism is 0.73.

In Experiment 2, we should choose the Gaussian mechanism to limit the accuracy of the inference attack; however, DP
does not provide the correct suggestion. Assume we can only use the Gaussian mechanism and limit the inference accuracy
to no more than 0.639. We only need to add noise with o = 2 instead of the DP-guided noise with ¢ > 7. To reduce noise, we
need an inference measurement with a more accurate estimate of the privacy risk.

4. Total Variation Distance Privacy

In this section, we formally introduce TVD privacy and analyze the advantages and disadvantages of TVD privacy in esti-
mating privacy risks.

2 The bound in Eq. 1 has appeared in [13,15].
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Definition 3. A randomized mechanism .# : 2™ — #satisfies «-TVD privacy if for any two datasets X, X’ € 2" that differ in
only one record, it holds

sup|Pr(.#(X) € Y] - Pri.#(X') e Y]| < o

Ycw
TVD privacy strictly limits the difference between the output distributions of private mechanisms. In Experiment 2, the
adversary inference function is used to determine the output set, which maximizes the TVD privacy parameter o«. Then
the maximum accuracy of inference attacks is equal to 1/2 + 1/20. In Property 1, we further analyze the guarantee of
TVD privacy, which can also provide an accurate measure for unbalanced prior probabilities.

4.1. TVD Privacy Guarantee

TVD privacy ensures that the output distribution is roughly the same whether the record is in the dataset. In this aspect,
TVD privacy and DP are similar. With the guarantee of TVD privacy, users know that the probabilities of privacy leakages are
approximately the same whether they participate in data collection.?

TVD privacy can accurately estimate the accuracy of inference attacks. In particular, TVD privacy provides the most accu-
rate estimation when the prior probabilities of neighboring datasets are the same. We analyze the measure of TVD privacy
with arbitrary prior probabilities for Experiment 2.

Proposition 1. For any prior probability Py, P1(Py > P;) on two datasets Xy, X; that differ in only one record, if we use an o-
TVD private mechanism and the adversary has the prior probabilities Py, P1, the accuracy of adversary inference is not more
than Py + P,o. When Py = Pq, the accuracy is not more than 1/2 + 1/2¢.

Proof 1.

Let Y € # maximize Pr[.#(Xo) € Y] —Pr[.#(X1) € Y]. We set Prl.#/(Xo) € Y)=a+o and Pr[.#(X;) € Y|=a for any
a € [0, (1 —a)/2]. The adversary designs the inference strategy with the prior probability Py, P;. The adversary can design
a set S to maximize E(Exp’). Let «/(y) =0wheny € Sand «/(y) = 1 wheny ¢ S.The maximum E(Exp') can be expressed as
follows:

E(EXpI) =Py PT[/W(X(]) € 5} +Pq - Pr[//(X]) ¢ S]
— Py Prl.i#(Xo) € Y] + Po - Prl.t/(Xo) € (S—Y)| + Py - PrL.u(X:) ¢ Y] — Py - Prl.a((Xy) € (S— Y)). 2)

Let Pr{.#(Xo) € (S—Y)] = bo and Pr[.#(X1) € (S—Y)] = by; then we have (2)
= Po(a+ o) 4 Pobo + P1(1 — a) — P1b1(3)
Since bg < 1—a— o and by > by, we have(3)
< Poot+ (Pg — P1)a+ Py + (Po— P1)(1 —a—a) = Py + Py 4)

The proof is complete.

4.2. Difference between TVD Privacy and Differential Privacy

We take the Gaussian mechanism as an example to explain the difference between TVD privacy and DP. In Experiment 2,
inputs 0 and 1 correspond to output distributions N(0, 1) and N(1, 1), respectively. Fig. 1 illustrates the probability density
functions of N(0, 1) and N(1, 1). DP requires that the ratio of two probability density functions be close. Therefore, the privacy
loss is insignificant, regardless of the mechanism output. TVD privacy is not as strict as DP. It quantifies the area of the
shaded portion as a privacy loss. That is, Pr[.#(0) < 0.5] — Pr[.# (1) < 0.5] should be small enough.

We use hypothesis testing to help the reader understand the relationship between actual privacy guarantees, DP, and TVD
privacy. In Experiment 2, the adversary obtains the output y of the private mechanism. It chooses a null hypothesis of Hy and
an alternative hypothesis of H;:

Hy: y came from input O,

H;: y came from input 1.

3 TVD privacy adheres to the same privacy philosophy as DP, i.e., an individual’s control over information is the target of privacy protection. The promise of
differential privacy versus TVD privacy does not cover information leakage due to data correlations. A series of works have discussed this point [13,17-25]. At
the heart of this issue is what we should protect as private information. Views on information privacy can be divided into control over personal information and
limited access to personal information. We briefly explore the two dominant privacy philosophies in A and hope that this part will help the reader better
understand privacy instead and limit misconceptions.
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Fig. 1. TVD privacy and differential privacy for Gaussian mechanism.

The adversary chooses the rejection region S, which corresponds to the false negative rate as Pey(.#,S) = Pr[.#(0) € S]. Let
S denote the complement of S. Then, the false positive probability is Pep(.#,S) = Pr [.,/%/(1) € 3]. Kairouz proved the following
relationship between DP mechanisms and hypothesis testing.

Theorem 3. As stated in [26], for any o > 0 and 6 € [0, 1], a randomized mechanism .# is («, 5)-DP if and only if for any two
neighboring databases Xy, X; and any rejection region S, it holds

Prl.(Xo) € S) + e°Pr V’(X” € §] >1-9,

ePrl.u/(Xo) € S|+ Pr [v%(xl) € §] >1-0.

Correspondingly, we formally provide the relationship between TVD privacy and hypothesis testing. TVD privacy limits
the lower bound of the sum of the false positive rate and false negative rate.

Theorem 4. For any o > 0, a randomized mechanism .# satisfies «-TVD privacy if and only if for any two datasets X, X’ that
differ in only one record, and any rejection region S, it holds

Prl.#(Xo) € S + Pr [,//(xl) € §] >1-o.

