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Eurus: Towards an Efficient Searchable
Symmetric Encryption with Size Pattern

Protection
Zheli Liu, Yanyu Huang, Xiangfu Song, Bo Li, Jin Li, Yali Yuan, and Changyu Dong

Abstract—To achieve efficiently search and update on outsourced encrypted data, dynamic searchable symmetric encryption (DSSE)
was proposed by just leaking some well-defined leakages. Though small, many recent works show that an attacker can exploit these
leakages to undermine the security of existing DSSE schemes. In particular, an attacker can exploit even seemingly harmless size
pattern to perform severe attacks. Many exiting schemes resort to oblivious RAM (ORAM) to hide search/access pattern; however,
even such powerful cryptographic primitive cannot protect size pattern leakage. In this paper, we first show that size pattern can lead
to more information leakages, which is not well studied or protected by existing schemes. We then extend the existing privacy notion
for DSSE to capture the size pattern leakage, achieving a strong forward and backward privacy definition. Following the definition, we
propose a new DSSE scheme Eurus. Eurus can eliminate search/access pattern by relying on a multi-server ORAM scheme, meanwhile
reducing size pattern with reasonable efficiency. We show that Eurus can reduce leakage significantly with better efficiency, compared
with state-of-the-art leakage reduction schemes.

Index Terms—searchable encryption, size pattern, Oblivious RAM, leakage reduction
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1 INTRODUCTION

There is an increasing trend to host applications, such
as databases [1], e-mail, and file systems etc., in a third-
party cloud system. In those applications, keyword search
is a widely used functionality. Data encryption is used for
protecting privacy; however, once data is encrypted, how
to securely perform keyword search queries on encrypted
data becomes a practical challenge. Searchable symmetric
encryption (SSE) was introduced [2] as a cryptographic
primitive that allows a client to perform search queries over
encrypted data on untrusted servers. The dynamic version
of SSE (DSSE) [3] [4] further enables the client to perform
updates after the data outsourced to the servers.

Most DSSE schemes build an encrypted invert index
extracted from the outsourced data to speed up search
efficiency. When adding/deleting a file, the associated index
is updated as well to maintain correctness; meanwhile, some
privacy notation is achieved. In practice, an inverted index
in the form of a pair (key, value) is commonly used, where
key is a keyword, value is a list that contains the identifiers of
files that contain the keyword. When performing a keyword
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search, the server first performs a search operation on the
index and then returns the identifiers of the matching files
to the client. The client can fetch the files based on the search
result.

1.1 Leakages and Attacks of DSSE

To achieve acceptable efficiency, practical DSSEs trade the
security by leaking certain information. The leakages [5]
are normally modeled as access pattern, search pattern,
and size pattern. In particular, access pattern exposes that
where, when, and how often the encrypted indexes are accessed
during keyword search queries and entity update queries.
The search pattern refers to whether the client performs
search queries to the same keyword or not. The size pattern
can be leaked during keyword search queries and entity
update queries, including the number of the files in the
search result, the number of indexes in the added to or
deleted files, and so on.

Some works show that these standard SSE leakages can
cause severe attacks. Specifically, the leakage-abuse attacks
[6], [7], file-injection attack [8], and count attack [7] ex-
ploit access pattern leakage, search pattern leakage and
size pattern leakage, respectively. The attackers, knowing
some backward information of the underlying dataset, can
recover the query and even the encrypted data efficiently.
More recent attacks were proposed recently [9], [10], [11],
[12], those works either aim to improve keyword recovering
rate [10], [11], [12] or perform attack under restricted leakage
profiles [9], [11]. Although some SSE schemes [13] [14] [15]
[16] [17] [18] [19] have been proposed to prevent the infor-
mation leakage by achieving forward and backward privacy,
they can only break the linkability between search opera-
tions and update operations (i.e., search-update linkability).
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The forward privacy refers to the case that when a new file
is added, no keyword information of the newly added file
is leaked; backward privacy refers to the case that the deleted
file cannot be leaked in the keyword search queries after the
file has already been deleted.

While forward and backward privacy can efficiently
mitigate attacks that exploit update leakage, they are still
unable to resist those that use search/access/size pattern.
E.g., forward private SSE schemes can only resist the adap-
tive version of the file-injection attack. However, the non-
adaptive file-injection attack that exploits access pattern
still works on forward private SE (see [8] for more de-
tails). Towards attacks using size pattern, Cash et al. [7]
proposed Counter Attack. In particular, in Counter Attack,
the adversary is assumed to know some information of
the underlying dataset. The idea is that if the number of
the matched document is unique, then the adversary can
immediately identify which keyword is being queried by
the unique size; otherwise, any keyword with that size
pattern are candidates. Then the IKK Attack [6] is further
used to recover the query by access pattern, more concretely,
the search result overlaps between different queries. The
Counter Attack is more efficient and accurate than the IKK
Attack; it can recover almost all queries efficiently for Enron
dataset. The attack exploiting search pattern was firstly
studied by Liu et al. [20]. Recently, some attacks using search
pattern were proposed for range and k-NN query [11],
[12]. Those attacks aim to improve plaintext recovery rate
without pre-fixed query distribution. There are also recent
attacks that purely exploit size pattern leakage [21], [22],
[23], [24], [25]. In summary, forward and backward private
SSE schemes are still vulnerable to many leakage-abuse
attacks.

Some existing countermeasures. The first approach to re-
duce searchable encryption leakage is through advanced
cryptographic techniques, e.g., Oblivious RAM and Private
Information Retrieval (PIR). While using these techniques
in a black-box way can obtain higher security, the main con-
cern is efficiency. Hoang et al. [26], [27] proposed an oblivi-
ous searchable encryption scheme by leveraging write-only
ORAM and PIR to hide search/access pattern efficiently,
which requires a linear search complexity due to the use
of PIR.

Another approach for leakage-reduction is resorting to
trusted hardware, e.g., Intel SGX [28]. Schemes based on
trusted hardware can be very efficient, and many searchable
encryption schemes [29], [30], [31], [32], [33], [34] based on
trusted hardware were designed recently. However, there
are many challenges for such schemes as they may not resist
many side-channel attacks [35], [36], [37].

1.2 Ignored Size Pattern Leakage

Some SSE schemes [4] [17] [39] [40] are inspired from the
oblivious random access machine (ORAM) [4] [40] [41]
[42] [43] [44] to achieve high security goal by preventing
search/access pattern leakage, where the data block is de-
fined as the (key, value). However, existing ORAM-inspired
SSE schemes [39] [4] [31] [17] [45] did not protect size pattern
leakage, which means during search query, the result size of
search query is always leaked.

To better illustrate the dangers of size pattern leak-
age, apart from the search-update linkability, we define
two types of linkability as shown in Figure 1: (1) search-
search linkability to denote that keyword search queries for
the same keyword can be identified; and (2) update-update
linkability to denote that updates to the same file can be
identified.

search-search
linkability

update
deletion search search

time axis

update
addition

the size of added
(key,value) the same size of search resultthe size of added
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size pattern

the same keyword searchthe update operation to the same file
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Fig. 1: The ignored size pattern in general SSE scheme.

