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VERIFL: Communication-efficient and Fast
Verifiable Aggregation for Federated Learning
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Abstract—Federated learning (FL) enables a large number of
clients to collaboratively train a global model through sharing
their gradients in each synchronized epoch of local training.
However, a centralized server used to aggregate these gradients
can be compromised and forge the result in order to violate
privacy or launch other attacks, which incurs the need to verify
the integrity of aggregation. In this work, we explore how to
design communication-efficient and fast verifiable aggregation in
FL. We propose VERIFL, a verifiable aggregation protocol, with
O(N) (dimension-independent) communication and O(N + d)
computation for verification in each epoch, where N is the
number of clients and d is the dimension of gradient vectors.
Since d can be large in some real-world FL applications (e.g.,
100K), our dimension-independent communication is especially
desirable for clients with limited bandwidth and high-dimensional
gradients. In addition, the proposed protocol can be used in
the FL setting where secure aggregation is needed or there is a
subset of clients dropping out of protocol execution. Experimental
results indicate that our protocol is efficient in these settings.

Index Terms—federated learning, verifiable aggregation, lin-
early homomorphic hash, commitment, machine learning.

I. INTRODUCTION

Federated learning (FL) [1], [2], [3] has become one of
the most popular paradigms for distributed machine learning
nowadays. It facilitates the usage of sensitive datasets dis-
tributed among a large number of clients, which may be mobile
phones, other mobile devices, or sensors, without collecting
their data. In FL, to train a global model, a subset of users are
instructed to upload their local parameters in each synchronous
epoch (Figure 1(a)). To update the global model, a centralized
server is adopted to aggregate the parameters received from
these users and sends back the updated global model to
them. All users will update their local model according to
the global one and such training process will continue until
model convergence.

Despite of its appealing functionality, FL has been shown
vulnerable to some attacks. For example, the works [4], [5],
[6] show that the gradient vector uploaded by a client may
leak sensitive information about its private dataset. To address
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Fig. 1. Federated learning and a trivial attack on it. (a) The framework of
federated learning. (b) The attack launched by the adversary corrupting the
server and a subset of clients.

this issue, in [7], the authors proposed a secure aggregation
protocol that guarantees the privacy of gradients. However,
the recent work [8] shows that, in addition to the gradient
privacy, the integrity of aggregation should be protected as
well. In particular, the server can easily become a single-point
of failure in FL. Without integrity guarantee, once the server
gets compromised, the adversary controlling the server can
manipulate the global model and cause misclassification of any
involved client at its specified data point (Figure 1(b)), which is
similar to the consequence of backdoor attacks [9], [10], [11],
[12]. The lack of the integrity guarantee of aggregation may
restrict the commercial application of FL. An example attack is
that the corrupted server re-trains the global model updated in
this epoch with some poisoned data and returns the re-trained
model to honest clients, aiming to cause misclassification in
these clients.

We note that attacks by modifying aggregation results (e.g.,
the aforementioned example attack) can be mitigated using
verifiable aggregation protocols. In such protocols for FL,
a considered adversary cannot convince an honest client to
accept its forged aggregated gradient as a real one with an
overwhelming probability (see Definition 3). Certainly, to re-
sist inference attacks exploiting the “non-encrypted” gradients
[4], [5], [6], the used verifiable aggregation protocol should
be secure as well to guarantee input privacy of each client.
Informally speaking, this means that an adversary in the
aggregation protocol learns nothing about the gradient of each
client from protocol transcripts (see Definition 4).

In this paper, we focus on how to realize a (secure)
verifiable aggregation protocol in a communication-efficient
and fast way on resource-constrained devices (e.g., the setting
of mobile devices in Google’s work [7]). Since the bandwidth
in the resource-constrained setting is expensive and a large
number of clients are required to train a global model through
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hundreds of iterations, communication becomes one of the
most important considerations in the design of FL protocol.
If the designed verifiable aggregation protocol costs a lot in
terms of communication and computation, it will take a long
period to finish the training process. There are many fac-
tors influencing the communication efficiency of a verifiable
aggregation protocol, and the number of parameters in the
model to be trained is particularly important. So, our first
question is, can we design a verifiable aggregation protocol in
which the communication of verification is independent of the
number of parameters in the model to be trained? In fact, the
communication efficiency of FL is always a research hotspot
[1], [7], [2], [13].

To the best of our knowledge, there is no previous work
that succeeds in designing a communication-efficient verifi-
able aggregation protocol. The works about communication-
efficient FL [7], [13] do not consider how to guarantee the
integrity of aggregation. The recent work that achieves the first
secure verifiable aggregation [8] uses zero-knowledge proof
to enforce honest aggregation. However, its communication
cost for verification is linearly dependent on the dimension
of gradient vectors. Its linearly-growing and high communi-
cation cost makes it impractical in its intended application
scenarios, that is FL among mobile devices. Moreover, its
computation cost for verification is unsatisfactory due to
the use of zero-knowledge. For example, it takes 3.59 MB
outgoing communication and 254964 ms computation per
client to verify the aggregation of 20K-dimensional parameter
vectors among 500 clients. Another trivial solution to achieve
verifiable aggregation is using generic multiparty computation
(MPC) approaches [14], [15], [16], [17], [18], [19], [20], [21],
but its communication and computational overhead are very
large. So, in addition to communication efficiency, our second
question is, how to make our verifiable aggregation protocol
computation-efficient?