TVD privacy guarantees that for any rejection region S, the sum of the false positive rate and the false negative rate is not
less than 1 — .

In Fig. 2, we plot the actual curve of the Gaussian mechanism, the DP curve, and the TVD privacy curve. Both DP and TVD
privacy are descriptions of the actual privacy curve. We can view DP and TVD privacy as two complementary privacy def-
initions. DP is more accurate than TVD privacy when the false negative rate is approaching the limit. In contrast, TVD privacy
is more accurate when the sum of the false positive and false negative rates is large. From Theorem 3 and Theorem 4, we can

0 e1-0)-1-3
et—1 et—1

calculate that TVD privacy is more accurate in ( ) and DP is more accurate outside of this interval.

4.3. Formal Properties for TVD Privacy

We provide several formal properties for TVD privacy. These properties guarantee the availability of TVD privacy in real-
istic scenarios. First, we prove that TVD privacy satisfies the post-processing property. The post-processing property ensures
that a subsequent analyses of the randomized mechanism output does not weaken the TVD privacy guarantee if no addi-
tional dataset information is available.

Theorem 5. (Post-processing Theorem). Let ./# : 2" — % be a randomized mechanism satisfing «-TVD privacy and
f:% — 2 be any arbitrary randomized mapping. Then f o .# : 2™ — & satisfies o-TVD privacy.

Proof 2.
For any two datasets X, X’ € 2" that differ in only one record, any eventZ c . Let Y = {y € Y : f(¥) € Z}. We have

Prif(u (X)) € Z) = Pria(X) € Y| = Prl.#/(X") € Y]+ o = Pr{f (#(X")) € Z] + o

The proof is complete.

Next, we provide the composition theorem of TVD privacy. The composition theorem guarantees the availability of TVD
privacy for multiple queries on a dataset. We first provide a naive composition theorem for TVD privacy, which provides a
lower bound for any TVD algorithm.
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Fig. 2. Hypothesis testing curve.

Theorem 6 (Naive Composition Theorem). Let ./ : # — % be an «;-TVD private mechanism, and let .#, : Z — %, be an
o;-TVD private mechanism. Then their composition, defined as .#i,:% — % x%, by the mapping:
M1 2(X) = (M1(X), A (X)) s (04 + 0y — 07 x 02)-TVD privacy.

Proof 3.

Since .#1, .4 satisfy a1- and o,-TVD privacy, respectively. At least 1 — «; of the distributions of .#¢(X) and .#1(X’)
overlap. Similarly, at least 1 — «; of the distributions of .#,(X) and .#,(X") are overlap. Therefore, at least (1 — oy )(1 — a3) of
the distributions of .#(X) - .#»(X) and .#1(X") - .#>(X") are overlapped. The TVD distance between .#1,(X) and .#1 3 (X") is
no more than 1 — (1 — oy)(1 — o) = & + 0ty — 07 x %p. The proof is complete.

If we have the KL divergence of randomized mechanisms, denoted as D (.#(X)||.#(X")), we can provide a more precise
composition theorem. First, we define the KL divergence of the randomized mechanism Dy (.#).

Definition 4. For any two datasets X, X’ that differ in only one record, KL divergence of mechanism .# is:

Dia(4) > Sup max{Dye (4 (X)]|-4 (X)), D (-4 (X')|.4(X)}.

Theorem 7. (Advanced Composition Theorem). Let ./, : #" — % and ./, : " — %, be two randomized mechanisms. If we
have the KL divergence of .#; and .#-, denote as Dy, (.#1), Dx.(.#>), then their composition, .#1,(X) = (.#1(X), #2(X)), sat-

isfies \/1/2(Dk(.#+) + Da(.#-))-TVD privacy.

Proof 4.
Because KL divergence is additive for independent distributions, then we have

Dy (A1) < Dyo (A1) + Dio (A 2).

Using Pinsker’s inequality, we have

o< \/1/2D1(L(/f1_2) < \/1/2(DKL(=/%1) +DKL(-/[2))-

The proof is complete.
When Dy, (.#) > 2, we can use the following inequality proposed by Bretagnolle and Huber to compute « to ensure that o
is always less than 1:

o< V1 —eDuld),

Next, we provide the parallel composition property of TVD privacy. The parallel composition property implies that each
record has privacy risk only when it is used. When a portion of the dataset is queried, it does not compromise the privacy
of other records.

Theorem 8. (Parallel Composition Theorem). Let ./#; sastisfy o;-TVD privacy, X; be disjoint subsets of X, and
XqU---UXp = X. The algorithm .# = (#1(X1),- -, (n(Xy)) satisfies max(o;)-TVD privacy.

Proof 5.
For two datasets X, X’ that differ in only one record, X, X’ are divided into disjoint n subsets (X1,---,X;) and (Xy/,---,Xn/).
Without loss of generality, we assume that X; = X;s for any i # j, and Xj,XJf are different in only one record. Then, we have
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Priu(X) € {Yy, -, Yo} = [] Priac(X:) € Vi)
n
< (Pr[//()(;) e Y,-] + ozj) [[Priex) €y
i=2
< Pr [,%(X]’) € YJ} [ PrlaXi) e Y+
i#j

=Prid(X') € {Y1, -+, Yn}] + 0.

Therefore, for any two datasets X and X’ that differ in only one record, the privacy loss of .# does not exceed max(a;).

Then, we turn our attention to post-processing for privacy enhancement. In DP, some studies focus on providing privacy
guarantees through post-processing noise [27,28]. In particular, Erlingsson et al. provided a general result for any &-DP mech-
anism [29]. We provide a general theorem for TVD privacy.

Theorem 9 (Chained Composition Theorem). For any o4-TVD private algorithm .#;:2 — % and any o,- TVD private
algorithm .#, : % — 2, we have that .#, o .44 is a (a10,)-TVD private algorithm.

