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Explainable artificial intelligence (XAI) is gradually becoming a key component of many artificial 
intelligence systems. However, such pursuit of transparency may bring potential privacy threats 
to the model confidentially, as the adversary may obtain more critical information about the 
model. In this paper, we systematically study how model decision explanations impact model 
extraction attacks, which aim at stealing the functionalities of a black-box model. Based on the 
threat models we formulated, an XAI-aware model extraction attack (XaMEA), a novel attack 
framework that exploits spatial knowledge from decision explanations is proposed. XaMEA is 
designed to be model-agnostic: it achieves considerable extraction fidelity on arbitrary machine 
learning (ML) models. Moreover, we proved that this attack is inexorable, even if the target model 
does not proactively provide model explanations. Various empirical results have also verified the 
effectiveness of XaMEA and disclosed privacy leakages caused by decision explanations. We hope 
this work would highlight the need for techniques that better trade off the transparency and 
privacy of ML models.

1. Introduction

Artificial intelligence (AI) has been ubiquitously and used in a wide range of tasks, ranging from image recognition, and natural 
language processing to object detection [1–3], etc. Recently, increasing demand for reliable AI systems addresses higher requirements 
for transparency and privacy, especially in scenarios where user and companies interest conflicts. On the one hand, users want their 
information protected and the prediction result more convincing. On the other hand, companies are reluctant in disclosing any details 
of their proprietary models, which, therefore, are usually encapsulated as a certain application program interface (API). As a result, 
many recent attempts emerged in improving the transparency of neural networks [4] and preserving training data as well as model 
confidentially [5]. To enhance reliability, explainable artificial intelligence (XAI) is employed to explain the logic behind every 
decision made by neural networks, as shown in Fig. 1. For AI systems, this is vital in improving performance, enhancing security, 
and accelerating deployment. Take image classification tasks, mainstreams for XAI are saliency maps [6], heat maps [7], and feature 
maps [8]. Since intuitive model explanations are provided with the prediction results, users can confirm the validity of model output 
more easily. However, despite attractive advantages, direct privacy leakage can be caused by sensitive knowledge carried out in 
model explanations [9–11]. In this paper, we focus on model extraction attacks (MEA), which aim to precisely copy model prediction 
patterns [12]. The crucial damage of MEA is beyond itself: it turns a black-box model into a white-box one, which significantly easies 
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Fig. 1. Workflow of an explainable deep learning.

a series of downstream attacks, e.g., adversarial attacks [13], model inversion attacks [14], and membership inference attacks [15]. 
Nevertheless, how model decision explanations impact model extraction attacks remain rarely explored.

We first put forward a novel threat model, where model explanations are considered as auxiliary information to the adversary. 
We then design and propose XAI-aware Model Extraction Attacks (XaMEA) for such scenarios. Typically, model explanations contain 
decision boundaries, which very much simplifies model extraction attacks. Model predictions and explanations are properly fused in 
XaMEA, and thus can simultaneously be leveraged to train the encoder-decoder-based attack model. Furthermore, since the model 
explanation of image classification is the image of the same size as the query sample, the intuition of designing XaMEA is essentially 
to unearth the value information contained in the image. The attack in XaMEA can also be extended in more general cases since 
it is designed in a model-agnostic manner: the encoder-decoder structure flexibly adapts itself to various model architectures and 
corresponding explanation patterns. Besides, by applying black-box explanation techniques, models that do not proactively provide 
explanation information also fall into the scope of our attack. Our proposal is evaluated broadly, and various empirical results 
demonstrate its superiority. It outperforms Baseline and other state-of-art technologies [16,17]. Contributions of this paper are 
summarized as follows.

• We propose XaMEA, three XAI-aware model extraction attack architectures, the key is to fully unearth the model explanation 
knowledge by encoder-decoder structure. Their substitution models (i.e., copied from victim models) extracted through XaMEA 
have higher fidelity than traditional model extraction attacks. This emphasizes that the privacy risks of model explanations are 
significant.

• We further carry out XAI-aware model extraction attacks against non-explanation target models. It proves that the target model 
still faces the risk of the XAI-aware model extraction attack regardless of whether the target model shares explanations or not.

• We evaluate the attack effectiveness of XaMEA with an exhaustive set of experiments. Experimental results demonstrate that the 
attack accuracy of one of the proposed XAI-aware model extraction attacks is 12.75%-29.23% higher than the prediction-only 
model extraction attack method [16].

2. Background

2.1. Model extraction

Model extraction attacks destroy the confidentiality of ML models [18]. The typical attack procedure of model extraction attacks: 
an adversary first collects or synthesizes an initial unlabeled dataset. Then, the adversary queries the target model (also called the 
victim model) with inputs of their choice. Finally, the adversary leverages the attack dataset, which is annotated by the target model, 
to train a copy of the target model. The adversary’s goal is to acquire a stolen replica that mimics the decision behavior of the target 
model.

Replicating a substitution model analogous to the structure and parameter of the target model is out of our scope. Because 
they are only suitable for shallow neural networks [19]. We also exclude model extraction attacks taking into account side-channel 
information [20]. In our elaborate designed threat model, the model not only supplies users with predictions but also provides 
auxiliary information, i.e., model explanations. The orientation of our efforts is how to make the best use of auxiliary information to 
perform model extraction attacks. Therefore, we explore the impact of explanations on model extraction attacks. Furthermore, our 
proposed XaMEA can also be extended to more general cases. Even if the target model does not furnish explanations, it is still the 
scope of our attack as described in Section 6.