A. Challenge and Contribution

Challenge. To verify the integrity of aggregation, a straight-
forward idea is to use homomorphic hash to compute the
“digest” of gradient vectors to be aggregated. A combined hash
can be obtained from these hash values after aggregation, and
each client compares it with the hash of the aggregation result
(i.e., real hash) to verify the aggregation. Although this idea
yields a desirable feature that the verification communication
is independent of gradient dimension, we would like to show
that this idea provides little security guarantee.

The security challenge comes from the fact that everyone
in the above construction has access to the homomorphic
hash function. In the simulation-based proof, the simulator did
not know the input (i.e., the gradient vector) of each honest
client by the time it was asked to simulate its hash value.
To simulate it, the simulator has to use a dummy vector.
However, this dummy value is different from the real one
with an overwhelming probability. Since everyone (including
the adversary) can call the homomorphic hash function with
the aggregation result, an inconsistency between the combined
and real hashes will be found after aggregation and this

immediately yields an efficient distinguisher that fails the
simulation. That is, the straightforward construction is not
secure.

In [8], the authors solve this security challenge by combin-
ing homomorphic hash with zero-knowledge proof. However,
due to the dimension-wise zero-knowledge proofs, their pro-
tocol leads to expensive computation and the communication
caused by verification is still linear in the gradient dimension.
We note that such dimension-dependence is depressing since
the gradient dimension is large in real-world FL applications
(e.g., 100K). We are motivated to find another way to achieve
verifiable aggregation, overcoming the security challenge with
good concrete efficiency in terms of communication and
computation.

Contribution. In this paper, we present a communication-
efficient and fast protocol, VERIFL, for verifiable aggrega-
tion in FL. As shown by experiment, for example, VERIFL
achieves 33.24 KB (dimension-independent) outgoing com-
munication and 8899 ms computation per client to verify the
aggregation of 100K-dimensional parameter vectors among
500 clients, which outperforms the state-of-the-art work [8]
by 110.6× in communication and 28.7× in computation even
with 5× larger parameter vectors. More specifically, we make
the following contributions:
• (Secure) verifiable aggregation. To verify the integrity of

aggregation, we combine the linearly homomorphic hash
with the commitment scheme to force the aggregation
server to use the submitted gradients that are consis-
tent with their previously broadcast hashes. Collision
resistance of the hash scheme guarantees that the server
cannot have an honest client accept its forged result.
In addition, to overcome the aforementioned security
issue, we observe that it sufficient to use equivocal
commitment scheme to achieve the same security as [8]
without using heavy zero-knowledge proof. Based on this
observation, we develop a novel verifiable aggregation
protocol. Notably, secure aggregation is also considered
in our protocol and we show our protocol is composable
with the secure protocol in [7] by using double-masking
technique and adding extra rounds. The functionality of
secure aggregation in our protocol is achieved in the sense
that only the aggregation result computed by the server
is revealed.

• Dimension-independent communication overhead. In our
protocol, the communication overhead resulted from
integrity verification is independent of the dimension
of gradient vectors (i.e., the number of parameters in
FL models), which significantly saves the bandwidth
of clients. This is achieved by asking each client to
commit only the hash of its gradient vector instead of the
vector itself. These commitment strings, which facilitate
our security proof, have a length independent of the
gradient dimension. The linear homomorphism of the
hash scheme ensures that the “sum” of hashes equals
to the hash of the sum vector. It is helpful to think
that linearly homomorphic hash can be used to compress
high-dimensional gradient vectors while preserves the
properties of addition.
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• Approximately-halved computation overhead. We succeed
in reducing the verification cost of our basic construction
in terms of computation by using amortized verification.
In our protocol, the most time-consuming operation is
the two calls of linearly homomorphic hash that requires
O(d) expensive modular exponentiations, in which d
is the dimension of gradient vectors. The former call
is used to generate the necessary messages for future
verification and is inevitable. However, the latter call that
performs the integrity verification can be amortized. First,
we draw a set of random coefficients to compute the linear
combination of the hash aggregations in different epochs.
Then, we check whether the combined hash is equal
to the hash of the linear combination (using the same
coefficients) of aggregation results in different epochs. In
this way, we only performs the integrity verification once
a batch and the cost of the latter call is amortized by a
factor of the batch size. The total computation overhead
can be approximately reduced to that of the former hash
call.

II. FEDERATED LEARNING WITH SECURE AGGREGATION

A. Federated Learning

The basic framework of FL is summarized as follows.
There are N users in FL, each having access to its private
dataset Di where |Di| = si. At the beginning of each epoch
k ∈ {1, 2, ...}, the aggregation server will randomly select a
subset of users Sk and send them the parameter vector v〈k−1〉
obtained in the previous epoch (note that v〈0〉 is initialized
randomly). Each selected user Pi will locally minimize the
empirical loss over its dataset Di to get its updated (local)
model vi〈k〉 and upload its gradient ∆i〈k〉 ← vi〈k〉−vi〈k−1〉
to the aggregation server. Upon receiving enough gradients
from the users, typically, the server will take a weighted aver-
age of these gradients and obtain an updated global model, i.e.,
v〈k〉 ← v〈k− 1〉+

∑
i∈Sk βi∆i〈k〉 where βi = si/

∑
i∈Sk si.

The training process will continue until model convergence.

B. Secure Aggregation

In [7], the authors build up a secure and dropout-tolerant
aggregation protocol based on double-masking technique.
More specifically, the double-masking of a gradient vector vi
includes two parts: the self-mask generated by the owner Pi
itself, and the pairwise-mask generated between Pi and each
other client. The double-masked gradient of vi is denoted by
pi:

pi = vi + PRG(bi)︸ ︷︷ ︸
self−mask

+
∑

j∈U,i<j
PRG(maki,j)−

∑
j∈U,i>j

PRG(maki,j)︸ ︷︷ ︸
pairwise−mask

mod B

where B is the modulus for aggregation, bi is a secret seed
sampled by the Pi and maki,j = makj,i is a pairwise agreed
value between Pi and Pj for each Pj ∈ U . Rounds of their
protocol are briefly summarized in Figure 2.