Proof 6.
Since ./ satisfies o;-TVD privacy, for any two datasets X,X’ and Z c Z, there must be a set Y € # that maximizes
Pri.#1(X) € Y] — Pr.#/1(X") € Y. Let Y be the complement of Y and Z be the complement of Z. We have

Priuito (1 (X)) € Z] — Pty (M+1(X")) = " Prltty(X) = Y|Prl.st2(y) € Z]
yeY
+ Y Pridn(X) = yIPria(y) € Z)
yey;
= > Pri(X) = y|Pris(y) € Z

yeYy

= > Pri(X') = yIPrda(y) € Z)

yey;
=Y (Prl.ay(X) =y] = Prias(X') = y)Pr{.at>(y,) € Z)
yey
- Z (Prlt\(X') = y] = Prldt(X) = y))Pr4l>(y,) € Z). (5)
yey

Since ./, also satisfies o,-TVD privacy, we have Pr[.#(y) € Z] — Pr[.#(y1) € Z] < o. Let p = max{Pr[.#(y) € Z]}; then, we have
(5)

<oup —aq(p — o) = 04 0l.

The proof is complete.
Similar to the group privacy of DP [16], we also provide group privacy of TVD privacy to measure the privacy leakage of a
group of records in the data analysis tasks.

Definition 5 (Group privacy of TVD privacy). A randomized mechanism .# : 2™ — #satisfies o-TVD privacy if for any
X, X' € 2" that differ in k element, it holds
sup|Pri#(X) e Y] —Prla(X') e Y]| <«
Ycw
Similar to the group privacy of DP, the strength of the privacy guarantee of group privacy of TVD privacy decreases with
the size of the group.

4.4. Privacy Amplification by Sampling

The privacy definition can benefit from the uncertainty of the adversary over the dataset [30-33]. We analyze the TVD
privacy amplification by sampling. Assume the data are sampled from dataset X. The adversary aims to distinguish two data-
sets X and X/, that differ in only one record. Suppose the record x, is absent in the dataset X’ and the sampling rate is q. The
privacy amplification is linearly related to the sampling rate q.

Theorem 10. For any mechanism .# that satisfies «-TVD privacy, if the input is sampled from the dataset X with a
probability g, denoted as Sq(X), then .# o S; satisfies (qo)-TVD privacy.
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See B for the proof.
4.5. TVD Private Mechanisms

In this section, we show how to use TVD privacy to analyze private mechanisms. We analyze the Laplace and Gaussian
mechanisms in single-dimensional numerical queries and the Gaussian mechanism in multi-dimensional numerical queries.
These private mechanisms can solve a large number of statistical query tasks.

4.5.1. Single-Dimensional Mechanisms
We use TVD privacy to measure the Laplace and Gaussian mechanisms in a single-dimensional numerical query. The sen-
sitivity of the counting query is A(f = Af = 1.

Theorem 11 (Laplace Mechanism for TVD Privacy). Given any function f : 2" — R, the Laplace mechanism defined as
A(X) = f(X) +1,

which satisfies (1 - e*éi)—TVD privacy, where 7 is a random variable drawn from Lap(b).

Proof 7.
Let i denote the mean of the Laplace distribution. The Laplace distribution has a cumulative distribution function (CDF)
Fi(x|u,b), and we can compute TVD privacy as follows:

Dy (|| 4(X) < Fu(g 4F0.) ~ Fu( 47141 b) = 5 (1 —eB) 4 (1 — e F) =1 e H.

The proof is complete.

Theorem 12 (Gaussian Mechanism for TVD Privacy). Given any function f : 2" — R, the Gaussian mechanism is defined as
Me(X) = F(X) + 1,

which satisfies (2(‘[) (ZA—{;) — 1)-TVD privacy, where 7 is a random variable drawn from N(0, 6?) and ®(x) denotes the CDF of
the standard normal distribution.

Proof 8.
Let ®(x) denote the CDF of the standard normal distribution, and y denote the mean of the normal distribution. Assuming
that the Gaussian mechanism adds noise drawn from N(0, 62), the CDF of the Gaussian distribution is F¢ (x|i, %). We have

Diy (A1 #(X') < Faliy 4110, 0%)  Folty 4f|4f.0%) = 2Fc(y Af0,0%) — 1 = 2¢<%> 1)

The proof is complete.

4.5.2. Multi-Dimensional Gaussian Mechanism
We prove the TVD privacy of the Gaussian mechanism in multi-dimensional numerical queries. The proof is similar to the
proof of the multi-dimensional Gaussian mechanism in [16].

Theorem 13 (Multi-dimensional Gaussian Mechanism for TVD Privacy). Given any function f:2" — RY the Gaussian
mechanism is defined as

Me(X) =F(X)+ (11, Ma),

which satisfies (2(1)(%) - 1)—TVD privacy, where #; are random variables independently drawn from N(0, 52).

Proof 9.
Since the Gaussian distribution is independent of the orthogonal basis, we can transform a multi-dimensional Gaussian
mechanism into a single-dimensional Gaussian mechanism. Consider query function f(X) = (y, - -,¥,,) With sensitivity A,f.

For any two datasets X, X’ that differ in only one record, let v = f(X) — f(X’); then, we have ||v|, < Axf.

Since the multi-dimensional Gaussian distribution is spherically symmetric, we can choose another standard orthogonal
basis (by, - - -, bm) where by is parallel to v. The Gaussian mechanism adds noise drawn from N(0, 0'2) in the direction of v. For
another basis b;, f(X) and f(X’) are identical. For any two datasets X, X’ that differ in only one record, we have
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Dy (.t (X)|| 4 (X)) =Dy (.4 (X)||4 (X) +V) < Fg (%Azﬂo,az) —Fg (%AzﬂAzf, 0'2> =2F; (%Azﬂo,aZ) -1 :2<1><‘2'—g> ~1.

The proof is complete.