Search-search linkability. A SSE scheme with search-search
linkability means that the attacker can identify search
queries to the same keywords among massive queries. There
are several ways of leaking such linkability. For example, if
search tokens are linkable in some way, the server can match
queries easily, which is nowadays the main source of leak-
age of search pattern in most SSE schemes. Another possible
leaking approach is from memory accessing pattern, i.e., the
server can link queries together by observing whether they
touch the same memory during search queries. However,
things are more tricky since the linkability may also be
leaked from the size pattern of matching document result. In
particular, if the size pattern of a specific keyword is unique,
then the server can easily link queries by only observing
their size pattern; this is not an exaggeration – the attack
in [7] showed that the unique size pattern is exploited to
significantly improve attack efficiency, which turns out to
recover almost all queries for Enron dataset.
Update-update linkability. If storage locations of keywords
of a file are not protected, the linkability with the previ-
ous addition operation is easily leaked when it is deleted.
However, simply concealing the access pattern during the
update operation is not enough since the size pattern can
be leaked from the bandwidth cost of the update query. The
linkability refers to the leakage of which file is related to
which queries, for example, by observing the resulting lists
of multiple queries after a file is added or deleted.
Motivation. For a long time, the size pattern leakage is
deemed as harmless leakage. It is until the Counter At-
tack [7] that shows the size pattern can be further exploited
to improve the recovery rate of IKK attack [6]. However,
at that time, it was unknown if any attack that purely
uses size pattern exists. The situation has changed recently
as several new leakage-abuse attacks were proposed. In
particular, Blackstone et al. [21] proposed attacks that rely
on much weaker assumptions by only exploiting document
size information, which can be applied not only to SSE
with standard leakage but also to ORAM. Similarly, several
attacks [22], [23], [24], [25] to encrypted database that only
exploit size pattern leakage were also proposed. All these at-
tacks emphasize that even seemingly harmless size pattern
can be used to perform severe attacks.
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TABLE 1: Comparison with prior works. N : the number of keyword-file pairs in the database; K: the number of distinct keywords; F :
the number of files; nw : the size of the search result set for keyword w; aw : the number of entries historically inserted to the database matching
keyword w; dw : the number of deleted files matching w; nw=aw − dw ; (In practice, N > aw > (K,F ) > (nw, dw)) ×: break the linkability or seal
the pattern. X: allow the linkability or the pattern. FP: forward privacy; BP: backward privacy.

Scheme Computation Communication Access pattern Linkability
search update search-search search-update update-update

Traditional DSSE schemes
Σoøoς [13] O(aw) O(nw) X X X FP X
Fides [16] Õ(aw) Õ(aw) X X X FP&BP X
dual [38] O(aw) O(nw) X X X FP&BP X

ORAM-inspired DSSE schemes

SPS14 [4] O(min{ aw + log2N
nw log3N

}) O(nw + logN) × X X FP X

TWORAM [39] Õ(aw logN + log3N) Õ(nw logN + log3N) × × X FP X
S3ORAM [40] Õ(log2N) Õ(nw logN) × × X FP X

ORION [17] O(nw log2N) O(nw log2N) × × X FP&BP X
HORUS [17] O(nw log dw logN) O(nw log dw logN) × × X FP&BP X

Hoang et al. [26], [27] Õ(N) Õ(λ) × × × ODSE ×
This work

Eurus O(F 2 log2K) O(max{nw, F}+K)) × × × strong FP&BP ×

In conclusion, to prevent attacks that exploit SSE leak-
ages, we need to leverage techniques that can eliminate not
only search/access pattern but also the size pattern, which
then can break the linkability between queries. In this work,
we try to design an SSE scheme that achieves the goal with
reasonable computational and communication overhead.

1.3 Contributions

We focus on how to protect size pattern in DSSE scheme and
define a new security goal by extending the existing forward
and backward privacy notion, called strong FP&BP, to cap-
ture the size pattern hiding. The search-update linkability,
search-search linkability, and update-update linkability can
be broken under the design of DSSE scheme achieving strong
FP&BP.

We design the first DSSE scheme Eurus that can achieve
strong FP&BP with practical performance. We design Eurus
upon a multi-server ORAM scheme [40], but we adapt it for
our purpose. In Eurus, search/access pattern is eliminated
by ORAM simulation while the size pattern is reduced
by storage padding. Unlike prior schemes that use black-
box ORAM both for search and update, Eurus divides the
storage into two parts: one part for black-box ORAM and
another called update slots for data updating. Those up-
date slots significantly simplify update operation compared
with ORAM operation. Besides, oblivious data access is
also optimized in Eurus. A detailed comparison can be
found in Table 1, SPS14 [4] based on the layer ORAM
achieves forward and backward privacy. TWORAM [39]
based on the tree ORAM makes use of garbled circuits
to reduce the communication frequency but increase the
bandwidth cost; however, it cannot achieve backward pri-
vacy. The Σoøoς [13] and other schemes can achieve high
performance but cannot achieve strong FP&BP, compared
with our scheme. The experiment results show that, when
compared with ORAM-inspired SSE schemes, our scheme
is around 46% better for search query over Enron e-mail
dataset. Moreover, Eurus has a fast update operation due
to the use of update slots, which is 4.73× faster than general
ORAM-inspired schemes (see Section 7 for more details of
the experiments).

2 PRELIMINARIES

Let λ ∈ N denote the security parameter and negl(λ) denote
a negligible function in the security parameter. We assume
that all the algorithms take λ implicitly as input. Let {0, 1}l
be the set of all the l-length binary strings, and {0, 1}∗ be
the set of all the finite-length binary strings. Let |Y | denote
the cardinality of a finite set Y . Let y ← x denote the output
y of an algorithm x.

2.1 DSSE Framework
In typical DSSE schemes, keywords and files are related
by file/keyword pairs. A database can be denoted as
DB={(indi,Wi)}ni=1, where each indi ∈ {0, 1}l is a file
identifier, each Wi ⊆ {0, 1}∗ is a set of keywords matching
file indi and n is the number of files in DB. The set of all
keywords in DB is W =

⋃n
i=1Wi. The set of files containing

a keyword w is DB(w)= {indi |w ∈ Wi}. A dynamic
searchable symmetric encryption scheme is a tuple of three
polynomial-time protocols

∏
= {Setup, Search,Update}:

• (σ, EDB) ← Setup(λ, DB): It is a probabilistic algo-
rithm that takes as input the initial database DB,
where EDB is an encrypted database and σ is the
client state.

• ((σ′, DB(w)); EDB′) ← Search((σ,w); EDB): It is a
client-server protocol, where the client takes as input
the state σ and a keyword w, the server takes as
input the encrypted database EDB. After the protocol
execution, the client outputs an updated state σ′

and the set DB(w) of the files (identifiers) contain-
ing the keyword w. The server outputs an updated
encrypted database EDB′.

• (σ′, EDB′) ← Update((σ, op, ind); EDB): It is a client-
server protocol, where the client takes as input the
state σ and a file identifier ind, the server takes as
input the encrypted database EDB. As a result, the
server outputs an updated encrypted database EDB′.
If op is to add, the updated EDB′ includes the file
with identifier ind; If op is to delete, the EDB′ is
updated by excluding the file with the identifier ind.

Adaptive security. In general, we focus on semi-honest,
adaptive and probabilistic polynomial-time (PPT) adver-
saries for DSSE schemes. Adaptive means the adversary
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can perform queries adaptively, i.e., issuing queries after
observing the result of previous queries.

The adversary should learn nothing except for infor-
mation explicitly allowed to leak. This is captured by the
leakage function L = (LSetup,LSearch,LUpdate). The compo-
nents corresponds to Setup, Search, and Update operations,
respectively. An adversary A tries to distinguish a real-
world experiment SSEreal and an ideal-world experiment
SSEideal as follows:

• SSEreal: the SSE scheme is executed honestly. The
adversary observes the real transcript of all the oper-
ations, including Setup, Search, and Update.

• SSEideal: The adversary sees a simulated transcript in
place of the real transcript. The simulated transcript
is generated by the PPT algorithm S , known as a
simulator, that has access to the leakage function L.