Secure Aggregation Protocol

• Round 0 (AdvertiseKeys): Each client Pi generates two key
pairs (ski, pki), (mski,mpki) and sends (pki,mpki) to other
clients. The server serves as a relay and appends each client
that is alive at present to the set U1.

• Round 1 (ShareKeys): Each client Pi samples a secret value
bi and generates secret shares of (mski, bi) to be distributed
among other clients. For each other client Pj , it derives
pairwise symmetric encryption key ki,j from ski and pkj
using key agreement. After that, it encrypts the shares for each
Pj using ki,j and sends the ciphertext to Pj . The server serves
as a relay and appends each client that is alive at present to the
set U2.

• Round 2 (MaskedInputCollection): Each client Pi computes
its double-masked gradient vector pi, in which the pairwise
agreed maki,j is derived from mski and mpkj using key
agreement, and sends pi to the server. The server appends each
client that is alive at present to the set U3.

• Round 3 (Unmasking): The server asks the clients in U3 for:
(i) all secret shares of bi’s for i ∈ U3, and (ii) all secret shares
of mski for i ∈ U2 \ U3. The aggregation result
a =

∑
i∈U3 pi −

∑
i∈U3 PRG(bi) +∑

i∈U2\U3,j∈U3 ∆i,jPRG(maki,j), in which bi is directly
derived from share reconstruction, maki,j is derived from the
reconstructed mski and the public mpkj , and ∆i,j = 1 if
i < j and ∆i,j = −1 if i > j and ∆i,j = 0 if i = j.

Fig. 2. The semi-honest version protocol in [7].

C. Adversarial Model

In this paper, we consider the same adversary as in [8].
The adversary is semi-honest but with the additional power
to instruct the corrupted server to forge the aggregation result
arbitrarily with the knowledge of the transcripts it has seen
before. The adversary can corrupt both the aggregation server
and a subset of data parties (i.e., clients). In this semi-
honest model, the corrupted parties will provide their gradients
honestly. Using the notations to be introduced in the next
section, all gradient vectors of parties belong to ZdR and the
aggregation result should lie in ZdB for some bound B ≥ N ·R,
in which N is the number of parties.

In this adversarial model, the adversary may aim either (i) to
infer the private gradients of honest parties, or (ii) to convince
honest parties of its forged aggregation results. The goal of
our protocol is to protect the privacy of each party’s gradient
while guarantees the integrity of aggregation. However, we do
not consider the adversary that makes queries to the trained
model to launch black-box statistical attacks [22], [23], [24],
[25], [26] since it is known hard to prevent the leakage from
the output of the functionality implemented by cryptographic
protocols. Moreover, such attacks might not work well to
precisely infer the sensitive information of honest parties,
especially for deep neural networks that generalize well [6].

Note that, in FL, the private inputs of honest parties in the
previous round may be approximate to the those in the current
round when the model converges. To forge an approximate
aggregation result, it suffices for the adversary to choose the
inputs of corrupted parties according to the partial sum of the
inputs of honest parties in the previous round. This observation
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can lead to a model replacement attack in [9], which bypasses
secure aggregation protocols and is possible since some small
perturbations will not significantly affect the behaviour of
machine learning models. How to prevent such an attack in FL
settings is another interesting and open problem, which is out
of the scope of this paper. In this paper, like other works in the
literature of multiparty computation, we only focus on how
to prevent the adversary from forging an aggregation result
different from the exact one. We do not consider the attacks
(e.g., model replacement attack) where the adversary chooses
its input according to the past protocol transcripts. This is
known challenging in multiparty computation since it cannot
be distinguished from the case where a corrupted party do use
this as its input without some apriori knowledge of input.

III. VERIFL: EFFICIENT VERIFIABLE AGGREGATION

A. Notations

We use [n] to denote the set {1, ..., n} for some integer
n. The set of integers is denoted by Z. The quotient ring of
integers modulo a positive integer q is written in Zq . When q
is a prime, Zq is a field denoted by Fq . A vector is denoted by
a bold lower case letter, e.g., x, and its i-th entry is denoted
by x[i] where the index i is counted from one. For some finite
set X , its cardinality is |X |. If A is an algorithm, a← A says
that a is assigned to be the output of A; otherwise, if A is
a set, a is an element uniformly drawn from the set A. The
security parameter is denoted κ and we use negl(κ) to denote
the negligible function in κ. We use A(x; y) to denote that
an algorithm A is invoked with a public input x and a secret
input y. We formulate pseudo-random generator as PRG :
{0, 1}∗ 7→ ZdB for some modulus B and vector dimension d.

B. Cryptographic Primitives

Linear homomorphic hash. A linearly homomorphic hash
scheme consists of three polynomial-time algorithms, i.e.,
LHH = (LHH.HGen,LHH.Hash,LHH.Eval). We detail the
above three algorithms as constructed in [27] by assuming the
hardness of discrete logarithm.
• LHH.HGen(1κ, 1d): On input the security parameter κ

and the dimension d, this algorithm outputs the public
parameter LHHpp, including the description of a cyclic
group G of prime order q, its generator g ∈ G and d
distinct elements g1, ..., gd ∈ G. For simplicity of pre-
sentation, this public parameter will be taken implicitly
as the first parameter of LHH.Hash and LHH.Eval.