2.2. Explainable AI

Explainable artificial intelligence (XAI) aims to lie in AI algorithms more transparent and reliable [21], especially in the medical, 
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financial, and military fields. In line with the knowledge of the model, we taxonomize XAI technologies around two camps: 
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Fig. 2. Representation of explainable in the field of images.

model-related [22], i.e., knowing model gradients, structures, and parameters, etc, and model-agnostic [23], i.e., knowing the label or 
confidence score of the model output. One of the mainstream methods of model-related is to leverage the mapping of the convolution 
layer [24]. However, model-agnostic technologies speculate features that play an important role in model decisions in light of the 
change of predictions.

In this paper, we focus on image-based XAI privacy security. There are three representations of explanations in the domain of 
image as shown in Fig. 2. Image-based XAI can be transformed into arbitrary maps. Therefore, the tailored intuition of XaMEA is to 
make full use of triples (𝑋, 𝐸𝑡, 𝑌𝑡). 𝑋 is the original image of the attack dataset. 𝐸𝑡 and 𝑌𝑡 correspond to the explanations and labels 
of the attack dataset, respectively, which are gained by the target model.

3. Our method

3.1. Overview

XaMEA is a model extraction attack technology, which aims to explore the privacy risks of explanation leakage. It operates by 
(1) collecting the attack dataset, (2) querying explanations and labels via the target model, and (3) training the substitution model 
to predict. XaMEA’s framework is composed of the following components.

• Attack Dataset Collection (ADC): It collects attack samples as capital for an adversary to launch the model extraction attack.
• Target Model Query (TMQ): It queries the attack dataset to the target model. Since then, the attack dataset is annotated with 

labels and explanations via the target model.
• Substitution Model Train (SMT): It leverages the annotated attack dataset to train the substitution model with decisions 

analogous to the target model.

We note that the ADC and TMQ components are general, so they can be reapplied as a general XAI-aware model extraction 
attack. The core component of XaMEA is SMT, for which we design three different schemes to better excavate the knowledge of 
explanations. Note that the schemes we designed are based on transfer learning. The first scheme is called the double encoder 
transfer model extraction attack (DET). The second scheme is called the logits and encoder transfer model extraction attack (LET). 
The last scheme is called the single encoder transfer model extraction attack (SET). The first and third schemes focus on utilizing 
spatial features between images. The second scheme considers both the spatial features of images and the entanglement features 
between images and labels. Before introducing the detail of the three pipelines, we first understand the setup of the threat model.

Threat Models. Consider a well-trained target model that is deployed on a cloud platform and provides an application program 
interface (API) for queries. To better its service, the company behind this model returns predictions and coupled explanations for 
users, e.g., saliency maps. The adversary in the public environment aims at stealing the functionalities of the target model. He queries 
the target model by his local dataset (also called the attack dataset) and observes the corresponding output pattern. In the scenario 
above, the output pattern for each queried image contains a prediction vector and explanation tensor. The explanation tensor usually 
has a consistent size to the input image.

Adversary Knowledge. The adversary has black-box access to the target model. The adversary obtains label-only and coupled 
explanations through the target model query. The adversary has the same distribution of dataset as the target model training set. 
Moreover, the adversary trying to reconstruct the substitution model does not know the model type of the target model. In the 
following, unless otherwise specified, the adversary’s knowledge is as described above.

3.2. Double encoder transfer model extraction attack (DET)

The substitution model obtains by the double encoder transfer model extraction method. It is composed of two encoders and a 
classifier, as shown in the red box in Fig. 3. One encoder (𝑀𝑒

𝑎
) is derived from an autoencoder (𝑀𝑎) trained by query images (𝑋), 

and its reconstruction loss is 𝐿𝑎 = (𝑀𝑎(𝑋) −𝑋)2. The other encoder (𝑀𝑒
𝑖
) is derived from an autoencoder (𝑀𝑖) trained with the query 

images, and its reconstruction loss is 𝐿𝑖 = (𝑀𝑖(𝑋) −𝐸𝑡)2. 𝐸𝑡 is the explanations about the query images provided by the target model. 
Both 𝐿𝑎 and 𝐿𝑖 are mean-square error (MSE).

When the two autoencoders have been trained, the adversary transfers their encoders to the first half of the substitution model. 
The second half of the substitution model is a classifier. The input to the classifier is a concatenation of the output of two encoders 
(𝑀𝑒

𝑎
(𝑋) ⊙𝑀𝑒

𝑖
(𝑋)). The classifier can be MLP or CNN, etc. The substitution model (𝑀𝑠) with cross-entropy loss 𝐿𝑠(𝑀𝑠(𝑋), 𝑌𝑡), where 𝑌𝑡

is the predicted label from the target model. The training of the substitution model adjusts the parameters of the classifier according 
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to the loss function 𝐿𝑠, and the two encoders transferred also carry out fine-tuning.
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Fig. 3. A schematic view of DET pipeline.

Fig. 4. A schematic view of LET pipeline.

3.3. Logits and encoder transfer model extraction attack (LET)

The logits and encoder transfer model extraction attack not only transfer the network structure and parameters before the softmax 
layer of a classifier, but also transfer the encoder of an autoencoder. The framework is shown in Fig. 4, and the red box constitutes the 
substitution model. As depicted in Fig. 4, first an adversary trains the front half part of the substitution model. One is a classifier (𝐶𝑎) 
trained using query images (𝑋) and the prediction label (𝑌𝑡) provided by the target model. The 𝐶𝑎 is trained with cross-entropy loss, 
𝐿𝑎(𝐶𝑎(𝑋), 𝑌𝑡). The other is an autoencoder (𝑀𝑖) trained using the query images, its reconstruction loss, i.e., MSE, is 𝐿𝑖 = (𝑀𝑖(𝑋) −𝐸𝑡)2. 
𝐸𝑡 is the explanations feedback from the target model.