Eventually, A outputs a bit 0 (i.e., SSEreal) or a bit 1 (i.e.,
SSEideal). The general security model captures the fact that
whenever the client triggers one of these operations, the ad-
versary learns no more than the output of the corresponding
leakage function.
Definition 1. [Adaptive security of DSSE scheme]: The DSSE

scheme Π with a collection of leakage functions L is L
-adaptively-secure, if for any PPT adversaryA, there exists
a simulator S such that the following equation holds:

|Pr[SSEreal
Π
A(λ) = 1]−Pr[SSEidealS,A,L(λ) = 1]| 6 negl(λ).

Here, the leakage function Lwill keep the query listQ of all
the keyword search and update queries as state :

• Search query. It is in the form of (i, w), where i is
the sequence number (an index starting at 0 and
increasing with every query), and w is the searched
keyword.

• Update query. It is in the form of (i, op, ind) for an
update query, where op is either add or delete and
ind is the identifier of the newly updated file. The
data block uploaded to the database is a pair (w, ind),
a keyword/identifier pair.

3 PRIVACY DEFINITION CAPTURE SIZE PATTERN

The allowed leakages in general DSSE schemes can be
defined according to the primary query types in the SSE
model [5] [13] [18], including the search query and update
query. Before presenting the definitions, we first define some
necessary notations.

Leakage functions. For the keyword search query, the
search pattern sp(w) is denoted as a function of keyword
w as follows:

sp(w) = {i : (i, w) ∈ Q}.

Thus, sp leaks which search queries match the same
keyword.

For the update query including the addition and deletion
operations, we use TimeDB(w) as described in [16] to denote
full list of all files that matches w, excluding the deleted
ones, together with the timestamp of when they were in-
serted in the database. Formally, TimeDB(w) is constructed
from the query list Q as TimeDB(w) = { (i, ind)|(i, add, (w,

ind)) ∈ Q and ∀ i′, (i′, del, (w, ind)) /∈ Q}, where add denotes
an addition operation, del means the deletion. The TimeDB
captures a strong notion of backward privacy revealing only
the time of file insertion currently containing the search
query for keyword w.

3.1 Prior definition of forward and backward privacy
Forward privacy. The original definition of forward pri-
vacy [13] means that when a new file is added, no keyword
information of the newly added file is leaked. The definition
is as follows:
Definition 2. [Forward privacy]: A L−adaptively-secure SSE

scheme is forward secure iff there exists a leakage func-
tion L′ such that its LUpdate can be written as:

LUpdate(op,W, ind) = L′(op, |W |, ind),

where op denotes the operation type, |W | denotes the
number of keywords for newly updated file, ind denotes
the identifier of newly updated file.

In summary, the update query cannot leak more than the
operation, the identifier and the number of keywords to the
newly added file.
Backward privacy. It means that deleted files cannot be
leaked in the keyword search queries, i.e., only the informa-
tion about the existing (not yet deleted) files can be leaked.
The highest-level backward privacy in [16] is defined as
follows:
Definition 3. [Backward privacy]: A L-adaptively-secure SSE

scheme is insertion revealing backward-private iff the
search and update leakage function LSearch, LUpdate can
be written as:

LUpdate(op,W, ind) = (op, ind),

LSearch(w) = (TimeDB(w), aw),

where aw is the number of entries historically inserted
to the database matching keyword w, and TimeDB(w)
reveals all search result, and the time point each of them
was inserted into the database.

What this highest-level backward privacy can achieve is
that if a file containing w has been deleted before issuing
a search query for w, the server should not learn that the
deleted file contains w from the subsequent search queries.

3.2 Strong forward and backward privacy
The current existing FP and BP schemes enhance the
standard SSE security by reducing the leakage from the
update. However, they still allow the search/access/size
pattern to be leaked during the search. Specifically, even
the highest-level backward privacy still allows TimeDB(w)
to be leaked, from which the adversary knows all related
search result and when each identifier was inserted into
the database, which means the adversary can still learn
access pattern (from the search result), size pattern (from
|TimeDB(w)|) and search pattern (from the overlap of the
search result). To counter leakage-abuse attacks, we need to
eliminate search, access, and result pattern. To this end, we
define strong forward and backward security (referred to as
strong FP & BP) as follows.
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Definition 4. [Strong FP&BP]: A L-adaptively-secure SSE
scheme is strong forward and backward secure iff LUpdate
and LSearch only leak the following leakage:

LUpdate(op, w, ind) = (⊥),

LSearch(w) = (F ).

In summary, L satisfies strong FB & BP if the following
conditions hold: (1) the update leaks nothing (2) the leakage
function for search only includes F – the maximal number
of matched files, i.e., F = maxw∈W |DB(w)|.
Comparison with prior definitions. Since we remove
search/access/size pattern from the leakage function, com-
pared with normal FB & BP, the privacy improvement of
strong FP&BP can be summarized as follows: (1) for a search
query, the search pattern, access pattern, and size pattern
all should be sealed; (2) for an update query, the identifier
should be hidden, the deletion and addition operations
should be indistinguishable; (3) the linkability among all
(search/update) queries should be broken. In our strong
FP&BP definition, only the maximal number of identifiers
matched with a keyword is leaked during the search. Con-
cealing these patterns and linkability from the adversary is
the key to resist existing leakage-abuse attacks.

Attentions on the leakage from file operations. In this
paper, we mainly focus on the security and leakage of
the index itself because this is the main source of leakage.
Protecting leakage on index-level suffices for applications
that only return the identifiers but not the actual files. For
applications that return actual files, we still need to handle
the leakage during file retrieval phrase to achieve stronger
FP and BP as a whole. In this case, all files should be
encrypted and accessed by ORAM. Note that ORAM can
only conceal search and access pattern, not the size pattern.
In order to hide size pattern during file retrieval phrase, the
client has to pad all files to the same length and perform
dummy read to make the total number of ORAM access to
be the same for different queries.

3.3 Oblivious RAM

The ORAM schemes [44] [46] [40] [41] [47] [48] aimed to
hide data access pattern. There are mainly two traditional
paradigms of ORAM structure: (1) layer-based ORAM [48]
and (2) tree-based ORAM [44]. The tree-based ORAM has
smaller communication and computation cost in shuffle op-
eration for write obliviousness than the layer-based ORAM
based on the research in [49]. We describe the basic oper-
ations in the tree-based ORAM [44] as follows, which is
presented in Figure 2.

Root

Leaf Leaf ......

tree-based	ORAM

Leaf Leaf

read from a tree path

write to the tree root data
evict from the parent

node to the child node

Fig. 2: The basic operations in the tree-based ORAM.

Data access. ORAM should hide whether an operation is
read or write when accessing data as well as the address
being accessed. One data access contains the following two
sub-operations:

• Oblivious read. Each data block is assigned to a path
in the tree. When the user wants to fetch a real data
block from the server, the client will download all
blocks of the associated path and find the correct
block.

• Oblivious write. After accessing the block of the
path, the block been read will be assigned to another
random leaf. Then the block is popped into the root
node obliviously from the client-side to the server;
meanwhile, all blocks in the path are re-encrypted.

Tree-path eviction. The data blocks should be shuffled to
avoid the overflow of node size along the tree path during
once eviction process. During a general tree-path eviction,
the data blocks matching the evicted tree path should be
evicted to the child node along the tree path.

Correctness. For any access sequence x, {ORAM1(x), · · · ,
ORAMq(x)} returns data consistent with x except with a
negligible probability, where q is the number of access times.

Security. The security definition of ORAM ensures that
the data access patterns from two sequences of read/write
operations with the same length must be indistinguishable.
However, the security of ORAM does not hide size informa-
tion. i.e., the server knows how many addresses are accessed
for a sequence of ORAM operations. The reason is that there
are still some patterns that can be observed to deduce the
size pattern. E.g., the communication per access is measur-
able and fixed, by the total communication consummation,
the adversary can easily deduce how many addresses are
accessed, and learn the size pattern information easily.