• LHH.Hash(x): Taking a d-dimensional vector x as input,
this algorithm outputs the linearly homomorphic hash of
x: h←

∏
i∈[d] g

x[i]
i ∈ G.

• LHH.Eval(h1, ..., h`, α1, ..., α`): Taking ` hashes and `
coefficients of linear combination, this algorithm out-
puts the linear combination of these ` hashes: h∗ ←∏
i∈[`] h

αi
i .

Note that this construction of LHH satisfies the following
definition of collision resistance with respect to the collision
experiment ExptcollA,LHH.

ExptcollA,LHH(1κ, 1d):
1) Call LHHpp← LHH.HGen(1κ, 1d).
2) Send LHHpp to the adversary and wait for its input

(x1, x2)← A(LHHpp) where x1, x2 ∈ Fdq are two
distinct vectors.

3) Output 1 iff LHH.Hash(x1) = LHH.Hash(x2);
otherwise output 0.

Definition 1 (Collision resistance). LHH is said to be
collision-resistant, if for any PPT adversary A, there exists
a negligible function negl(·) such that the advantage of A

AdvcollA,LHH(κ) := Pr
[
ExptcollA,LHH(1κ, 1d) = 1

]
≤ negl(κ)

for the security parameter κ and the vector dimension d.

Commitment. Commitment is an “envelope” so that a
party cannot change the value after they have committed to
it while the committed value is kept secret to others before
decommitment. The commitment scheme used in this paper
is to make the security go through without leading to too
much communication overhead for verification. In particular,
to formally prove the security of our protocol, we need an
equivocal commitment scheme. Roughly speaking, someone
possessing the trapdoor of an equivocal commitment scheme
can produce commitments that can be opened to different
values. However, committers in real world, who have no idea
about the trapdoor, can open them to only a single value.
Such property enables the simulator in our proof to fool the
distinguisher and achieves indistinguishability consequently
(see Section IV).

A non-interactive equivocal commitment scheme is defined
as a tuple of four polynomial-time algorithms COM =
(COM.Setup,COM.Commit,COM.Decommit,COM.Equiv):
• COM.Setup(1κ): On input the security parameter κ,

this algorithm outputs a public parameter COMpp and
a trapdoor td. Note that the message space M and
the commitment space C are also provided in COMpp.
For simplicity of presentation, this public parameter will
be taken implicitly as the first parameter of the other
algorithms.

• COM.Commit(m; r): This algorithm is run by the com-
mitter and takes as input a message to be committed
m ∈ M and a uniform randomness r and outputs
a commitment string c ∈ C, which is to be publicly
published. Note that the randomness r serves as the
“decommitment string” to open the committed message
and it should be kept secret until opening.

• COM.Decommit(c,m′, r′): This algorithm is run by
the receiver and takes as input a commitment string
c ∈ C, a claimed committed message m′ ∈ M and
the claimed randomness r′ that was used to commit m′.
If c = COM.Commit(m′; r′) then output 1; otherwise
output 0.

• COM.Equiv(c, (m, r),m′; td): This algorithm takes as
input a commitment string c ← COM.Commit(m; r) ∈
C, a desired arbitrary message m′ ∈M and the trapdoor
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td and outputs an valid randomness r′ such that c
decommits to m′.

The equivocality of COM is formally defined as follows.

Definition 2 (Equivocality). COM is said to be equivocal if
for any m ∈M and uniform randomness r, it holds that there
exists a negligible function negl(·) such that

Pr


(COMpp, td)← COM.Setup(1κ),
c← COM.Commit(m; r),

b = 0 m′ ←M,
r′ ← COM.Equiv(c, (m, r),m′; td),
b← COM.Decommit(c,m′, r′)


≤ negl(κ)

for the security parameter κ.

Symmetric Encryption. An symmetric encryp-
tion scheme is defined to be a tuple SE =
(SE.KeyGen,SE.Enc,SE.Dec).
• SE.KeyGen(1κ): On input the security parameter κ, this

algorithm outputs a secret symmetric key k.
• SE.Enc(m; k): This algorithm takes as input a message
m to be encrypted and a symmetric key k. The output of
this algorithm is the ciphertext c of m under the key k.

• SE.Dec(c; k′): This algorithm takes as input a ciphertext
to be decrypted and its corresponding symmetric key k′.
The output of this algorithm is the message m′ such that
c← SE.Enc(m′; k′).

In this paper, we require SE to be IND-CPA secure.
Key Agreement. We use a key agreement scheme to (i)

generate pairwise symmetric encryption keys, and (ii) generate
pariwise seeds for PRG. A key agreement scheme is defined
to be a tuple KA = (KA.Setup,KA.KeyGen,KA.Agree).
• KA.Setup(1κ): On input the security parameter κ, this

algorithm outputs a public parameter KApp. For simplic-
ity of presentation, this public parameter will be taken
implicitly as the first parameter of the other algorithms.

• KA.KeyGen(): This algorithm generates a key pair
(sk,pk).

• KA.Agree(ski,pkj): This algorithm takes as input a
secret key ski and a public key pkj and outputs a private
agreed key aki,j .

Secret Sharing. We use secret sharing to deal with
dropout in our protocol and preserve input privacy. A
secret sharing scheme is defined to be a tuple SS =
(SS.Setup,SS.Share,SS.Combine).
• SS.Setup(1κ): On input the security parameter κ, this al-

gorithm outputs a public parameter SSpp, which includes
the message space M. For simplicity of presentation,
this public parameter will be taken implicitly as the first
parameter of the other algorithms.