5. TVD Privacy for Membership Inference Attacks

Membership inference attacks are familiar attacks on training samples in machine learning. It aims to infer whether a
record is a training sample or not. Jayaraman et al. [10] mentioned that MIAs are the most directly related to DP among
attacks. Similarly, MIAs are directly related to the protection target of TVD privacy. The study of privacy definitions and MIAs
helps to understand the potential privacy risk in data analysis tasks. In this section, we show the advantage of TVD privacy in
estimating the privacy risk of MIAs.

5.1. Private Stochastic Gradient Descent

In machine learning, Stochastic Gradient Descent (SGD) is commonly used to minimize the loss function L. A general
approach to protect the privacy of training samples is to use a private SGD algorithm. We analyze the TVD privacy property
of the differentially private SGD (DP-SGD) algorithm [6]. The DP-SGD algorithm randomly selects a small batch of training
samples in each training step. Before updating each gradient, DP-SGD adds noise drawn from a Gaussian distribution to pro-
tect the privacy of training samples.

First, DP-SGD restricts the boundary of each sample gradient via the clipping bound C. Then, DP-SGD adds Gaussian noise

drawn from N(O, A2fa? 1). For each step, the update rule is

Oir — 0; — n% (th(xi) + N(o, Agfozu)),

where 7 denotes the learning rate, b denotes the number of samples drawn from each batch, 6; denotes the gradient in this
round, and g,(x;) denotes the update gradient corresponding to sample x;. Let the number of training samples be n. Each
training sample is sampled in each step with probability g = b/n. Thus, the privacy guarantee of DP-SGD is equivalent to that
of the sampled Gaussian mechanism .#s; [7]. Fortunately, .#s; can be similarly reduced to a single-dimensional sampled
Gaussian mechanism [7]. Therefore, we can conveniently use the advanced composition theorem to analyze the TVD privacy
for M.

The Killback-Leibler divergence of the sampled Gaussian distribution is

Dy (#s6(0,q)) = max{Dy(N(0,6%)[|(1 — q)N(0, %) + gN(1,6?)), Dy (1 — q)N(0, 0%) + gN(1,6%)[IN(0, 6%)) }.

By Theorem 7, DP-SGD satisfies \/% T - Dy (M sc(0,q))-TVD privacy.

5.2. The Accuracy of MIAs

In MIAs [1,9,11], a typical setup is that half of the target samples are training samples and the others are not. In this setup,
an adversary has the same prior probability for the target sample. The accuracy is equal to the ratio of correct predictions
among all predictions.

First, we analyze which of TVD privacy or DP can more accurately measure the upper bound of the accuracy of MIA.
Assume that DP-SGD algorithm satisfies (¢, 6)-DP and «-TVD privacy. From Eq. 4, TVD privacy guarantees that the accuracy

of an MIA is no more than (1/2 + 1/2«). From Eq. 1, DP promises that the accuracy of MIA is less than <P~‘— (1-9)+ 6). The

1+e?
privacy property of DP-SGD is related to the sampling probability g, the number of steps T, and the Gaussian noise parameter
o. Fig. 3 shows the upper bounds of the accuracy of MIA for different parameters. As the theoretical analysis in Section 4.1,
TVD privacy always gives a more accurate theoretical upper bound than DP for the accuracy of MIAs.

Second, we compare the training results of TVD privacy and DP. When we try to constrain the accuracy of MIAs not to
exceed a certain threshold, TVD privacy and DP can set the scale of noise based on their respective theoretical analyses.
We consider four cases from low to high accuracy of MIAs and require the private SGD algorithms to guarantee that the accu-
racy of MIAs does not exceed 0.8,0.7,0.6, and 0.55, respectively. With the privacy analysis method of DP-SGD in Section 5.1,
Egs. 1 and 4, we can compute the noise scales for TVD privacy and DP. We train with the tutorial code provided by tensorflow *.
Fig. 4 shows the training accuracy for TVD privacy and DP. At a low privacy level (with an MIA’s accuracy of 0.8 or 0.7), although
TVD privacy adds less noise than DP, both have high training accuracy. However, at a high privacy level (with an MIA’s accuracy
of 0.6 or 0.55), the training accuracy of TVD privacy is significantly higher than that of DP.

4 https://github.com/tensorflow/privacy/tree/master/tutorials/mnist_dpsgd_tutorial.py
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Fig. 3. The upper bound on the accuracy of MIAs. The batch size and steps are set at (300,6000), (300, 20000), (600, 6000) and (600, 20000), respectively, for
the four experiments.
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Fig. 4. Training accuracy on the MNIST dataset. The four experiments require the accuracy of the MIAs to be no more than 0.8,0.7,0.6 and 0.55,
respectively. In all experiments, the networks are trained using batch size 300, learning rate 0.05 and clipping bound 1. The noise levels of DP and TVD
privacy for training the convolutional neural networks are set at (1.4,0.7),(2.0,0.8),(3.7,1.4) and (7,2.4), respectively, for the four experiments.

The two experiments above validate our theoretical analysis in Section 4.1 that TVD privacy is a suitable measure of the
accuracy of adversary inference. Therefore, when we use the accuracy of MIAs to measure the privacy risk of machine learn-
ing, TVD privacy always provides a better utility-privacy trade-off.

5.3. Membership Advantage, ROC Curve and Positive Predictive Value

We also analyze other indicators commonly used in MIAs. According to the prior probability, we classify the indicators as
balanced and skewed. For these indicators, TVD privacy is still a more accurate metric than DP in most conditions. First, we
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consider two indicators under the balanced prior: membership advantage and the ROC curve. Membership advantage and
the ROC curve (AUC) are usually used to measure the privacy of machine learning when an adversary has the same prior
probability on target samples [9,10,15].

Yeom et al. [9] defined the membership advantage (Adv) as the difference between the true positive rate and the false
positive rate of MIA. Jayaraman [10] provided a tight membership advantage bound for DP.

Theorem 14 (Tight Membership Advantage Bounds for DP [10]). Let .# be an (g, §)-DP algorithm. For any randomly chosen
record z and fixed false positive rate ), the membership advantage of a membership inference adversary .« is bounded by:

Adv,(y) <1=f.;(y)—7,

where f,;(y) = max{0, 1 —d—e®y, e*(1 -5 —p)}
Similarly, we can use TVD privacy to limit the membership advantage.