After the adversary has trained the 𝐶𝑎 and 𝑀𝑖, the 𝐶𝑎 transfers the network structure and parameters before the neural network 
softmax layer (𝐶𝑙

𝑎
), the 𝑀𝑖 transfers its encoder (𝑀𝑒

𝑖
). Subsequently, the adversary supplements the latter part of the substitution 

model structure, and trains the overall substitution model. The latter part of the substitution model is essentially a classifier, whose 
input is the concatenation of (𝐶𝑙

𝑎
(𝑋) ⊙𝑀𝑒

𝑖
(𝑋)). The training loss of the substitution model (𝐶𝑠) is cross-entropy 𝐿𝑠(𝐶𝑠(𝑋), 𝑌𝑡). In the 

overall training process of the substitution model, the parameters of the transferred module can be adjusted according to the loss of 
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𝐿𝑠.
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Fig. 5. A schematic view of SET pipeline.

Table 1

Accuracy of target model.

Target Models Datasets Accuracy

VGG19 MNIST 98.70%
VGG19 Fashion-MNIST 91.45%
ResNet50 CIFAR-10 92.03%
DensNet161 CIFAR-100 72.02%

3.4. Single encoder transfer model extraction attack (SET)

In the last type of attack scenario, an adversary also uses an autoencoder and transfers its encoder to be element of the substitution 
model. Compared with the DET in Section 3.2, this method only needs to transfer one encoder. Hence, our last method is named single 
encoder transfer model extraction attack method (SET). To build the substitution model, the adversary first trains the autoencoder 
(𝑀𝑖), its input is query images (𝑋). The loss function of 𝑀𝑖 is mean-square error, 𝐿𝑖(𝑀𝑖(𝑋), 𝐸𝑡). 𝐸𝑡 is the explanations corresponding 
to the query images provided by the target model. After the 𝑀𝑖 is trained in the first stage, the adversary transfers the encoder (𝑀𝑒

𝑖
) 

of the 𝑀𝑖 to the substitution model as a sub-module. Another sub-module of the substitution model (𝑀𝑠) is a classifier whose training 
loss function is cross-entropy 𝐿𝑠(𝑀𝑠(𝑋), 𝑌𝑡), where 𝑌𝑡 is the prediction label provided by the target model to the adversary’s query 
images. The framework diagram of SET is shown in Fig. 5, in which the red boxes are the components of the 𝑀𝑠.

4. Experimental design and implementation

4.1. Datasets description

We evaluate the experiment using four publicly available image datasets, MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. 
MNIST and Fashion-MNIST are the grayscale images of 28 × 28 with 10 labels, where the example number of the training set is 
60,000, and the example number of the test set is 10,000. CIFAR-10 and CIFAR-100 are three-channel color images of 32 × 32, 
where the example number of the training set is 50,000 and the example number of the test set is 10,000. CIFAR-10 is the dataset 
with 10 labels, while CIFAR-100 is the dataset with 100 labels. Note that we sometimes abbreviate Fashion-MNIST to FMNIST for 
the convenience of description.

In our experiment, all training set examples are used as the training data of the target model. The test set is owned by the 
adversary. The adversary uses 80% of the test set as the attack dataset, i.e., 8,000 samples, and 20% of the test set, i.e., 2,000 
samples, is used to test the label similarity between the substitution model and the target model (see Table 1 for the accuracy of 
target model).

4.2. Target models

There are three types of target models that we draw up. For MNIST and Fashion-MNIST datasets, the target model is trained by 
the visual geometry group network (VGG19). For the CIFAR-10 dataset, the target model is the residual network (ResNet50). For the 
CIFAR-100 dataset, the target model adopts the densely connected convolutional network (DensNet161). The task accuracy of the 
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target model is shown in Table 1.



Information Sciences 632 (2023) 269–284A. Yan, T. Huang, L. Ke et al.

4.3. Explanation types

We assume that the target model is two camps, model-related and model-agnostic. For model-related XAI techniques, we select the 
gradient-based method (GRAD) [22] and gradient-weighted class activation mapping method (Grad-CAM) [24] as representatives. In 
the other camp, we select perturbation strategy (MASK) [25] and local model explanations generated by LIME [26] as representatives.

4.4. Evaluation metrics

We assume that the target model is 𝑀𝑡 and the substitution model is 𝑀𝑠. Our goal is to minimize 𝑆(𝑀𝑡, 𝑀𝑠), where 𝑆(⋅) is the 
similarity function. In this paper, we consider only label agreement 𝑆(𝑀𝑡(𝑋), 𝑀𝑠(𝑋)) = (𝑎𝑟𝑔𝑚𝑎𝑥(𝑀𝑡(𝑋)) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑀𝑠(𝑋))), where 𝑋
is test set. In other words, the label agreement is also called attack accuracy. 𝑆(𝑀𝑡(𝑋), 𝑀𝑠(𝑋)) = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑌𝑡, 𝑌 ′

𝑡
), where 𝑌𝑡 is the set 

of predicted labels of 𝑀𝑡 for 𝑋, 𝑌 ′
𝑡

is the set of predicted labels of 𝑀𝑠 for 𝑋.

4.5. Experiment setup

To evaluate the performance of XaMEA, i.e., DET, LET, and SET, we design seven sets of experiments: parameter analysis, the 
effectiveness of XAI-aware attacks, attacking target models with different XAI types, attacking target models with different complex 
tasks, attacking target models with different datasets, attacking target models with different budgets, and evaluation of XAI-aware 
attacks against defense target models.