4 CHALLENGES AND CORE TECHNIQUES

Challenges. Current ORAM-inspired SSE schemes (such as
SPS14 [4], TWORAM [39], ORION [17]), and HORUS [17])
cannot achieve the goal of strong FP&BP. Specifically,
though existing ORAM-inspired schemes can provide cer-
tain privacy enhancement such as hiding search and access
pattern, they cannot hide size pattern naturally.

Another challenge is about efficiency. First, existing
ORAM-inspired SSE schemes leverage single-server ORAM
to achieve certain privacy goal, but even the most efficient
PATH-ORAM, the client still needs to pay O(logN) blocks
of communication overhead plus client-side computation
such as decryption and encryption. Second, the definition
of the data block of existing ORAM-inspired schemes also
make the efficiency worse; they cannot meet the strong
privacy goal here. Specifically, they usually define the data
block as a pair of (w, ind): (1) the position of each data block
will be changed with the oblivious read and oblivious write
operations of ORAM, making the inverted index difficult
to be built effectively and resulting in inefficient search
operation; (2) when searching a keyword, file identifiers
associated with this keyword are stored in several differ-
ent data blocks, which will be obtained through multiple
oblivious read operations from the server, and the number
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of interactions will leak the size pattern; (3) when updating
a file, each keyword it contains will be written to the server
as a data block, resulting in multiple interactions with the
server, and the number of interactions will also leak the size
pattern; (4) whatever updating a file or searching a keyword,
it is accompanied by a large number of dummy block read
and write operations, which incurs excessive computation
and communication burden.

In summary, due to existing security and efficiency is-
sues, designing SSE schemes with strong privacy definition,
meanwhile maintaining satisfying efficiency is still a chal-
lenge.

Overview of our technique. In order to eliminate leakage
of searchable encryption, the standard approach is to use
ORAM to hide search and access pattern, and the main
issue is efficiency. As we showed previously, using single-
server ORAM can render a considerable overhead. To re-
solve the issue, we use a multi-server based ORAM scheme,
i.e., S3ORAM [40], to reduce client-server communication,
which alleviates the burden of the client in the ORAM
protocol meanwhile concealing search/access pattern. We
also design a novel eviction protocol based on matrix per-
mutation and Shamir secret sharing; the eviction protocol
is more efficient than the one in S3ORAM. Besides, we
design data block by packing search result into one single
data block, which is much efficient than previous schemes
that define data block per keyword/identifier pair. We also
define update slots to improve efficiency during the update
further.

In the following, we introduce our techniques in more
details.

4.1 Data Block Definition

To hide the size pattern in the search operation, we should
make the search result to be the same length. For a keyword,
we define a data block to store its related file identifiers. As
shown in Fig 3, we define each element in a data block
as a special file identifier ind. There are at most C file
identifiers in a data block, where C is the maximum number
of files associated with a keyword. Generally speaking, with
a proper word segmentation algorithm, C is much smaller
than F , where F is the maximum number of files in the
databases.

ind ind ind ...... ind

Fig. 3: Data block definition.

4.2 Update Slots and SSE Operations

When the block is defined as above, the keyword search
operation will become very convenient, but the update op-
eration will still leak the size pattern. Because a file contains
multiple keywords, the update operation will modify each
data block corresponding to each keyword, that is, it must
inevitably interact with the server multiple times, and the

size pattern will still be leaked. How to protect the size
pattern in the update operation is still a challenge.

In order to hide the size pattern, when uploading a file,
we must unify the number of keywords it contained to a
pre-defined value M , where M ≥ K and K is the number
of all distinct keywords. A very intuitive way is to expand
the empty keywords to ensure that the total number of
keywords to be uploaded reaches M . However, it will bring
a lot of communication and computation overhead. Take a
tree-based ORAM with the capacity ofN as a black box, the
update operation will result in M oblivious data accesses,
and there will be at least M · logN · F communication
overhead. Obviously, this method is very inefficient.

Root

Leaf Leaf ......

......

Black-box	ORAM

Update	Slots

Leaf Leaf

ind ind dummy dummy

update step: put the data
block to the matched slots.

search step: search the matched
tree path and update slot.

Fig. 4: The server storage in Eurus.

Update slots. The update slots are prompted to solve the
problem of update efficiency. As shown in Figure 4, the
update slot is set for each path of the black-box ORAM, and
each path is corresponding to a keyword (real or dummy).
For each update slot, it stores file identifiers uploaded
during update operations.
Update operation. When adding a file (the identifier is ind),
a file identifier or a dummy value will be written into each
slot. If the keyword corresponding to the slot is included in
this file, the file identifier ind will be written; otherwise, a
dummy value (for example, defined as 0) will be written.
When a file is deleted, its inverse file identifier (negative
ind) or a dummy value will be uploaded. In this case, no
data access operation of ORAM is executed. Although all
update slots are involved, the communication bandwidth
is only related to the number of keywords K, because the
number of paths is set to c · K in the black-box ORAM,
where c is a constant value. Therefore, the efficiency has
been greatly improved.
Search operation. There are three steps to perform a key-
word search query. In the first step, the data block corre-
sponding to the keyword is read obliviously from the path
related to this keyword; in the second step, the file identi-
fiers stored in the corresponding update slot are retrieved;
in the third step, the client merges two parts of data, gets
the retrieved results, then randomly assigns a new path to
the merged data block and writes it back to the root node
obliviously.
Eviction operation. It is a necessary step for ORAM. It obliv-
iously moves the data block corresponding to the keyword

Authorized licensed use limited to: Newcastle University. Downloaded on December 23,2020 at 11:23:22 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3043754, IEEE
Transactions on Dependable and Secure Computing

7

written to the root node to a deeper position, ensuring that
the root node can write more new data blocks. In Section
5.3, We combine the multi-party computation protocols and
the matrix permutation technique to optimize the tree-path
eviction in the black-box ORAM.

5 EURUS: OUR CONCRETE CONSTRUCTION

In this section, we propose an efficient SSE scheme named
“Eurus” to achieve strong FP&BP. Considering the effi-
ciency, we select S3ORAM [40] as the underlying ORAM
scheme, which works in a multi-server computation setting.
We also further design an efficient eviction method to reduce
the number of data blocks along a tree path. The main
reason for using multiple servers is to improve efficiency
under the assumption that the adversary is hard to corrupt
servers from different service providers and different service
providers are unwilling/hard to conclude with each other
due to conflict of interest or existing privacy regulation.
Under the assumption, some SSE schemes [50] [26] in multi-
server setting was designed previously.

5.1 Storage Structure
Server storage. We take an S3ORAM tree structure I to store
data blocks that are defined in Section 4.1. The real data
block stores the file identifiers associated with a keyword,
and the dummy data block stores the encryption of zero.
All data blocks have the same length and contain no more
than F file identifiers. For each node in the tree, it contains
Z blocks, where Z is a constant value (usually 5). We set the
total number of leaf nodes in the tree as well as the update
slots to c ·K, where c is a constant value and c ≥ 2. Denote
U as update slots and Ui as the i-th update slot, where
i ≤ c ·K.

The S3ORAM [40] framework requires n (n ≥ 3) servers,
and each server has the same storage structure. We denote
Si as the i-th server. For a data block D, it will be divided
into n shares by Shamir secret sharing, and the share Di will
be stored on the server Si.
Client storage. We use a hash table T to store the keyword
information, and define T:=<key, value>, where key is a
keyword w and value is the pair containing ID of the path
l and the data block identifier ind, which can be retrieved
as value←T[key]. Meanwhile, we define T̃[l] to identify the
keyword w corresponding to the path l. We define an array
Y to record whether the tree path at the server side is
touched or not. In addition, the client uses a position map
to store the state of data blocks. It can be stored on the
server-side just like other ORAM schemes, and accessed in
a recursive manner. The client also needs to store the key
used for data encryption.