Theorem 15 (Membership Advantage Bound for TVD Privacy). Let .# be an «-TVD private algorithm. For any randomly chosen
record z and fixed false positive rate y, the membership advantage of a membership inference adversary .7 is bounded by:

Adv,,(y) < min{l —y, o}.
An equivalent bound on membership advantage from TVD privcay appears in [14].

By Theorem 14 and Theorem 15, we plot the curves of DP and TVD privacy in Fig. 5. Since DP is a privacy metric in the
worst case, it provides a more accurate measure when the false positive rate is approaching the limit., and TVD privacy pro-
vides a more accurate measure of the membership advantage in the middle interval.

In Fig. 6, we plot the ROC curves corresponding to DP and TVD privacy. Fig. 6 shows a similar result to the membership
advantage. DP provides a more precise guarantee when the false positive rate is approaching the limit. TVD privacy gives a
more accurate guarantee when the difference between the true positive and false positive rates is large.

We also compare the performance of TVD privacy and DP under a skewed prior. Jayaraman et al. [10] considered a more
general setup where only a small fraction of the target samples are training samples. They introduced a metric called the
positive predictive value (PPV), which is the ratio of correct predictions among all positive predictions. Theorem 16 provides
a method to calculate the PPV bound under DP.

Theorem 16 (Bound of PPV under DP[10]). Let .# be an (¢, 5)-DP algorithm. For any randomly chosen record z and fixed false
positive rate 7, the positive predictive value of a membership inference adversary .7 is bounded by

1—f.5(7)
PPV ,(},p) < ——F 00
AP <5 —fes) +p7
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Fig. 5. membership advantage curve of DP and TVD privacy. Each subfigure corresponds to a different ¢ value at 8,4,2 and 1.
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where f, ;(7) = max{0, 1 -5 —e®p, e“(1 -0 —-7)},p = (1 —p)/p, and p is the ratio of the training sample to all test samples.
Similarly, we can also use TVD privacy to bound PPV.

Theorem 17 (Bound of PPV under TVD Privacy). Let .# be an «- TVD private algorithm. For any randomly chosen record z and
fixed false positive rate 7y, the positive predictive value of a membership inference adversary .7 is bounded by

VAo

PPV, <——F.

By Theorem 16 and Theorem 17, we plot the curves of DP and TVD privacy as shown in Fig. 7. In Fig. 7, the Gaussian mech-
anism adds noise with ¢ = 2, and the proportions of training samples are 0.5,0.2,0.1, and 0.01. The conclusion is the same as
those of the previous two metrics. DP provides a more accurate measure when the false positive rate is small or large, and
TVD privacy offers a more precise estimate in the middle interval. When the proportion of testing samples is low, the upper
bounds for DP and TVD privacy are almost identical.

Implementation. From the analysis in this section, TVD privacy has a clear advantage in measuring the accuracy of MIAs,
and TVD privacy and DP are complementary in measuring the upper bounds for other indicators of MIAs. Therefore, we rec-
ommend choosing TVD privacy for measuring MIA accuracy and combining TVD privacy with DP for other metrics. We pro-
vide source code for calculating TVD privacy in private machine learning. Like DP, TVD privacy can be used as a machine
learning component. It can give a TVD privacy guarantee for each epoch. We also provide the source code for calculating four
indicators in this section with TVD privacy and DP. With these tools, users can easily calculate the theoretical upper bound of
each indicator and find a better utility-privacy trade-off. The source code is available from https://github.com/con-fide/
TVDprivacy.

6. Discussion
6.1. Optimal composition analysis

In this section, we study the optimal composition of TVD privacy. This study is complementary to Kairouz’s work [34]. The
Laplace mechanism is taken as an example. The Laplace mechanism with b = 1 and a query function with sensitivity Af = 1
are considered. We plot the logarithmic ratio of the privacy guarantee of the Laplace mechanism in the worst case in Fig. 8.
For most of the interval, the Laplace mechanism ensures that the logarithmic ratio equals & or —&. With this feature, the
Laplace mechanism is often regarded as the best. However, we focus on values within the (0, 1) interval. Within this interval,
the Laplace mechanism provides better privacy guarantees than ¢. However, there are no indicators to describe privacy in
(0,1). In other words, this part of privacy protection is wasted in DP.

This observation raises our interest: what will happen if privacy is not wasted? In [34], Kairouz et al. argued that a mech-
anism without privacy waste has the optimal utility. Furthermore, in [26], Kairouz et al. proved that this mechanism pro-
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Fig. 7. PPV curve of DP and TVD privacy. Each subfigure corresponds to a different ¢ value at 8,4,2 and 1.

vides the upper bound of the composition theorem under DP. Our findings further complement their study. When mecha-
nisms satisfy the same TVD privacy properties, the (¢, 0)-DP mechanism without privacy waste has the best composition
property. This finding implies that the randomized response mechanism [35] and geometric mechanism [36] have optimal
composition properties. First, we review Kairouz's [26] definition of privacy regions under hypothesis testing:

R(&,0) = {(Pen, Prp)|Prp + €°Ppy > 1 — 6, and €*Prp + Py > 1 — 6},

where Py denotes the false negative rate and Prp denotes the false positive rate.
Similarly, Kairouz defines the privacy region of a randomized mechanism .# with respect to two neighboring datasets Xy
and X; as

R(/AXO,X]) = COnV({PFN(X(),Xl,/f,s),PFN(X(),Xh1/%75)‘ for all S c X})7

where S denotes the rejection region.

Kairouz’s study implies that we need to find the mechanism .# that minimizes the privacy region R(.#,Xo,X;) during
hypothesis testing. Mechanism .# has an optimal composition property as long as we prove that
R(AM,Xo,X1) C R(AM1,X0,X1) for any other mechanism. We formally present the optimal composition theorem under TVD
privacy.