Parameter analysis. The major purpose is to evaluate the attack efficiency of XaMEA. The three XaMEA attack pipelines we 
proposed have one thing in common: some components of their substitution model are transferred from other models. As described in 
Section 3. To construct a substitution model, XaMEA first requires training the transferred model and then transferring some elements 
of the transferred model to the substitution model. Subsequently, we design a convolution network structure, which constitutes the 
other parts of the substitution model. Finally, we train the substitution model to adjust the overall internal parameters.

Effectiveness of XAI-aware attacks. We evaluate XaMEA by comparing it with a Baseline and two state-of-the-art model 
extraction attack technologies proposed in [16,17]. The Baseline utilizes attack datasets to train a substitution model directly. PRADA 
[16] uses Jacobian-based dataset augmentation to perform model extraction attack. It is worth mentioning that the Baseline and the 
state-of-the-art model extraction attack are label-only and confidence scores respectively. Besides, we also capture an empirical 
comparison with the approach of Milli et al. [17]. This work is closely related and addresses the same objective as this paper.

Attacking target models with different XAI types. We aim to measure the degree of privacy risks of different explanation types. 
The explanation types we choose are GRAD, Grad-CAM, MASK, and LIME as mentioned in Section 4.3.

Attacking target models with different complex tasks. The datasets we select to evaluate included MNIST, Fashion-MNIST, 
CIFAR-10, and CIFAR-100. The order of task complexity between them is MNIST < Fashion-MNIST < CIFAR-10 < CIFAR-100. We 
leverage to observe the difference in XaMEA attack performance of the target model under different task complexity.

Attacking target models with different datasets. Our goal is to assess the attack performance of XaMEA under different 
knowledge of the target model training datasets. In this subsection, we assume that there are three types of adversaries: superpower, 
power, and weak. Superpower means that the adversary can obtain the same data sample as the target model training set. Power 
means that the adversary can steal a subset of the target model training set. Weak means that the adversary can only collect the 
attack dataset with the same distribution as the target model training set. It is worth noting that the adversary is the weak type in 
other experimental evaluation settings.

Attacking target models with different budgets. We presume that there are limitations like a fixed number of queries per day 
or a fixed cost per query, requiring an adversary to perform as few queries as possible. Since each query gives additional information 
(in the form of an explanation), we expect that the proposed XAI-aware attacks require much fewer queries than the label-only 
Baseline.

Evaluation of XAI-aware attacks against defense target models. In practice, explanations usually provide a processed version 
of the saliency map, instead of raw saliency maps. We also test the explanations processed with adversarial example technologies, 
i.e., FGSM [27] and AutoPGD [28].

5. Experimental results

5.1. Parameter analysis

Intuitively, the substitution model constructed by XaMEA needs expensive training costs. Because the XaMEA requires training 
multiple neural networks to construct the substitution model. Surprisingly, the proposed XaMEA attacks do not require much effort 
from an adversary. The reason is that the adversary training transferred model does not require too many epochs. As shown in Fig. 6, 
the abscissa represents the number of epochs of training the transferred model, and the ordinate represents the attack accuracy of 
the substitution model. With the increase of epochs, the changes of different measurement curves are basically consistent, i.e., as 
epochs increase, the attack accuracy of the three XaMEA attack methods is almost unchanged. We prove through experiments that 
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the transferred model can maintain high performance without a large number of training epochs.
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Fig. 6. Parameter setting according to attack accuracy.

5.2. Effectiveness of XAI-aware attacks

For different model explanation methods, the performance trend of XaMEA attacks is basically consistent (see Fig. 7). The attack 
performance of attack methods is improved in the order: Baseline < SET < DET < LET. For MNIST and Fashion-MNIST datasets, the 
attack accuracy of LET is 0.85%-1.4% and 1.1%-2.32% higher than the Baseline. What is more impressive is that for CIFAR-10 and 
CIFAR-100 datasets, the attack accuracy of LET is improved by 6.25%-13.6%, and 7.97%-9.47%, respectively, compared with the 
Baseline. DET’s attack accuracy is 0.91%-1.05%, 0.42%-0.9%, 3.9%-6.85%, and 5.81%-7.62% higher than the Baseline in each of the 
four datasets. Moreover, the attack accuracy of SET is 0.45%-0.62%, 0.24%-1.31%, 2.23%-3.01%, and 4.17%-5.17% higher than the 
Baseline in the four datasets.

On the other hand, we find that the attack performance of PRADA is the lowest, even weaker than the Baseline we designed. We 
analyze the reasons for this phenomenon: PRADA utilizes the Jacobian matrix to synthesize sample training substitution model, which 
requires expensive query and the attack dataset with large initial cardinality. To ensure the fairness of the experiment, PRADA still 
limits the number of queries to 8,000, and the number of the initial attack dataset is also 8,000. The Baseline and the state-of-the-art 
model extraction attack technology perform poor than XaMEA because they capture the least attack information.

Furthermore, we separately compare the work of Milli et al. [17] with XaMEA. The work of Milli et al. has the same goals as 
XaMEA, i.e., using explanations to perform model extraction attacks. For GRAD and Grad-CAM explanation techniques, the attack 
accuracy of Milli et al. is higher than the optimal LET in XaMEA. However, for MASK and LIME explanation techniques, the attack 
accuracy of Milli et al. is very poor. The reason for this phenomenon is that MASK and LIME are explanation techniques based on 
perturbation strategy, so the explanation is not unique. Note that the work of Milli et al. can only achieve the desired attack effect 
when the adversary knows the explanation technique used by the target model. It is also demonstrated that the model explanation 
can make the model extract attack have higher fidelity, thus verifying that explanations leak privacy.