5.2 Building Blocks
Shamir secret sharing. The main idea of a (k, n)-Shamir
secret sharing [51] is to divide a secret data D to n pieces
(i.e., D1, · · · , Dn), which will be further stored on different
servers. To recover the secret data D, the client must collect
at least k+ 1 data pieces and compute the whole data value
by Lagrange interpolation, where k (k < n) can be called as
the privacy level. We assume that no more than k servers

can conclude in our scheme. We denote the sharing protocol
as Πsplit and the recover protocol as Πrecover.
Multi-party computation protocols. Based on Shair secret
sharing [51], we define two multi-party computation pro-
tocols. One is multi-party addition protocol Πadd, which
makes two secret data can be homomorphic-added. The
other is multi-party multiplication protocol Πmul making
two secret data can be homomorphic-multiplied, which can
be done by SMP protocol [52].
Definition 1. [Multi-party homomorphic protocol Πadd]:

There are two secret data D and D, where D(k)
i is the

Shamir share of D for Si and Di(k) is the Shamir share
of D for Si (1 ≤ i ≤ n), we have

Di
(k) +Di(k) = (D +D)

(k)
i .

Definition 2. [Multi-party multiplication protocol Πmul]:
There are two secret data D and D, where D(k)

i is the
Shamir share of D for Si and Di(k) is the Shamir share
of D for Si (1 ≤ i ≤ n), we have

Di
(k) · Di(k) = (D · D)

(2k)
i .

It can result in a share of D · D, which is shared by a
random polynomial with order 2k.
To reduce the value of polynomial, each party can per-
form the inner product between the received shares,
and then compute (Di · Di)(k) by the ? operator defined
in [40], that is (D · D)

(k)
i = Di

(k) ?Di(k), which achieves
degree reduction from 2k to k.

S3ORAM. In S3ORAM [40], data access is the same as the
tree-based ORAM described in Section 3.3, but implemented
by Shamir secret sharing [51] and multi-party computation
protocols [52] described above. According to its defini-
tion, S3ORAM.Setup() defines the initialization process, and
S3ORAM.retrieve(id) defines a data block oblivious read
process with its identifier id, which will be used in the rest
of the paper. We mainly review the eviction operation here.

The S3ORAM [40] performs the tree-path eviction ac-
cording to the reverse lexicographical order [43]. One tree-
path eviction contains O(logN ) triplet evictions and each
triplet eviction involves a parent bucket and two child
buckets, where N is the capacity of the ORAM. The parent
bucket is the source, the child bucket along the eviction
path is the destination. The data blocks corresponding to the
path in the source will be evicted to the target child bucket.
The other child bucket called sibling can be copied from
the source since non-leaf sibling buckets are guaranteed
to be empty by prior evictions except with a negligible
bucket overflow probability. This eviction method requires
that every bucket contains O(logN ) data blocks, and once
triple eviction needs to permute O(log2N ) data blocks,
resulting in total O(log3N ) computations. It is still a heavy
computation overhead for designing a new SSE scheme.

5.3 Efficient Eviction Operation Design
We try to optimize the eviction operation and prompt a
thin tree-path eviction that only needs to permute all blocks
on the path once. The core idea of this eviction operation
is to generate a sequence of permutations by querying the
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Fig. 5: ThinEvict over the whole eviction path. The original data blocks in the eviction path are organized as (A,B,⊥
, D,⊥, F ), the client shares an eviction matrix to the servers, the servers jointly perform block reorganization using a secret-
shared eviction matrix. In the end, the blocks are organized as (⊥,⊥, A,D,B, F ), shared among servers. Throughout the
whole process, servers cannot see the involved blocks or eviction matrix because the computation is run by secret-shared
secure computation.
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D
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⊥
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0 0 1 0
0 0 0 1
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⊥
F

× =
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D
⊥
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⊥
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Fig. 6: ThinEvict by a level-to-level eviction strategy. The original data blocks in the eviction path are organized as (A,B,⊥
, D,⊥, F ). The client shares two eviction matrix to the servers, the servers jointly perform block reorganization from the
root to the leaf. The servers first jointly permutation (A,B,⊥, D) to (⊥, B,A,D) using the first eviction matrix, and then
use the second matrix to organize (A,D,⊥, F ) to (A,D,⊥, F ). In the end, the blocks are organized as (⊥, B,A,D,⊥, F ).

state of the blocks on the path, and make all blocks belongs
to this path to be permuted to the deepest positions as
much as possible. The thin tree-path eviction adopts the
eviction strategy of prior tree-based ORAM [41], [44], but
we initiate it with matrix permutation algorithm to achieve
permutation obliviously for all block on the evicted path.
Therefore, the underlying eviction procedure can be initial-
ized with Path-ORAM or Circuit-ORAM eviction strategy1.
Specifically, the thin eviction strategy contains three phases:

• Initialization phase. We use P to denote the eviction
path and |P | to denote the size of eviction path.

• Matrix generation phase. We set all the evicted blocks
into one dimensional matrix as e = (id1, ..., id|P |).
Then, we generate an eviction matrix I , the size of
which is |P | × |P |, where I[i, j] ∈ {0, 1}. If the data
block at position i before tree path eviction wants to
be moved to the position j after eviction, we should
set I[i, j] ← 1. Otherwise, set I[i, j] ← 0. Notice
that the eviction matrix generation follows the “go-
furthest” rule, meaning that all the data blocks in the
evicted path should be evicted to the furthest bucket.

• Multiplication phase. The oblivious permutation can
be completed by the multiplication of the above data
matrix e and the eviction matrix I . The result is a
1-dimensional matrix containing the permuted data
blocks.

Thin tree-path eviction. The eviction still follows the
reverse lexicographical order [43] [42] and go-furthest

1. This means the previous analysis of ORAM characteristics in [41],
[44] can be applied to thin eviction without modification

rule [41]. The go-furthest means that every data block
matches a tree path, all the data blocks in the evicted path
are evicted to the furthest bucket, which is the overlap
of the matching tree path and the evicted tree path. Each
path eviction is achieved by the above matrix permutation
algorithm.

We give an example to illustrate its realization. Assume
that data blocks in the eviction path P are represented as
the 1-dimensional matrix (id1, id2, id3, ...), and we have the
eviction matrix I as follows,

I =


0 1 0 · · ·
1 0 0 · · ·
0 0 1 · · ·
...
0

...
0

...
0

. . .
· · ·

0
0
0
...
1

 .

Data blocks in the eviction path can be obliviously
permutated after multiplication with the eviction matrix as
follows:

I · (id1, id2, id3, ...)
T = (id2, id1, id3, ...)

T

We can see that in this eviction, the first two blocks of
data are swapped after multiplication operation. We give a
concrete example in Fig. 5 about how to organize the blocks
on the eviction path.

For the security, the matrixes e and I can be hidden their
information for the server-side by the multi-party protocol
defined in definition 2. Therefore, the malicious server can-
not track the block eviction, and the eviction operation can
be done obliviously. In Eurus, the capacity of a bucket is Z
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(usually 5) and only O(logN ) data blocks are permutated
during a path eviction. We define this eviction process as the
function ThinEvict and its algorithm is shown in Figure 7.