Theorem 18. For any « € [0, 1], the o-TVD private mechanism ./#; satisfies that (¢,0)-DP for ¢ = log1+% has the optimal

composition property. For all i € {0,1,---, |k/2]}, the combination mechanism .# = (/%1 S j/k) satisfies ((k — 2i)e, 5)-DP

where )
=k .
E ( | ) (e(k—l)s _ e(k—ZHI)s)

. I=0
1 I
(1+e)"
and satisfies Dry(B(k, (1 + «)/2),B(k, (1 — «)/2))-TVD privacy where B(n,p) denotes the binomial distribution with repeti-
tions n and success probability p.

Proof 10. The proof in this paper is inspired by the supplementary material in [26]. Suppose a mechanism satisfies «-TVD
privacy and (log1+2, 0)-DP. We propose the following mechanism J; at the ith step in the composition. For two datasets X,
and X; that differ in only one record, let ¢ = 1*% and mechanism .#; outputs the following:

< for y=0;
L for y=1;

T+e

Prl.uti(Xo) =y] = Po(y) =
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Fig. 8. Actual privacy guarantees for Laplace mechanism. The horizontal axis represents the output domain of the Laplace distribution, and the vertical axis
represents the logarithm of the ratio of the probability densities for the two distributions with inputs of 0 and 1..
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i-1
ZIT( (e(k—l)x _ e(k—ZHl)t:)
5 = 0 _ (6)

(1+e)

With the help of Kairouz’s work, we need only to prove that R(Q/Z/,‘,XO,Xl) C R(4,X0,X1) for any mechanism .#; that satisfies
o-TVD privacy. Let Py, P; denote the probability density function of the outputs .#(Xy) and .#(X1). R(.#;,Xo,X1) is axially
symmetric with the function y = x. Any mechanism .#; intersects .#; at point (15%,15%). Since R(.#;,Xo,X1) is a convex
set, the privacy region R(.#;,Xo,X;) of any mechanism .#; contains R(,/%-,XO,XQ.

Inspired by Theorem 18, we analyze the Laplace and Gaussian mechanisms. Suppose the same single-dimensional numer-
ical query is protected with the Laplace and Gaussian mechanisms. Which mechanism has a better composition property?
We plot graphical representations of the Laplace and Gaussian mechanisms satisfying the same o-TVD privacy in Fig. 9. The
four plots correspond to o = 0.05,0.1,0.2,0.4. When both mechanisms satisfy the same TVD privacy property, and the
Laplace mechanism satisfies DP with ¢ < 2.5, the privacy region of the Gaussian mechanism always contains the privacy
region of the Laplace mechanism. In other words, satisfying the same TVD privacy, the composition property of the Gaussian
mechanism is always worse than that of the Laplace mechanism. We compare the privacy regions of the mechanism with the
optimal composition property, the Laplace mechanism, and the Gaussian mechanism in Fig. 10. All three mechanisms satisfy
0.1-TVD privacy, and the four plots correspond to the privacy region at the composition numbers 1,10, 50, 100. The privacy
region of the Gaussian mechanism is significantly larger than that of the Laplace mechanism, and the privacy region of the
Laplace mechanism is close to optimal.

6.2. Additional constraints on TVD privacy

Compared to DP, the relaxation of TVD privacy is sometimes unsatisfactory. For some mechanisms, although the param-
eter of TVD privacy is small, each output may directly reveal the real information of some records. We explain this issue with
the following well-known example.

Example 1. Consider an average query function; every record x; is unique in the dataset D. A randomized mechanism .#
randomly selects one of n records as the average. For the neighboring datasets D and Dy, the TVD value between .# (D) and
4 (Dr)is oo = 1/n. When n is large, the randomized mechanism .# seems sufficiently private regarding TVD privacy. However,
each output of the randomized mechanism .# leaks a record.

Example 1 implies that TVD privacy may lead to some unpalatable mechanism, which is also the intuition for the privacy
parameter § setting of DP. Mechanism .# in Example 1 is (0,1/n)-DP and may leak one record per analysis. Therefore, it is
generally accepted that & in DP should be much less than 1/n.°

5 This setting ensures that for any mechanism, the probability of leaking one piece of data out of n pieces of data is minimal. McSherry has a different view on
the ¢ setting. He believes that 6 should be related to the size of the domain of the input [37]. In either view, the core is to make the probability of privacy loss
greater than ¢ as small as possible.
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Fig. 9. Comparison of Laplace mechanism and Gaussian mechanism corresponds to a different o value at 0.05,0.1
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Fig. 10. Composition property comparison of Laplace,Gaussian and Optimal mechanism corresponds to a different composition numbers value at 1,10,50
and 100.

Barber and Duchi [38] suggested dealing with the above problem for TVD privacy. They found that TVD privacy did not
provide sufficient protection against privacy risk and suggested imposing more robust divergence requirements to the out-
put distribution. In this paper, we do not want to shift the privacy definition to a more complex form such as KL privacy [38]
by adding a divergence constraint. We believe a more complex definition can be more challenging to understand and less
convenient. In contrast, we prefer to use the divergence as a complementary constraint on TVD privacy. When the KL diver-
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gence is finite, or the maximum divergence is limited with high probability (i.e., (¢, §)-DP), the mechanism can be analyzed
with TVD privacy and does not have the privacy risk in Example 1.

7. Related Work

TVD has been discussed in various forms in the academic community. In [39], Dwork et al. discussed TVD together with
DP and explained the advantage of DP instead of TVD. They proposed that TVD may lead to the emergence of certain unpleas-
ant privacy mechanisms. These mechanisms can compromise the privacy of a small number of people while ensuring the
majority’s privacy.

Ganta et al. [40] proposed a definition called semantic privacy in their analysis of the semantics of DP. TVD privacy is
equivalent to semantic privacy with uninformed prior-knowledge assumption. Barber and Duchi [38] formally defined
TVD privacy for the first time and compared the performance of multiple privacy definitions. They argued that TVD privacy
might not be fully satisfactory. One way to address this issue is to impose a stronger divergence requirement on TVD privacy,
such as KL divergence privacy. They found that TVD privacy is weaker than DP but can provide more accurate estimates for
privacy risks.