5.3. Attacking target models with different XAI types

The purpose of this subsection is to assess the degree of privacy risk of four different XAI types. The experimental statistics are 
shown in Fig. 8. Regardless of XaMEA attack methods, MNIST and Fashion-MNIST datasets have a relatively small gap in the attack 
accuracy of the four different model explanation technologies. We focus on the analysis of the CIFAR-10 dataset as an example. 
We first analyze the impact of DET on the four model explanation technologies, and Grad-CAM has the highest attack accuracy. 
Subsequently, we turn our attention to the performance of LET on different XAI types, Grad-CAM’s attack accuracy is always optimal. 
For the SET attack method, its most prominent attack accuracy is LIME. Although LIME has the highest attack accuracy, the difference 
between Grad-CAM and LIME is tiny. Similarly, for the work of Milli et al. [17], the same conclusion is reached, and Grad-CAM has 
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the greatest attack accuracy. In particular, it is emphasized that the work of Milli et al. has certain limitations and requires the 
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Fig. 7. Comparison of attack accuracy between XaMEA and other prediction-only technologies.

Fig. 8. Comparison of attack accuracy of different XAI types.

adversary to know more knowledge, i.e., the explanation technology adopted by the target model. Through the above analysis, we 
conclude that Grad-CAM is the winner, which means Grad-CAM has the greatest risk of privacy leakage.

5.4. Attacking target models with different complex tasks

We reanalyze the attack performance of XaMEA from the perspective of target models’ task complexity (see Fig. 7). According to 
the complexity of tasks, we can conclude that different attack methods have similar statistical results, i.e., the attack performance 
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of simple tasks is much higher than that of complex tasks. Under the GRAD explanation technology, LET obtains 99.2%, 90.45%, 
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Fig. 9. Comparison of attack accuracy of XaMEA attack methods against Grad-CAM explanation technology under different attack datasets.

72.5%, and 71.3% attack accuracy respectively in MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100 datasets. Moreover, the more 
complex the task, the more obvious the improvement effect of XaMEA. We compare the optimal LET in XaMEA with Grad-CAM. 
Statistically, we can find that their attack performance gap on the four datasets (i.e., from simple to complex) is 1.0%, 2.1%, 7.6%, 
and 8.37%. From the analysis of the above results, we can conclude that when the target model deals with more complex tasks, our 
proposed XaMEA has greater superiority, especially LET.

5.5. Attacking target models with different datasets

We evaluate whether the more the intersection of the attack dataset and the target model training dataset can improve the model 
extraction performance. As expected, the more knowledge the adversary has, the greater the privacy risk. The performance of attack 
methods is improved successively: Unintersection < Subset < Fullset (see Fig. 9). Subset means that the attack dataset is a subset of 
the target model training set. Fullset means that the attack dataset is the same as the target model training set. Unintersection means 
that the attack dataset does not intersect with the target model training set, and is only in the same distribution as the target model 
training set.

One interesting finding is that Baseline-Subset is slightly better than XaMEA attack methods (DET-Unintersection,
LET-Unintersection and SET-Unintersection) under certain conditions. For example, the performance difference between
LET-Unintersection and Baseline-Subset on MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets is 0.01%, 1.95%, 2.65%, 
and 0.3% respectively. Therefore, XaMEA can make up for the decline in attack accuracy caused by the lack of adversary knowledge. 
The other finding is quite remarkable given that XaMEA attack methods have better universality. For the CIFAR-10 dataset, 
the gap between Baseline-Unintersection and Baseline-Subset is 10.25%. However, for XaMEA attack methods, the gap between 
Unintersection and Subset is 3.45%-4.87%. We speculate that the reason for this phenomenon is that XaMEA attack methods are less 
sensitive to whether the attack dataset is the training samples of the target model.

5.6. Attacking target models with different budgets

We evaluate the attack accuracy of XaMEA versus Baseline under different query budgets (see Fig. 10). With the increase of query 
images, no matter what kind of attack method, its attack accuracy is constantly improving, especially for CIFAR-10 and CIFAR-100 
datasets. Note that the image we queried is randomly sampled from the attack dataset and does not employ any outstanding sample 
selection algorithms. For the CIFAR-10 dataset, when the attack accuracy of the Baseline is 66.1%, the adversary is required to query 
8,000 images from the target model. However, for XaMEA attack methods, to achieve the attack accuracy around of 66%, DET, LET 
and SET require the adversary to query 6,000 images from the target model. In addition, when the attack accuracy of the adversary 
reaches 63.33%, the difference between the query images of the Baseline and XaMEA is 1,000, which is under the CIFAR-100 dataset. 
Through the experimental analysis of Fig. 10, as we speculate, XaMEA obtains richer knowledge from explanations, so it saves the 
adversary’s budgets.

5.7. Evaluation of XAI-aware attacks against defense target models

As reported in Table 2, the explanation preprocessed by the defender has no effect on XaMEA. For different datasets, the attack 
accuracy of XaMEA fluctuates slightly under clean explanations and perturbed explanations. For example, under the CIFAR-10 
dataset, the difference in attack performance of LET against the defense and non-defense target models is 0.35%-0.45%. Under the 
CIFAR-100 dataset, the attack performance gap between the defense and non-defense target models of LET is 0.05%-0.1%. For other 
XAI techniques (i.e., GRAD, MASK, and LIME), their behavior is analogous to Grad-CAM. Therefore, a simple defense cannot prevent 
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XaMEA attacks. We need to explore new technology to mitigate privacy leakage caused by explanations.
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Fig. 10. Impact of query budget on attack accuracy. Grad-CAM as an example.