• SS.Share(t,P, s): This algorithms takes as input the
threshold value t, the set of parties P which is of size
N ≥ t and a secret s ∈M. The output of this algorithm
is a set of secret shares, denoted by {[[s]]i}Pi∈P , each of
which is assigned to a distinct holder Pi ∈ P .

• SS.Combine(t, {[[s]]i}Pi∈P′⊆P): This algorithm takes as
input the threshold value t and the subset of shares

{[[s]]i}Pi∈P′⊆P of which the size is not less than t. The
output of this algorithm is the original secret s.

C. How to Achieve Efficient Verifiable Aggregation

Basic verifiable aggregation. The integrity of aggregation
is achieved by adding the following two steps to the basic FL
framework:

PREPARATION: This step is done by clients before they
submit their gradient vectors to the server. In this step, each
client is asked to generate: (i) the linearly homomorphic hash
of its gradient vector, and (ii) the commitment string of this
hash value. More formally, Pi generates

hi ← LHH.Hash(vi),
ci ← COM.Commit(hi; ri),

in which hi is the linearly homomorphic hash of vi, ci is the
commitment string and ri is a uniformly random string secretly
sampled by Pi. Note that (hi, ri) serves as the decommitment
string of Pi. Note that, after this step, the commitment string ci
will be forwarded to other clients. Pi will not send its gradient
vector to the server until it receives from all other clients their
ci’s respectively.

VERIFICATION: This step is done by each client after it
receives from the server the aggregation result a. In this step,
Pi asks each other client Pj for its decommitment string
(hj , rj) and checks whether

1
?
= COM.Decommit(cj , hj , rj), (1)

in which ci was received after PREPARATION step. If the
equality test (1) does not hold for some j ∈ [N ] \ {i}, then
the aggregation result a will be regarded as forged and Pi
terminates with output ⊥. Otherwise Pi will continue to check
the equality of hashes:

LHH.Hash(a)
?
= LHH.Eval(h1, ..., hN , 1, ..., 1︸ ︷︷ ︸

N items

). (2)

If the equality test (2) holds, then the aggregation result a
passes the verification and Pi will accept the result; otherwise
the result will be regarded as forged and Pi terminates with
output ⊥.

Dimension-independent communication overhead. The
reduction in the communication overhead for verification
comes from the usage of hash and commitment. Recall that
the outgoing message for verification sent by each client Pi
in each epoch consists of the commitment string ci and the
decommitment string (hi, ri). As long as we carefully instan-
tiate COM with the one using commitment/decommitment
strings of constant length, the outgoing communication for
verification is constant and independent of the the dimension
of gradient vectors. That is, in each epoch, the outgoing
communication cost lead by verification can be made only
O(1) and the incoming communication cost is O(N).

Approximately-halved computation overhead. In our pro-
tocol, the most time-consuming operation for verification is
running LHH.Hash. To reduce the computation overhead for
verification, we allow each client to do verification in an
amortized manner. Similar to [14], [15], [28], we draw a set
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of random coefficients to compute the linear combination of
the hash aggregations in different epochs. Then, we check
whether the combined hash is equal to the hash of the
linear combination (using the same coefficients) of aggregation
results in different epochs. More formally, letting ` be the
preset batch size and a〈k〉 be the aggregation result in the
epoch k ∈ [`], we replace the aforementioned VERIFICATION
step with the following AMORTIZED-VERIFICATION step:

AMORTIZED-VERIFICATION: The equality test of commit-
ment (1) remains unchanged for all commitments received
in each epoch k ∈ [`]. However, for k ∈ [`], Pi does the
following:

αk ← Fq,
h〈k〉 ← LHH.Eval(h1〈k〉, ..., hN 〈k〉, 1, ..., 1︸ ︷︷ ︸

N items

),

in which q is the prime order provided in LHHpp and hi〈k〉
is the hash computed by client Pi in the k-th epoch. Then, it
verifies the equality

LHH.Hash

∑
k∈[`]

αka〈k〉


?
= LHH.Eval(h〈1〉, ..., h〈`〉, α1, ..., α`)

(3)

instead of the equality (2). If the equality test (3) holds, then
all the aggregation results a〈1〉, ..., a〈`〉 pass the verification
and Pi will accept these results; otherwise these results will
be regarded as forged and Pi terminates with output ⊥.

In this way, Pi does not need to call LHH.Hash in the
equality test (2) every aggregation epoch. That is, the cost
for LHH.Hash in the equality test (2) can be amortized by a
factor `. Since the cost for LHH.Hash is O(d), the amortized
computation cost for verification in each epoch can be reduced
from O(2d) to O(d+ d/`). When ` is large enough, the cost
can be approximately halved.

Privacy concern and dropout-tolerance. Our verifiable ag-
gregation protocol (i.e., the basic FL framework with PREPA-
RATION and AMORTIZED-VERIFICATION steps) is compos-
able with the secure one Figure 2. The summarized secure
verifiable aggregation protocol is given in Figure 3. We
modify the ShareKeys round in [7] and the original secure
protocol serves as the aggregation phase in this composite
protocol. Notably, the dropout-tolerance of [7] is preserved
and therefore the aggregation phase in our protocol is ro-
bust to client dropout. However, to deal with the potential
dropout when clients report their decommitment strings in
Decommitting round, an extra DroppedDecommitting round
is introduced. This extra round guarantees that all clients that
survive dropout are able to run AMORTIZED-VERIFICATION
in BatchChecking round. Note that, to tolerate dropout, we
require the additional O(N) computation of secret sharing in
ShareMetadata round. Therefore, the total verification cost
in computation is O(N + d).