Kairouz et al. [34] used TVD as a utility metric in the analysis of the optimality of DP mechanisms. They demonstrated
that staircase mechanisms, including the randomized response, maximize TVD with the same DP guarantee. Rassouli and
Giindiiz [41] proposed a variant of TVD called average TVD. They showed that the average TVD is consistent with the intu-
itive notion of a privacy measure and can be used as the privacy measure when solving the optimal utility-privacy trade-off
problem by a standard linear procedure.

Shokri et al. [1] proposed MIAs to reveal that machine learning models may leak individual records. Some subsequent
works used TVD to measure MIAs. Kulynych et al. [14] used TVD to measure the membership advantage of inference attacks
in the worst case. Lin et al. [15] analyzed the privacy of GAN-generated samples and used TVD to measure the robustness of
the GAN samples to MIAs.

8. Conclusion

We have provide a systematic theoretical analysis of TVD privacy and analyze the ability of TVD privacy to estimate pri-
vacy risks with the example of MIAs. Our work demonstrate that TVD privacy is a helpful tool in estimating privacy risks and
has the potential to be widely used as a general privacy definition.

CRediT authorship contribution statement

Jingyu Jia: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, Writing - review & edit-
ing. Chang Tan: Data curation. Zhewei Liu: Investigation. Xinhao Li: Investigation. Zheli Liu: Conceptualization. Siyi Lv:
Conceptualization, Writing - review & editing. Changyu Dong: Conceptualization.

Data availability

I have shared the link to my code in the paper.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Controversy over privacy targets
A.1. Motivating Example

To illustrate the controversy of privacy targets, we describe a contagious disease example proposed by Kifer [18], with a cau-
sal graph proposed by Michael [17]. The example of the data collection and analysis process on the infectious disease is
shown in Fig. A.11. There is an infectious disease that will infect the entire family. In total, n users, including 10 from Bob’s
family, participate in collecting contagious disease information. A randomized response mechanism collects each data point.
Each arrow in the diagram represents a relation between the two ends of the arrow. These relations could be some known
information, an unknown correlation, or the direction of the data flow. Arrow (1) represents the family members’ infection
statuses (sick or not). Arrow (2) represents a group of relations between Bob’s family members and society that are not given.
Arrows (3), (4), and (5) represent that each individual status in statuses set S corresponds to a raw data point in the database
D. Arrows (6), (7), and (8) represent the DP algorithm that generates an output O with dataset D as input. We assume that the
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adversary aims to infer the user’s sensitive information. Arrow (9) represents the adversary inferring the user’s state s by
combining his background knowledge 6 with the output O.

In this paper, we do not discuss whether DP implicitly assumes data independence, and we are sure there is no such
assumption for DP. In this example, we describe the controversy over privacy targets by the maximum successful probability
of the adversary’s guesses. When Bob participates in the data collection, he receives an &-DP guarantee. Taking ¢ = 0.5 as an
example, Bob uploads the true value with probability e®*/(e®5 + 1) and uploads the opposite value with probability
1/(e% +1). By observing Bob’s output after a randomized response algorithm, the probability that an adversary without
any auxiliary information guesses Bob’s message correctly is at most close to 0.63. For an adversary who knows the charac-
teristics of the infectious disease and knows Bob’s family’s participation in this data collection task, the highest probability of
success in guessing Bob’s disease is nearly 0.78. The controversy previously centered on whether DP should be criticized for
the latter adversary having a successful attack capability of 0.78.

DP believes people should only require privacy protection for the parts they can control. In this example, Bob can neither
control the possible auxiliary information of the adversary nor control the family’s participation in the data collection task.
Therefore, privacy protection for Bob’s participation in the data collection task is sufficient. The opposite view believes that
“almost no sensitive information about any user should be leaked due to a user answering the query” [22]. In this example,
the attributes of Bob’s family are directly related to Bob’s attributes. Therefore, privacy protection for Bob should consider
the impact of Bob’s family participation on Bob. We do not judge which of these two views is correct, but we explain the
privacy theories behind these two views and analyze how they influence privacy definitions.

A.2. Two Privacy Theories

Privacy is always a broad and ambiguous concept. Many scholars have complained about the difficulty and ambiguity of
privacy. Arthur Miller [42] stated that privacy is “difficult to define because it is exasperatingly vague and evanescent.”
Himma and Tavani [43] detailed discussions on the ethical aspects of information and computers. They argued that “most
analyses of issues affecting informational privacy have invoked variations of the restricted access and the control theories”.
In the previous example, the view that only the participation of Bob needs to be protected adheres to the control theory. The
view that Bob’s family’s data should also be considered is a privacy view from the limited(restricted) access theory. Li et al.
[25] noted the conflict between these two privacy theories. In his book, he explains DP’s difficulties and ethical challenges. In
this paper, we briefly introduce the limited access theorem and control theory.

A.3. Limited Access to Personal Information

Limited access to personal information is one of the most important privacy theories. According to Gavison [44], “privacy
is a limitation of others’ access to an individual”. Similarly, Bok [45] views “privacy as the condition of being protected from
unwanted access by others, including physical access, personal information, or attention”. In this theory, when a person
exists completely independent of society, they acquire absolute privacy. Obviously, people can hardly obtain absolute pri-
vacy or complete loss of privacy in society. Therefore, the theory of limited access to personal information is concerned with
the “loss of privacy”. Tivani and Moor [46] consider that “privacy is fundamentally about protection from intrusion and
information gathering by others.”.

Limited access theory is an intuitive perception of privacy. If a person does not want a third party to have access to their
information, but the third party learns about their information somehow, then their privacy has been violated. According to
Himma and Tavani [43], “Arguably, one of the insights of the restricted access theory is in recognizing the importance of
zones and contexts that need to be established to achieve informational privacy”. In other words, if we wish to guarantee
privacy under the limited access theory, we need to determine the scope of privacy and the various types of information that
are relevant to the privacy we wish to guarantee.