Table 2

Comparison of attack accuracy between defense and non-defense target models. Grad-CAM as an 
example.

Dataset Method DET 𝐷𝐸𝑇𝑑 LET 𝐿𝐸𝑇𝑑 SET 𝑆𝐸𝑇𝑑

MNIST FGSM 99.15% 99% 99.1% 99.15% 98.55% 98.44%
AutoPGD 99.1% 99.05% 98.65%

FMNIST FGSM 90% 89.55% 91.5% 91.45% 90.7% 90.6%
AutoPGD 89.3% 90.95% 90.45%

CIFAR-10 FGSM 72.95% 72.2% 73.7% 74.05% 68.5% 68.47%
AutoPGD 72.3% 73.25% 68.5%

CIFAR-100 FGSM 70.95% 69.95% 71.7% 71.65% 68.1% 68.05%
AutoPGD 70.45% 71.8% 68.01%

Discussion: We compared the attack accuracy of XaMEA and other state-of-the-art model extraction attack technologies [16,17]
in different dimensions. We come to the following conclusion.

(1) Even though XaMEA requires the construction of multiple transferred models, it does not affect the attack efficiency of XaMEA 
(see Section 5.1). Because the transferred model does not require too many epochs, which can still keep the attack accuracy of the 
substitution model at a high level (see Fig. 6).

(2) XaMEA performs better than popular model extraction attack technologies (see Section 5.2). In particular, the LET method 
of XaMEA has 3.75%-4.15%, 30.28%-31.33%, 24.8%-25.65%, and 35.37%-36.87% higher attack accuracy than PRADA [16] on four 
datasets (i.e., MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100). Furthermore, compared with the work of Milli et al. [17], it is 
slightly better than LET only if the adversary knows the XAI technique employed by the target model and the XAI technique is stable 
for each image. Otherwise, the proposed schemes by us are superior to Milli et al. (see Fig. 7).

(3) The technology with better explanations faces more privacy risks (see Section 5.3). By analyzing different XAI technologies, 
we conclude that Grad-CAM [24] may reveal more privacy (see Fig. 8).

(4) The more complex the task of the target model, the more prominent the superiority of XaMEA (see Section 5.4). Specifically, 
for the MNIST dataset, XaMEA only improves the attack accuracy by 0.5%-1.4% on the basis of the Baseline, while for the CIFAR-100 
dataset, XaMEA improves by 4.17%-9.47% (see Fig. 7).

(5) XaMEA is insensitive to the knowledge of target model training dataset, compared with other model extraction attack 
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technologies, i.e., the Baseline (see Section 5.5). The difference in attack accuracy between Baseline-Unintersection and 
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Fig. 11. Comparison of attack accuracy of XaMEA attack methods under model-agnostic XAI technologies.

Baseline-Subset is 0.15%-10.25%. However, the gap in attack accuracy between LET-Unintersection and LET-Subset is only 
0.25%-3.64% (see Fig. 9).

(6) XaMEA requires far fewer queries than the Baseline, under the condition of achieving the analogous attack accuracy (see 
Section 5.6). Because explanations contain much more information than the predicted labels. XaMEA has 2,000 fewer queries than 
the Baseline when the attack accuracy reaches about 66% on the CIFAR-10 dataset (see Fig. 10).

(7) Even if the target model is defended before releasing explanations, the attack performance of XaMEA is still not affected (see 
Section 5.7). Whether the explanations of the target model are perturbed by FGSM or AutoPGD, there is little change in the attack 
accuracy of XaMEA (see Table 2).

6. Non-explanation target models

We consider that not all target models provide explanations to users. To extend XaMEA to general scenarios, the non-explanation 
target model also falls into the scope of our attack. We assume that the adversary obtains the explanations by leveraging 
model-agnostic XAI technologies. In this scenario, the adversary also has black-box access to the target model. The adversary acquires 
confidence scores through the target model query. We evaluate the attack accuracy and make statistics on the query of target models. 
Furthermore, we set the target model into two types, defense and non-defense. For the defense target model, the confidence score 
provided to the user is perturbed without affecting the prediction. However, the other directly offers the clean confidence score. Note 
that we leave aside the target model of stopping the service due to abnormal user behavior.

6.1. Effectiveness of XAI-aware attack on non-explanation target models

We apply two model-agnostic XAI techniques, MASK and LIME, to evaluate. As reported in Fig. 11, we compare the attack 
performance of XaMEA attack methods using the same model-agnostic XAI techniques between adversary and target models. In 
Fig. 11, the Non-suffix is the attack performed by the adversary against the non-explanation target model. On the contrary, it is the 
attack on the explanation target model. Both MASK and LIME techniques require multiple queries to obtain the explanation for a 
given sample. Because they observe the changes predicted by the target model via perturbing the image, they derive the important 
features of the model decision. Considering that the adversary’s goal is to achieve a model extraction attack with the least budget. 
Therefore, for the non-explanation target model, the adversary only performs 10 queries on the target model to obtain the explanation 
of the specified sample. Since the total number of samples in the attack dataset for training the substitution model is 8,000, the total 
number of queries made by the adversary is 80,000. However, for the explanation target model, it carries out 100 queries for each 
sample to provide the explanation.