An alternative eviction strategy with O(logN ) commu-
nication. The idea of prior ThinEvict protocol is to per-
form permutation over all blocks on the evicted path, with
O(log2N ) communication cost and O(1) round complexity.
We can borrow the idea of Circuit-ORAM eviction strategy
to enable ThinEvict with O(logN ) communication com-
plexity but in O(logN ) rounds. By using the secret-shared
matrix permutation technique, the Circuit-ORAM eviction
can be performed by O(logN ) permutations, each is being
over 2Z + 1 elements (see [41] for more details), which re-
sults in an O(logN ) communication complexity. However,
these permutations must be performed one-by-one from the
root to the leaf, incurring O(logN ) round complexity. The
trade-off between communication and round complexity
provides certain flexibility, which trade-off is more preferred
depends on the network condition. E.g., eviction with less
round but higher communication complexity can be more
suitable when server-server network is in good condition.

We give the concrete example in Fig. 6 on how to
organize blocks by a level-to-level eviction strategy.

5.4 Concrete SSE Algorithms

As Figure 7 shows, the process of SSE basic operation
consists of setup, search, update, and thin tree-path eviction.

Setup. The client generates a secret key keyprf, initializes
the hash table T and the empty array Y, where Y records
whether a path is searched or not. The server initializes
the index tree I. All the data blocks in I are randomly
generated which can be used as dummy blocks in the future
and each data block can be split into n secret shares for
each server. For oblivious eviction, the server initializes the
eviction counter cnt and cnt′, the former is for normal
ORAM eviction, and the latter is for update slot eviction
described in Section 5.5.

Update. The update process is executed in the update slots.
As described in Section 4.2, when a file is added to the
server, its identifier ind is written to the corresponding
update slots while the dummy zeroed data is put into
the other update slots. When the file is deleted from the
server-side, the inverse of ind should be written. The entire
execution process is completed by secret sharing and secure
multi-party computation.

After successive update operations, the update slots may
be full and cannot store new file identifiers. Although search
operation will empty update slot, we consider the possibility
of continuous update operations. In this case, update slot
eviction is required to empty update slot. The real update
operation related to a keyword is executed at the client-side,
when file identifiers are downloaded to client during search
operation or update slot eviction.

Search. The search operation includes four steps: Step 1 is
retrieving the data block related to the keyword w through
the black-box ORAM’s oblivious read operation; step 2 is
reading all the updated file identifiers in the update slot and
empty this update slot; step 3 is merging the file identifiers
in the data block and update slots at the client side, and

step 4 is writing the merged data block back to servers
and executing thin tree-path eviction. The new merged data
block is matched to an unused tree path selected by a
Pseudo-Random Function F. The search tokens are the path
l, and the data block id related to the keyword w. By taking
(l, id) as input, the function TwoPartRetrieve(l, id) can be
done the search operation based on the black-box ORAM
and update slots. Finally, the client will set Y[l] = 1 to denote
the update slot has been emptied.

Although S3 ORAM [40] is used as the block-box ORAM
and the search operation can be directly completed through
its data access function, we have modified its eviction op-
eration for the consideration of efficiency. This is why our
pseudo code does not use S3ORAM’s access function but di-
vides it into S3ORAM.retrieve(id) and our defined function
ThinEvict. The single difference is that the S3ORAM [40]
should select a data block from all the nodes along the tree
path to execute the retrieve function; however, our scheme
needs all the data blocks in all the nodes along the tree path
to take part in the retrieve function. The computation cost
and bandwidth cost in our methods are O(log2K).

5.5 Additional Operations
Dynamically increase data block size. Because the size of
the data block is associated with the maximum number of
files associated with a keyword, considering efficiency, we
allow the SSE scheme to adjust the size of C dynamically.
Initially, a relatively small C can be set by the client. Once
the current value of C cannot meet the requirements, Eurus
can dynamically increase the value of C by padding secret
shares of zero to the data block to increase the block size.
This operation does not affect the eviction operation and is
easy to perform without revealing the size pattern.

Evict the blocks in the update slot. After several update
process, some update slots might be full. To avoid this, we
call function UpdateEvict() to evict file identifiers in update
slot to its data block, we call this as “update slot eviction”. It
works like the normal ORAM eviction. For the consideration
of security, merging file identifiers into its related data block
should be finished at the client-side. Therefore, we achieve
this goal by executing fake keyword search and the fake
keyword, which is selected by the reverse lexicographical
order same as the normal ORAM eviction strategy. If the
update slot has been touched by a search query, the chosen
eviction for it will be terminated. Therefore, update eviction
operation will not be happened frequently when search
often executes.

6 ANALYSIS

6.1 Capacity Analysis
We can draw the conclusion that the size of server-side
is controllable and acceptable, by the design of black-box
ORAM and update slots. The quantity of update slots is
c·K, where c is a constant value. The capacity of each update
slot is dependent on the frequency of update queries, search
queries, and UpdateEvict function. Each update slot stores
the updated file identifier ind, which can be controlled to
a small capacity by downloading the ind to the client and
then uploading it to the black-box ORAM during a keyword
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Setup(λ,⊥) :
Client:
1: keyprf ← {0, 1}λ
2: T← empty hash table
3: Y← empty array, //record whether the path is searched or not.
4: {Ii}ni=1 ← S3ORAM.Setup()
5: Send Ii to the server Si
Server {Si}ni=1 :

6: I← Ii, cnt, cnt′ ← 0 //cnt,cnt′ is a global counter.
Update(σ, op, ind) :
Client:
1: For each keyword w ∈ file ind do
2: If T [w] is null then
3: T [w].l← a random unused path
4: T [w].id← new data block identifier
5: B ← empty array
6: If op is delete then
7: For i = 0 to c ·K do
8: B[i]← −ind
9: else
10: For i = 0 to c ·K do
11: B[i]← 0, w ← T̃[i]
12: If w is in file ind then B[i]← ind
13: {Bi}ni=1 ← Πsplit(B)
14: Send Bi to the server Si
15: Execute UpdateEvict.
Server {Si}ni=1 :

16: B∗ ← Bi // the received array
17: For j = 0 to c ·K do
18: Add B∗[j] to update slot Uj

UpdateEvict():
Client:
1: cnt′ ← cnt′ + 1 mod(c ·K) //add 1 to the global counter.
2: i← cnt′, w ← T̃[i], (l, id)← T[w]
3: If Y[i] == 0 then TwoPartRetrieve(l, id)
4: If cnt′ == 0 then Y← empty array

//all tree paths are touched more than once, initialize the K.

Search(w):
Client:
1: (l, id)← T[w] //Get the path and the data block id
2: Y[l] = 1 //record the path l has been touched
3: Execute TwoPartRetrieve(l, id)

TwoPartRetrieve(l, id):
Server {Si}ni=1 :

1: Bi ← Ul //collet file identifers in update slot, clear Ul.
2: Send Bi to the client
Client:
3: D ← S3ORAM.Retrieve(id)
4: //all the data blocks in the l needs to retireve.
5: B ← Πrecover({Bi}ni=1)
6: D∗ ←Merge(D,B)
7: // Merge file identifiers in array B into block D
8: T[w].l← a new unused path chosen by the function F.
9: Write D∗ to the root of black-box ORAM obliviously.
10: Execute the ThinEvict.

ThinEvict():
Client:
1: cnt← cnt+ 1 mod(c ·K) //add 1 to the global counter.
2: l← cnt
3: |P | ← the number of blocks stored along the path Pl.
4: I ← zeroed |P | × |P | eviction matrix.
5: e← (id1, · · · , id|P |) //the evicted data blocks along Pl.
6: For t = 1 to |P |, do
7: k ← gofurthest[idt];
8: I[t, k] = 1.
9: //gofurthest makes blocks evicted to the k-th location in e.
10: {Ii}ni=1 ← Πsplit(I)
11: Send Ii to the server Si
Server {Si}ni=1 :

12: ei ← the secret share of e in server Si
13: ei

∗ ← Πmul(ei, Ii) //multiplication protocol

Fig. 7: The algorithms of Eurus scheme.

search process. The UpdateEvict can be done after every
update process. The maximum capacity of the update slot is
no more than c ·K data blocks.