D. Full Version of VERIFL Protocol
The full version of VERIFL Protocol is presented in Figure

4 and Figure 5, where cryptographic primitives are defined in
Section III-B.

VERIFL protocol

1) Aggregation phase (for the epoch k ∈ [`]):
• Round 0 (AdvertiseKeys): Identical to Round 0 in Figure

2 with additional setups of LHH and COM.
• Round 1 (ShareMetadata): Identical to Round 1 in Figure

2, except that each client Pi (i) additionally runs the
PREPARATION step to get its ci〈k〉 and (hi〈k〉, ri〈k〉), (ii)
shares and encrypts (hi〈k〉, ri〈k〉,mski〈k〉, bi〈k〉) instead
of (mski〈k〉, bi〈k〉), and (iii) sends ci〈k〉 to each other
client along with the ciphertext.
• Round 2 (MaskedInputCollection): Identical to Round 2

in Figure 2.
• Round 3 (Unmasking): Identical to Round 3 in Figure 2,

except that the server explicitly sends the aggregation result
a〈k〉 to each client.

2) Verification phase (of batch size `):
• Round 0 (Decommitting): For each k ∈ [`], each client Pi

sends its decommitment strings (hi〈k〉, ri〈k〉) to each other
client using the server as a relay. The server appends each
client that is alive at present to the set V1.
• Round 1 (DroppedDecommitting): For each k ∈ [`], each

client Pi sends its shares of hj〈k〉 and rj〈k〉 to the server,
in which j ∈ U3〈k〉 \ V1. The server reconstructs these
(hj〈k〉, rj〈k〉)’s and sends them to each alive client.
• Round 2 (BatchChecking): Each client Pi runs the

AMORTIZED-VERIFICATION step.

Fig. 3. Our verifiable aggregation protocol with secure aggregation function-
ality.

IV. SECURITY ANALYSIS

In this section, we will show that our protocol ensures
the integrity of the aggregation results (Definition 3) and the
privacy of individual input (Definition 4). Recall that our
protocol runs with a set P of N parties and an aggregation
server S, in which the building blocks are instantiated with
the security parameter κ and the verification is performed in
batch of size `. The threshold for dropout is t (i.e., at least
t parties survive dropout) and the set of corrupted parties is
C ⊆ P ∩ {S} such that |C \ {S}| < t. U∗〈k〉 is the set U∗
in the k-th aggregation phase. Given fixed N , t, κ, ` and C,
we define MC as the polynomial time algorithm for the “next-
message” function of corrupted parties in C. That is, given a
party identifier c ∈ C, a round index i a transcript Ti that has
been sent and received so far by all corrupted parties in C,
and the joint randomness rC for the execution of corrupted
parties, MC(c, i, Ti, rC) outputs the message for the party c in
the round i.

Note that some common reference strings (CRS) are re-
quired by this protocol. As we will see, this protocol is secure
in the CRS-hybrid model [29]. More specifically, according
to the CRS functionality, the simulator is allowed to learn the
trapdoor of the underlying commitment scheme. Therefore,
in the CRS-hybrid model, the simulator of our protocol can
obtain this trapdoor by simulating the CRS functionality and
then use the trapdoor to make the simulated view consistent
with the real one.

Definition 3 gives out the integrity of aggregation consid-
ered in this paper. In this definition, we say that integrity is
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Protocol ΠVERIFL

1) Common reference string: All parties are given LHHpp← LHH.HGen(1κ, 1d), the COMpp output by COM.Setup(1κ), SSpp← SS.Setup(1κ), and
KApp← KA.Setup(1κ). The security parameter κ, the threshold t, the number of parties N , the input domain ZdR, the aggregation domain ZdB and the batch size `
are implicit.

2) Aggregation phase (for the epoch k ∈ [`]):
• Round 0 (AdvertiseKeys):

For each party Pi in parallel:
– Generate (ski〈k〉, pki〈k〉)← KA.KeyGen(), (mski〈k〉,mpki〈k〉)← KA.KeyGen().
– Send (pki〈k〉,mpki〈k〉) to the server and move to the next round.

Server:
– Collect messages from at least t parties in the previous round; otherwise abort. Let U1〈k〉 be this set of parties.
– Multi-send to all parties in U1〈k〉 the set {(j, pkj〈k〉,mpkj〈k〉)}j∈U1〈k〉 and move to the next round.

• Round 1 (ShareMetadata):
For each party Pi in parallel:

– Receive the set {(j, pkj〈k〉,mpkj〈k〉)}j∈U1〈k〉 from the server. Assert that |U1〈k〉| ≥ t, that all the public keys are different.
– Compute the linearly homomorphic hash of its input in the k-th epoch, say vi〈k〉, as well as the commitment of this hash: hi〈k〉 ← LHH.Hash(vi〈k〉),
ci〈k〉 ← COM.Commit(hi〈k〉; ri〈k〉), in which ri〈k〉 is uniformly drawn from randomness space.