Experiments on multiple datasets show that XaMEA can be extended to general attack scenarios, i.e., even for non-explanation 
target models. Especially for the LET method, the gaps between LET and LET-Non on the CIFAR-10 dataset are 1.0% (see Fig. 11(a)) 
and 1.25% (see Fig. 11(b)), respectively. The difference in attack accuracy between DET and DET-Non on the Fashion-MNIST dataset 
is 0.55% (see Fig. 11(a)). The attack accuracy gap between SET and SET-Non on the MNIST dataset is 0.03% (see Fig. 11(b)). Through 
the comprehensive analysis of these experiments, we can conclude that regardless of whether the target model provides explanations, 
there is still a risk of more privacy leakage due to model-agnostic explanation technologies.

6.2. Query efficiency analysis of XAI-aware attacks

We test the query efficiency of XaMEA using the MASK technology, and the results are given in Table 3. XaMEA attack methods 
have achieved impressive performance over the different number of individual sample queries. For the MNIST dataset, the largest 
attack accuracy gap of XaMEA is 0.9%. For the Fashion-MNIST dataset, the maximum attack accuracy differences of DET, LET, and 
SET are 1.0%, 1.55%, and 0.5%, respectively. Similarly, we analyze the attack performance of XaMEA on the CIFAR-10 dataset, 
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0.95%, 2.35%, and 1.63% are the largest gaps among DET, LET, and SET. It also has a question that deserved serious consideration, 
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Fig. 12. The explanation data points, which are obtained by different individual sample query times, are projected into a 2D space using principal component analysis 
(PCA). The MNIST dataset is an example.

Table 3

The impact of the number of queries on the attack accuracy (%) of XaMEA leverages MASK technology.

Dataset Method The number of individual sample queries

10 20 30 40 50 60 70 80 90 100

MNIST DET 99.15 98.85 99.05 98.90 99.15 99.00 98.85 98.85 98.80 99.05
LET 99.10 99.20 99.15 99.40 99.20 99.15 99.25 99.35 99.15 99.25
SET 98.70 98.50 98.60 98.80 98.50 98.70 98.60 98.55 98.85 98.60

FMNIST DET 90.55 89.55 90.20 90.15 90.30 90.50 90.45 90.35 90.25 90.00
LET 91.15 91.30 91.95 90.70 91.45 91.45 90.55 90.55 90.40 90.55
SET 90.10 89.70 90.15 90.00 89.85 89.55 90.30 89.90 90.10 90.05

CIFAR-10 DET 71.65 71.85 71.65 71.10 71.05 71.50 71.10 70.90 71.40 71.45
LET 71.35 72.40 72.55 72.65 73.55 73.70 73.40 73.55 73.25 72.35
SET 69.15 69.75 69.45 70.01 70.45 70.15 69.95 70.25 70.15 68.82

CIFAR-100 DET 69.65 68.85 70.65 69.10 69.05 70.05 69.05 70.90 69.40 69.14
LET 71.35 71.40 71.45 71.65 71.80 71.95 71.75 71.80 71.25 71.95
SET 69.15 68.45 68.65 68.01 68.45 68.15 69.05 68.25 68.15 68.00

i.e., attacks with fewer queries compare well to attacks with more queries. In particular, in the LET method under the CIFAR-10 
dataset, the reduced number of queries does not significantly degrade the quality of the substitution model, but sometimes improves 
it.

To this end, we leverage principal component analysis (PCA) to map the explanation obtained under different individual sample 
queries to a 2D space. For the MASK technology, even under different individual sample query times, the distribution of explanations 
is consistent (see Fig. 12(a) and Fig. 12(b)). Similarly, the LIME technology is the same statistical result (see Fig. 12(c) and Fig. 12(d)). 
In Fig. 12, the suffix 10 indicates that the number of individual sample queries is 10, otherwise, it is 100. This further sheds light 
on the severe privacy risks caused by XAI-aware model extraction attacks against ML models, i.e., excellent attack accuracy can be 
achieved without expensive query budgets.

6.3. Evaluation of XAI-aware attacks against defense non-explanation target models

In our experimental evaluation, we focus on evaluating XaMEA attacks against the defense target model performed using the 
LIME technology. The posterior probability perturbation strategy we designed is to add noise to the posterior without changing the 
final prediction [29]. The statistical results are shown in Table 4. We find that no matter what XaMEA attack methods or datasets, 
the XaMEA we proposed has excellent attack accuracy for both defense and non-defense target models. We analyze the causes of 
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this phenomenon. Therefore, we map the explanation obtained from the defense and non-defense target models to 2D space, using 
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Table 4

Comparison of attack accuracy between defense and 
non-defense target models for non-explanation target 
models.

Dataset Method Non-defense Defense

MNIST DET 99.05% 98.95%
LET 99.25% 99.20%
SET 98.60% 98.70%

FMNIST DET 90.00% 90.15%
LET 90.55% 91.05%
SET 90.05% 89.65%

CIFAR-10 DET 71.45% 71.60%
LET 72.35% 70.65%
SET 68.82% 68.75%

CIFAR-100 DET 69.14% 69.25%
LET 71.95% 71.75%
SET 68.00% 68.25%

Fig. 13. The explanation data points, which are obtained by the defense and non-defense target models, are projected into a 2D space using principal component 
analysis (PCA). The MNIST dataset is an example.

the same technology as Fig. 13. Thus, it can be concluded that even if the defense target model adds perturbation to the posterior 
probability, it has no great influence on the explanation derived from the model-agnostic XAI technology.