The black-box ORAM adopts the algorithm of go-
furthest tree-path eviction in Circuit ORAM [41] but added
into the multi-server environment to improve its communi-
cation and computation overhead. The Circuit ORAM [41]
has been proved that the capacity for a node in the binary
tree can be set to 5. The node size in the black-box ORAM
can be controlled to a constant value of Z , which can be
proved in Theorem 1, which refers to [41].

Lemma 1. Let R denote the number of blocks overflowing
from the binary ORAM tree. Let uT (black-boxORAM[s])
denote the number of blocks contained in the nodes of
the subtree T after the eviction sequence s. The T is a
subtree with n = n(T ) nodes containing the root of the
binary ORAM tree. Then, for Z > 5, for any R > 0,

Pr[uT (black-boxORAM[s]) > n·Z+R] ≤ 3 · (0.93312)n

4n
·(0.6)−R.

Theorem 1. Let st(black-boxORAMZ [s]) be a random variable
denoting the cache size after eviction sequence s for the
Eurus with the node size Z > 5. Then, we have,

Pr[st(black-boxORAMZ [s]) > R] ≤ 42 · 0.6R,

where the probability is taken over the algorithm’s
randomness.

Proof 1. Based on Lemma 1 and the inequality as fol-
lows, Pr[st(black-boxORAMZ [s]) > R] ≤

∑
n≥1 4

n max
T :n(T )=n

Pr[uT (black-box ORAM[s]) > nZ + R]. We can get the
result:

Pr[st(black-boxORAMZ [s]) > R] ≤ 42 · 0.6R.

Therefore, Z is up to 5 is enough to complete the opera-
tions in black-box ORAM.

6.2 Security Analysis
The security can be proved by the form like in TWORAM
[39]. All the operation security analysis is based on the
black-box ORAM and the update slots.
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Theorem 2. The black-box ORAM is correct. For any query
sequence x, {ORAM1(x), · · · , ORAMq(x)} returns data
consistent with x except with the division of data re-
trieve, write, and eviction, where q is the number of
queries to the ORAM.

Proof 2 Let ORAMi(x) be the Eurus client’s sequence of
interactions with server Si including a sequence of search,
update, and eviction operations to the black-box ORAM.
Due to the independence and different execution process
among the above operations, we can considerORAMi(x) to
contain the separate sequences of these operations observed
by Si as follows.

Search transcripts: For each keyword search request
yi ∈ x, Si observes that once a data block in the black-
box ORAM or the update slots is accessed, its position
is assigned to a new bucket leaf or a new update slot
selected which looks random. The retrieval process referred
to S3ORAM has been proved secure by using PIR technique.
The corresponding retrieval transcripts in the black-box
ORAM are information-theoretically indistinguishable from
a random sequence.

Update transcripts: For each update request zi ∈ x, Si
observes that all the update slots have been padded with a
real file identifier or a dummy data block. The position of
the real data block has been hidden simply. All the update
processes can look the same for the adversary.

The UpdateEvict is done by a constant selection rule.
The main process is to search a keyword, which is proved
previously. The UpdateEvict can make the update slot have
enough capacity to support the frequent update operations.
The frequency of the same update slot search queries during
the keyword search query can leak no information for that
the search position in the update slots looks random for the
adversary.

ThinEvict transcripts: The ThinEvict consists of several
multi-party multiplications between the data blocks and
the eviction matrixes. Let m = {

∏
mul1

, ...,
∏

mull
}, k =

{
∏

mul1′
, ...,

∏
mull′
}, Q ⊆ {1, ..., l}. The eviction transcripts

{Ei∈Q(m)} and {Ei∈Q (k)} observed by the honest but
curious servers are computationally indistinguishable. The
data generated in independent evictions through m and
k are identically distributed. Since the eviction process is
deterministic by the design of eviction matrix I . The client
is trusted and products the eviction matrix I .

For each eviction, the matrix should be split to n shares
for n servers. They are uniformly distributed. All the servers
cannot be corrupted. Therefore, all the servers cannot know
the whole information from the eviction matrix I . Therefore,
the result from the multiplication protocol is hidden by
the MPC protocol. Therefore, the eviction can be achieved
obliviously.
Theorem 1. The Eurus is strong forward and backward

private, if black-box ORAM is secure, F is a PRF, and
the encryption is IND-CPA-secure.

Proof 3. We first describe a simulator Sim who generates
the transcripts for the ideal distribution SSEidealS,A,L(λ). To
generate the full transcripts of the back-box ORAM scheme
for the adversary A, The simulator Sim needs to simulate

the scheme due to the security in Theorem 2. After every
search query, the corresponding tree path for the search
result should be selected by a PRF. In the Sim, it replaces the
PRF-generated paths by the uniformly random paths. The
encryption can be the ciphertexts of 0 simply. Sim knows
the number of files corresponding to all the keywords. We
need to show that SSEidealS,A,L(λ) is indistinguishable from
SSErealΠA(λ).

The proof follows by a hybrid argument.
H0: The hybrid matches the real execution. A chooses

DB. After the setup process, A adaptively execute Search(w)
and then denote the full transcripts of the protocol by ti. The
update query can be done in the same way. Finally, (EDB,
t1, · · · , tq) is as an output, where q is the number of queries
by the A.

H1: Based on the H0, during the search process, the
retrieve, write, and eviction operations based on the black-
box ORAM are proved by the experiment in the Theorem 2.

The indistinguishability of H0 and H1 is based on the
security of ORAM scheme.

H2: Based on the H1, the only difference is that the
ciphertexts are replaced by the encryption of 0. The length
of every data block in the black-box ORAM and update
slots is leaked by the leakage function L (LSearch(w) = (F)),
which depends onF , that is, the number of files. The update
function is done in the update slots, replaced by the en-
cryption of 0 addition and eviction to the black-box ORAM.
The only leakage function is that LUpdate(σ, op, ind) =
(UpdateTime(W )).

The indistinguishability of them is based on the encryp-
tion scheme used in the black-box ORAM and update slots.

H3: Based on the H2, the only difference is that the PRF-
generated tree paths are replaced by the uniformly random
tree paths. The H3 complete all the ideal-state experiment.

7 IMPLEMENTATION AND EVALUATION

We care about the performance of SSE operations and eval-
uate them from three aspects: (1) response time and band-
width cost of a keyword search query; (2) the performance
of update query; (3) execution time of the tree-path eviction
operation.

7.1 Experimental Details
Target SSE schemes. In order to accurately evaluate perfor-
mance, we chose two SSE schemes:

• SPS14 [4]. The first SSE scheme achieves forward
privacy, which is constructed based on layer-based
ORAM. However, it cannot protect the size pattern
and protect the access pattern.

• GOSSE. We tried to build an ORAM-inspired SSE so-
lution achieving strong FP&BP, which is more secure
than TWORAM [39] and ORION [17], and named it
as “GOSSE”. Like TWORAM and ORION, GOSSE
also defines the data block in the index structure
as (w, ind) pair, which presents the relationship of
the keyword and the file. Meanwhile, it achieves
strong FP&BP by padding some dummy data block
operations in the update and search operations. Most
important of all, it adopts the fastest ORAM model
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Fig. 10: The execution time for the
search process, where the total number
of keyword-file pairs is 220.

(S3ORAM, the same as that in Eurus) to achieve the
base performance. To make the efficiency compari-
son be fair, (w, ind) pair can be written and read
obliviously in GOSSE according to the description in
Section 5.2.