– Generate t-out-of-(|U1〈k〉| − 1) shares of hi〈k〉: {[[hi〈k〉]]j}j∈U1〈k〉\{i} ← SS.Share(t,U1〈k〉 \ {i}, hi〈k〉).
– Generate t-out-of-(|U1〈k〉| − 1) shares of ri〈k〉: {[[ri〈k〉]]j}j∈U1〈k〉\{i} ← SS.Share(t,U1〈k〉 \ {i}, ri〈k〉).
– Sample a random element bi〈k〉 ← Fp, in which the field Fp is described in SSpp.
– Generate t-out-of-(|U1〈k〉| − 1) shares of bi〈k〉: {[[bi〈k〉]]j}j∈U1〈k〉\{i} ← SS.Share(t,U1〈k〉 \ {i}, bi〈k〉).
– Generate t-out-of-(|U1〈k〉| − 1) shares of mski〈k〉: {[[mski〈k〉]]j}j∈U1〈k〉\{i} ← SS.Share(t,U1〈k〉 \ {i},mski〈k〉).
– For each other Pj ∈ U1〈k〉 \ {i}, compute the pairwise symmetric key ki,j〈k〉 ← KA.Agree(ski〈k〉, pkj〈k〉), and the ciphertext
Ci,j〈k〉 ← SE.Enc((i, j, [[hi〈k〉]]j , [[ri〈k〉]]j , [[bi〈k〉]]j , [[mski〈k〉]]j); ki,j〈k〉).

– If any of the above operations fails, abort; otherwise send all tuples (i, ci〈k〉, {(j, Ci,j〈k〉)}j∈U1〈k〉\{i}) to the server.
– Store all messages received and values generated in this round, and move to the next round at the end of the message delivery.

Server:
– Collect sets of ciphertexts from at least t parties. Let U2〈k〉 ⊆ U1〈k〉 be this set of parties. Send to each party Pj ∈ U2〈k〉 all message for it:
{(i, ci〈k〉, Ci,j〈k〉)}i∈U2〈k〉\{j} and move to the next round.

• Round 2 (MaskedInputCollection):
For each party Pi in parallel:

– Receive from the server the set of messages {(j, cj〈k〉, Cj,i〈k〉)}j∈U2〈k〉\{i} and infer the set U2〈k〉. If the set is of size < t, abort.
– For each other party Pj ∈ U2〈k〉 \ {i}, compute the agreed key for pairwise masking maki,j〈k〉 = KA.Agree(mski〈k〉,mpkj〈k〉).
– Compute its masked input pi〈k〉 ← vi〈k〉+ PRG(bi〈k〉) +

∑
j∈U2〈k〉

∆i,jPRG(maki,j〈k〉) mod B, in which ∆i,j = 1 if i < j and ∆i,j = −1 if
i > j and ∆i,j = 0 if i = j.

– If any of the above operations fails, abort; otherwise send pi〈k〉 to the server and move to the next round.
Server:

– Collect pi〈k〉 from at least t parties. Let U3〈k〉 ⊆ U2〈k〉 be this set of parties. Send to parties in U3〈k〉 the set U3〈k〉.
• Round 3 (Unmasking):

For each party Pi in parallel:
– Receive from the server a set U3〈k〉. Verify that U3〈k〉 ⊆ U2〈k〉, that |U3〈k〉| ≥ t. If any of the above operations fails, abort.
– For each other party Pj ∈ U2〈k〉 \ {i}, decrypt the ciphertext Cj,i〈k〉 (abort if decryption fails), which was received in the Round 2, to get

(j′, i′, cj′ 〈k〉, [[hj′ 〈k〉]]i, [[rj′ 〈k〉]]i, [[bj′ 〈k〉]]i, [[mskj′ 〈k〉]]i)← SE.Dec(Cj,i〈k〉; ki,j〈k〉). Assert j′ = j and i′ = i.
– Send its secret seed for self-mask and two sets of shares to the server: (bi〈k〉, {[[bj〈k〉]]i}j∈U3〈k〉, {[[mskj〈k〉]]i}j∈U2〈k〉\U3〈k〉).

Server:
– Collect message from at least t parties. Let U4〈k〉 ⊆ U3〈k〉 be this set of parties. If |U4〈k〉| < t, abort.
– For each Pi ∈ U3〈k〉 \ U4〈k〉, reconstruct bi〈k〉 ← SS.Combine(t, {[[bi〈k〉]]j}j∈U4〈k〉). For each Pi ∈ U2〈k〉 \ U3〈k〉, reconstruct

mski〈k〉 ← SS.Combine(t, {[[mski〈k〉]]j}j∈U4〈k〉) and therefore the maki,j〈k〉 for all j ∈ U3〈k〉.
– Compute the aggregation result a〈k〉 ←

∑
i∈U3〈k〉

pi〈k〉 −
∑
i∈U3〈k〉

PRG(bi〈k〉) +
∑
i∈U2〈k〉\U3〈k〉,j∈U3〈k〉

∆i,jPRG(maki,j〈k〉) and send
(a〈k〉,U4〈k〉) to all parties in U4〈k〉.

Fig. 4. Aggregation Phase for Privacy-preserving Verifiable Aggregation Protocol.

achieved if an adversary who wants to forge the aggregation
result after all clients having committed their homomorphic
hash values respectively can be detected with an overwhelming
probability.

Definition 3 (Integrity of aggregation). In the k-th epoch,
let vH〈k〉 be the partially aggregation result of the inputs of
honest parties in U3〈k〉, and vi〈k〉 be the well-formed input
of some corrupted party Pi ∈ U3〈k〉 ∩ C whose hash was
computed and committed in ShareMetadata. We say that
the integrity of aggregation in a verification batch of size
` holds, if an adversary can have honest parties accept its
forged aggregation result in some epochs of this batch with a

negligible probability, i.e.,

Pr


Pi ∈ V2 \ C, for some k ∈ K ⊆ [`],
a〈k〉 ← vH〈k〉+

∑
i∈U3〈k〉∩C vi〈k〉,

Pi outputs ⊥ a〈k〉 ∈ ZdB ,
a′〈k〉 ←MC(S, k, Tk, rC),
a′〈k〉 ∈ ZdB , a′〈k〉 6= a〈k〉


≥ 1− negl(κ).