Discussion:

(1) Even if the target model does not provide explanation services, it still faces privacy risks caused by explanations (see 
Section 6.1). The adversary can obtain explanations through model-agnostic explanation technologies, and the attack accuracy is 
equivalent to that of the target model with explanation services.

(2) The attack accuracy of the substitution model does not increase the expensive query budget (see Section 6.2). The adversary 
only needs to query the target model 10 times to obtain an explanation of the specified image.

(3) The target model perturbs the confidence score provided to the user, and still can not prevent the adversary’s XAI-aware 
model extraction attacks (see Section 6.3).

7. Related work

Our work lies in the intersection of two research fields: model explanation and model extraction attack. In this section, we give 
an overview separately and present the nascent work that intersects the two.

7.1. Model extraction attacks

Model extraction attacks emerge when an adversary attempts to duplicate model 𝑓 by querying the target model 𝑓 . In general, 
there are three types of attacks for model extraction based on the adversary’s objective: accuracy extraction, fidelity extraction, and 
functionally equivalent extraction [30]. The accuracy extraction refers to the substitution model that matches or exceeds the task 
accuracy of the target model. Tramèr et al. took the lead in researching accuracy extraction [31]. Since then, Orekondy et al. [32]
proposed to extract the target model by reinforcement learning. It achieves the task accuracy of the substitution model beyond the 
target model. Chandrasekaran et al. [33] proposed to explore active learning to achieve model extraction. It reduces the number of 
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queries with the target model and improves attack efficiency.
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However, fidelity extraction requires the performance of the substitution model should not only approach the accuracy of the 
target model but also replicate the errors of the target model [34]. Mika et al. [16] proposed a model extraction method based on 
the Jacobian matrix, whose core is to extract the decision boundary of the target model. Subsequently, Zhou et al. [35] extended the 
work of Mika et al. [16] and proposed that the key to model decision boundary extraction is not only the generation of synthetic 
samples but also the selection of hyperparameters. To improve the fidelity of model extraction, Jagielski et al. [18] adopted a hybrid 
strategy. They theoretically derived the parameters of the first two hidden layers of the target model, and then used semi-supervised 
learning to train a complete substitution model.

The functional-equivalent extraction is the ultimate goal of fidelity extraction, and it is also the most difficult to realize [36]. 
Daniel et al. [37] proposed an efficient algorithm for reverse linear classifiers with continuous or Boolean features. Rolnick et al. 
[19] extracted the shallow ReLU neural network through theoretical analysis to restore the weight and structure. In addition, Batina 
et al. [38] and Duddu et al. [20] exploited the information leaked by the side channel.

Although all the above works have taken important steps towards model extraction attacks, their attack technologies are still 
limited in utilizing labels or confidence scores of the target model.

7.2. Model explanations

Although there are many model explanation technologies [21], we pay close attention to explanations of image-based neural 
networks. According to our knowledge of the model, it can be divided into two types: model-related and model-agnostic. 
Model-related techniques mean that they require knowledge of the model, such as parameters, structure, etc. Shrikumar et al. 
[39] proposed a decomposition method based on neural network predictions. It obtains important features through the contribution 
of all neurons by backpropagation. Simonyan et al. [22] proposed a gradient-based method (GRAD) to calculate the saliency map by 
backpropagation. Rebuffi et al. [40] conducted an in-depth analysis based on the backpropagation method and proposed NormGrad. 
It is a new saliency method based on the contribution of the convolution weight gradient space. Selvaraju et al. [24] proposed a 
technique called Grad-CAM, which uses the gradient information of the last convolutional layer to assign important values to each 
neuron.

However, model-agnostic techniques only need to know the prediction information output by the model. Zintgraf et al. [23]
proposed a strategy to analyze the prediction difference after each input patch was marginalized. The main idea of LIME [26] is to 
utilize interpretability models (e.g., linear models, decision trees) to locally approximate the prediction of the target black-box model 
(e.g., deep neural network). It detects the change in the output of the black-box model by slightly perturbing the input image. Then 
it trains an interpretability model at the point of interest based on this change. Fong et al. [25] proposed another strategy (MASK) to 
determine attribute mapping by inputting minimal noise perturbations and observing the change in model predictions.

In this paper, we assume that when a target model does not provide explanations, the adversary can obtain the explanations 
corresponding to the specific input of the target model through model-agnostic technologies. This verifies that even if the target 
model does not actively provide the explanations, it still increases privacy risks.

7.3. Privacy risk of model explanations

Privacy threats from model explanations were first revealed in the membership inference attack [41]. The following works 
[17] also proved that model explanations could reduce the number of queries to the target model. As for the adversarial attack 
technology, the generated adversarial example could not only mislead the target model but also deceived their coupled explanation 
models [42]. Similarly, the model inversion attack could improve the quality of reconstructed face images by exploiting explanations 
[43]. However, the existing attack works only exploit model explanations for the training set and rarely extend their scope to model 
extraction attacks. Hence, in this paper, we investigate how to exploit different explanation types to perform model extraction attacks.

8. Conclusion

In this work, we propose an XAI-aware model extraction attack method, called XaMEA, which has three pipelines called DET, LET, 
and SET. XaMEA leverages the knowledge of model explanations through the idea of transfer learning. We conduct a comprehensive 
and detailed evaluation, and XaMEA reveals the privacy risks faced by XAI. Furthermore, to extend XaMEA to more general scenarios, 
we analyze the non-explainable target models through sufficient experiments. Even against non-explanation target models, the attack 
performance is still comparable to explanation target models. For future work, we will extend the attack for different data types (e.g., 
text, video, and audio) and explore a defensive technology that can trade off the transparency and privacy of the model.
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