• SFB-ORION. We improve ORION [17] to be with
strong FB & BP, for which we call as SFB-ORION.
Note that ORION already hides search/access pat-
tern on index-level, so we improve ORION by hiding
the size pattern to obtain strong FP and BP (on index-
level). This is done by performing additional dummy
ORION access to make result length uniform across
all search queries.

Implementation details. The GOSSE and Eurus are in a
multi-server environment, and they both adopt Shamir se-
cret sharing [51] to complete the multi-party computation.
The number of servers is 5 in our experiment. The SPS14
is in the single-server environment. We choose RocksDB as
server storage.

For cryptographic algorithms, AES and Blake2b are se-
lected as the symmetric encryption algorithm and underly-
ing hash function, respectively. The encryption key of AES
is 256 bits. We use sse crypto library used in Σoøoς [13] as
the cryptographic tools. The p for Fp is a 256-bit prime.
Experimental environment. All the experiments were per-
formed on five computers with a single Intel Core i7-7700
3.6GHz CPU, 32GB of DDR3 RAM, 512GB SSD running
Linux Ubuntu 14.04 LTS operating system, in the local
network environment.

7.2 Dataset and Keyword Distributions
We use Enron email as small test dataset and use Wikipedia
dumps as large test dataset. In Enron email, the file number
is about 517,000 and key number is about 20,000. We adopt
the wikipedia-20150602 as the concrete large dataset, whose
file number is 5,078,000, number of keyword is 70,000, and
keyword/identifier number is 220.
Dataset preprocess. We make use of the NLTK library to
exclude the stopwords and punctuation marks from the
original database. Then we make use of PorterStemmer
provided by the NLTK to extract keywords and exclude
duplicate keywords in every file.
Keyword distribution. Based on the Enorn email, most of
the keywords match only one file. We can conclude that

the length of a data block in the black-box ORAM can
be controlled largely smaller than F with a proper word
segmentation, where F is the number of files, which can be
described in Fig. 14. In particular, most keywords match less
than 100 documents.

7.3 Experimental Results
Data block size adjustment. The element of a data block
in SPS14 [4] is consist of a keyword, operation, and file
identifier, where the data block size is 0.5KB. The one in
GOSSE can include the keyword and file identifiers, where
the data block size is 0.16KB. A data block size in the
above two concrete schemes is constant. The total number
of keyword-file pairs is 210. The Eurus just stores the file
identifiers, each of which has the size of 0.06KB. Our Eurus
scheme can adjust the data block size dynamically. The
Eurus contains the extreme operation, that is, data block
size adjustment. The chunk of a data block in the Eurus is
7.68KB, which can contain at most 128 file identifiers, that is
to say, C = 7.48KB. The several chunks can be collected to a
whole data block at the client-side.

In the Eurus, the database created due to different
schemes can be tested as Fig. 8 describes. The database is
created by the S3ORAM setup algorithm, and all future
updates are performed by Update protocol as specified in
Fig. 7. The database creation needs about 30×more response
time in the GOSSE than that in SPS14 [4]. According to
Fig. 9, this data block size adjustment, for example, the data
block size C is from C to 2C can be done suitably and take
less time to complete. The delay can keep the growth rate no
more than 0.6× from k · C to (k+ 1) · C (k is a small constant
value). Most of the data block size adjustment is made at the
trusted client-side.

Keyword search efficiency. The GOSSE and Eurus make
use of PIR technique [53] to fetch the data blocks related to
a special keyword. The PIR technique is based on the asym-
metric cryptographic algorithm, which has longer execution
time. The total time of server computation is 5%−7.8% in re-
sponse to the search process. In the Eurus, only a data block
should be downloaded during a keyword search, rather
than several data blocks. Therefore, the Eurus needs fewer
communications than other SSE schemes, which causes
fewer response time during the keyword search process.
GOSSE, SPS14 and SFB-ORION need one more communi-
cation times than that in Eurus. According to Fig. 10, on
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Fig. 11: The bandwidth cost for the
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Fig. 14: The division of the number of files matched to a
keyword.

average, the response time of the search process in Eurus is
30% of that in GOSSE, 26% of that in SFB-ORION, and 17%
of that in SPS14. The bandwidth cost in Eurus is 10% of that
in SPS14, 49% of that in GOSSE, and 15% of that in SFB-
ORION, which is described in Fig. 11. According to Table
2, SPS14 [4] is worse than our scheme for the response time
of a search operation. The update slot eviction operation is
similar to a keyword search operation, which is also with
practical efficiency as we will show later.

Update efficiency. The SPS14 [4] uploads a given number
of data blocks, which is equal to the number of matched
files to the given keyword. The GOSSE needs to upload the
same number of data blocks. The Eurus needs to upload the
given number of data blocks, which is equal to the number
of keywords. Therefore, the size pattern for the update
process is hidden naturally. The bandwidth cost in SPS14
is 2.9×−4.4× than that in GOSSE, and 1.5×−2× than that
in SFB-ORION. Eurus has the smallest bandwidth cost in
the general update process of the these SSE schemes, which
is described in Fig. 12.

During the update process, the number of matched files
can be dealt 4.73× faster in Eurus than that of GOSSE per
second, as presented in Table 2.

Tree-path oblivious eviction efficiency. The tree-path evic-
tion in Eurus is based on the go-deepest tree-path eviction
in Circuit ORAM [41]. The path-ORAM [44] adopts the
traditional eviction method, which is the eviction among
the parent node and two children nodes, to reorganize all
blocks on the evicted path. The Ring ORAM [43] is based on
the tree-path eviction, which has better performance than
the path-ORAM. The S3ORAM makes the improvements on

TABLE 2: Comparison of operation performance during the
search and update operations. (unit: the number of matched
files per sec)

test times Search Update
SPS14 our scheme our scheme GOSSE

1 750 35740 172668 46867
2 682 36540 161435 44174
3 743 35344 232788 64278
4 800 36450 212527 57373
5 754 36193 228534 64643
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Fig. 15: The execution time for the tree-path eviction.

the tree-path eviction of Ring ORAM [43]. Fig. 15 shows that
the execution time of tree-path eviction in Eurus is 2.34×
faster than S3ORAM, 2.56× faster than RingORAM, 2.94×
faster than PathORAM. Our eviction requires server-server
interaction. We calculate overhead of the interaction; it takes
around 6% of the total computation time.

Evaluation in large data set. To prove the feasibility of
Eurus over the large data set, we compared the response
times of search and update operations on a large dataset.
We adopt the Wikipedia-20150602 as the large dataset. We
perform the experiment on the dataset with result size
ranging from 26 to 210. The experiment is performed with
two different thread numbers, 10 and 20, respectively, the
threads is used to perform computation task in parallel, e.g.,
the matrix computation during the eviction. We report the
performance in Fig 11. For a keyword with a search result of
size n, the response time counts the total time of performing
updates and evictions to make the result size to n, plus
the time of a final search operation to that keyword. As
we can see, the response time is increased linearly with the
number of matched files. With more threads, the response
time is reduced, but increasing threads does not impact
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significantly on the overall efficiency.

8 CONCLUSIONS

In this paper, we proposed a DSSE scheme, named Eurus,
which can hide search/access/size pattern, as well as the
linkage among queries, efficiently. Technically, the tech-
niques used in Eurus are interesting and useful. The only
limitation of Eurus is that we are not able to achieve the effi-
ciency of DSSE scheme without the same goal of security. It
would be interesting to see that if an attack can be launched
based on this leakage or an equally-efficient scheme can be
designed also to hide these patterns. Our proposed solution
is currently a practical and secure solution for DSSE for
outsourcing data and search to a third-party cloud provider.
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