The main criticism of the theory of limited access to personal information focuses on the lack of a clear distinction
between private information and public information [43,47]. Therefore, what level of contact would constitute a privacy vio-
lation is difficult to discern. In the example, we assume that the adversary has more auxiliary information. Suppose Bob’s
property is related to the total number of people with the disease. Bob must be sick if more than a quarter of the population
is sick. However, for utility, we offer few reasonable guarantees of privacy in such cases.

A4. Control over Personal Information

Control over personal information is another important privacy theory. The originator of this theory is Alan Westin [48],
who is also the originator of individualistic privacy. Alan Westin stated “Privacy is the claim of individuals, groups, or insti-
tutions to determine for themselves when, how, and to what extent information about them is communicated to others”.
Alan Westin observed that “individuals have needs for disclosure and companionship, which are every bit as important
as their needs for privacy”. This observation implies that humans need to balance information disclosure with personal pri-
vacy. This concept is very common in real life. A person may want to spend time with their family or friends at one time, and
at another time, they may want to be left alone. Alan Westin believes that too much or too little privacy can destroy the bal-
ance and seriously affect people’s lives. When people desire control beyond their power (too much) or when environmental
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Fig. A.11. Data collection and analysis process on the infectious disease.

factors severely compromise their control over personal information (too little), it is difficult to maintain a privacy balance.
Since everyone needs to adjust between solitude and companionship constantly, Alan Westin believes “the individual to
decide for himself, with only extraordinary exceptions in the interests of society, when and on what terms his acts should
be revealed to the general public” is the core of the right of individual privacy.

Control over personal information theory is shared by some scholars [42,49-51]. Charles Fried makes a clear distinction
between the theories of limited access and control over personal information. He argues that “It is not true, for instance, that
the less that is known about us, the more privacy we have. Privacy is not simply an absence of information about us in the
minds of others; rather it is the control we have over information about ourselves”.

As Solove [47] stated, “The control-over-information conception can be viewed as a subset of the limited-access concep-
tion”. Due to the narrow interpretation of privacy, control over personal information theory has been criticized by many
scholars. Tivani and Moor believe that personal control is very limited. Control over personal information theory excludes
much of what should be comprehended as privacy. They suggested that even if people lose control of their sensitive infor-
mation, it should be protected as private [46]. Paul Schwartz [52] is worried that people under control over personal infor-
mation theory are at a disadvantage to companies in negotiations over the use of personal data. He also realized that “online
industry also seeks to lock in a poor level of privacy through collaborative standard setting”.

The conflict between the two theories becomes the focus of conflict in the examples. The lack of a direct connection
between DP and limited access theory leads to a series of misunderstandings and misapplications. We hope that the work
in this section will help the reader to understand privacy better. We also suggest that authors first identify reasonable pri-
vacy targets when designing privacy mechanisms or attack algorithms because identifying a reasonable privacy target is the
foundation of privacy work.

Appendix B. Proof of Theorem 5.8

For any mechanism ./ that satisfies «-TVD privacy, if the input is sampled from the dataset X with a probability q, denoted as
Sq(X), then .# o S, satisfies (qo)-TVD privacy.

Proof 11. This proof is inspired by Appendix A.1 of [30]. Without loss of generality, assume there are two neighboring
datasets X and X’, where X’ does not contain the record x,. T denote the sampled dataset. When T does not contain x,, we
have

Pr[Sy(X) = T] = Pr[S,(x") = T]. (B.1)
When T contains x,, T_, denotes the sampled dataset with x, removed. We have
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PrSy(X) = T ] = PrSy(X) =T . (B.2)
For any possible output set O, let Z = Pr[.# (Sq(X)] € 0) and Z' = Pr[.4(S¢(X')] € 0),we have:
Z= ZPr T|Pr.4(T) € O],
TcX
= "Pr[Sy(X) = T|Prl.4(T) € O].

TcX!

By combining Eq. B.1 and Eq. B.2, we can further describe Z as follows:

Z =" "Pr[Sq(X) = TIPrl.4(T) € O]

TcX

=371 - q)Pr(Sy(X) = TIPrl.a(T) € O] + Y qPr(S,(X) =Ty, JPr[.4/(T) € O].

TcX! T g X’
LetY =37 _Pr [Sq(X) = T,X"]Pr[/%(T) € 0]; then, we have

y< Y Prs Sl (PrLA(T ) € O] +a) =Y " PriSg(X) = T)(Prl.(T) € O] + o) = Z' + ot
T yy X TcX
Then, we have
Z=(1-q9QZ +qY<(1-qZ +qZ+a)=Z+qo.

Similarly, we have Z + qo > Z'. We can also use Theorem 9 to prove Theorem 10. S satisfies g-TVD privacy, and ./# satisfies
o- TVD privacy. By Theorem 9, we directly obtain that .# o S;(D) satisfies (qo)- TVD privacy

Appendix C. Differentially Private Stochastic Gradient Descent

Algorithm 1 outlines the basic method for training a model with parameters ¢ by minimizing the empirical loss function
L(0). At each step of SGD, we compute the gradient A,L(6;x;) for a random subset of examples, clip the I, norm of each gra-
dient, compute the average, add noise to protect privacy, and take a step in the opposite direction of this average noisy
gradient.

Algorithm 1.: Differentially private SGD [6]

Input: Examples {z1, -+, 2y}, loss function L(0) = + >, L(6, z;).
Parameters: learning rate n;, noise scale o, group size L,
gradient norm bound C'.

Initialize 0, randomly

for t € [T] do

Take a random sample L; with sampling probability L/N

Compute gradient

For each i € L;, compute g;(z;) +— Ng, L(0, ;)

Clip gradient

v | Gilen) < e /max (1, 10l )

[ U

Add noise
o | G+ 1 (30, T.(i) + N(0,0CI))
10 Descent
11 Orr1 < 0, — nge
12 end

Output: Or
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