By Definition 4, we define input privacy of each client in
the existence of the considered adversary. This definition aims
to capture an adversary who corrupts the server and a subset of
parties learns nothing from protocol transcript but the partially
aggregation result of honest parties. We say that an adversary
learns nothing if its view can be simulated by a simulator
without any secret internal state of honest parties (e.g., the
knowledge of the gradient of a client). More specifically, input
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Protocol ΠVERIFL (cont.)

1) Batch verification phase (of batch size `):
• Round 0 (Decommitting):

For each party Pi in parallel:
– Send ({hi〈k〉, ri〈k〉}k∈[`]) to the server.

Server:
– Collect messages from at least t parties. Let V1 ⊆ U4〈`〉 be this set of parties (note that U4〈`〉 is the latest set of surviving parties in this batch of size `). If
|V1| < t, abort; otherwise send the set {({hi〈k〉, ri〈k〉}k∈[`])}i∈V1 to all parties in V1.

• Round 1 (DroppedDecommitting):
For each party Pi in parallel:

– Receive from the server the set {({hi〈k〉, ri〈k〉}k∈[`])}i∈V1 and infer the set V1. If |V1| < t, abort.
– Send two sets of shares to the server: {[[hj〈k〉]]i}k∈[`],j∈U3〈k〉\V1 and {[[rj〈k〉]]i}k∈[`],j∈U3〈k〉\V1 .

Server:
– Collect sets of shares from at least t parties. Let V2 be this set of parties. If V2 < t, abort.
– Reconstruct hi〈k〉 ← SS.Combine(t, {[[hi〈k〉]]j}j∈V2 ) and ri〈k〉 ← SS.Combine(t, {[[ri〈k〉]]j}j∈V2 ) for each k ∈ [`] and each Pi ∈ U3〈k〉 \ V1.
– Send {(hi〈k〉, ri〈k〉)}k∈[`],i∈U3〈k〉\V1 to all parties in V2.

• Round 2 (BatchChecking):
For each party Pi in parallel:

– Receive {(hi〈k〉, ri〈k〉)}k∈[`],i∈U3〈k〉\V1 from the server. If, for all k ∈ [`], the set indeed contains the decommitment strings of parties in U3〈k〉 \ V1,
continue; otherwise abort.

– Check that COM.Decommit(cj〈k〉, hj〈k〉, rj〈k〉) = 1 holds for all k ∈ [`] and j ∈ U3〈k〉 \ {i}; otherwise output ⊥.
– For k ∈ [`], combine the linearly homomorphic hashes of different parties in the k-th epoch: h〈k〉 ← LHH.Eval({hj〈k〉}j∈U3〈k〉, 1, ..., 1).
– Draw ` uniformly random coefficients in the field Fq (which is provided in LHHpp) α1, ..., α` and compute the linear combination of combined hashes of

different epochs: h∗ ← LHH.Eval(h〈1〉, ..., h〈`〉, α1, ..., α`).
– Compute the linear combination of the aggregation results of different epochs using the same coefficients: a∗ ←

∑
k∈[`] αka〈k〉 mod B.

– Check that h∗ = LHH.Hash(a∗). Output (a〈1〉, ..., a〈`〉) if it holds; otherwise output ⊥.

Fig. 5. Verification Phase for Privacy-preserving Verifiable Aggregation Protocol.

privacy is defined in the sense that the view of an adversary
corrupting less than t data parties can be simulated only given
the partially aggregation result of honest parties.

Definition 4 (Input privacy). We say that the input privacy
of an honest client holds, if there exists a PPT simula-
tor SIM such that for any set of parties P , threshold t,
security parameter κ, batch size `, set of inputs {vi}i∈P ,
{U1〈k〉,U2〈k〉,U3〈k〉,U4〈k〉}k∈[`] and V1, V2 such that for all
j ∈ [3] and k ∈ [`− 1]

P ⊇ U1〈1〉,
Uj〈k〉 ⊇ Uj+1〈k〉,
U4〈k〉 ⊇ U1〈k + 1〉,
U4〈`〉 ⊇ V1 ⊇ V2,

and set of corrupted parties C such that C ⊆ P ∩ {S}
and |C \ {S}| < t, the output of SIM is computationally
indistinguishable from the output of REALP,t,κC :

REALP,t,κC ({vi}i∈P , {U1〈k〉,U2〈k〉,U3〈k〉,U4〈k〉}k∈[`],V1,V2)
≈c

SIMP,t,κC ({vi}i∈C , {z〈k〉}k∈[`], {U1〈k〉,U2〈k〉,U3〈k〉,U4〈k〉}k∈[`],V1,V2),

where

z〈k〉 =

{ ∑
i∈U3〈k〉\C vi, if |U3〈k〉| ≥ t

⊥, otherwise.

Lemma 1. Assume the hardness of discrete logarithm and the
security of COM. In the AMOTIZED-VERIFICATION step, an
honest client will accept the aggregation results a〈1〉, ..., a〈`〉
if and only if these results are honestly aggregated by the
server with an overwhelming probability.

Proof. Assume there exists a PPT adversary that succeeds in
letting some honest party Pi output its forged aggregation

results ā〈k〉 6= a〈k〉 =
∑
i vi〈k〉 for all k ∈ K ⊆ [`] in

BatchChecking. We first observe that, since Pi does not
output ⊥, the decommitment in BatchChecking should be
done successfully. For decommitment strings (hj〈k〉, rj〈k〉)
where k ∈ K and j ∈ U3〈k〉 ∩ C, the adversary has the
freedom whether to send correct decommitment strings in De-
committing. If it chooses to send malformed decommitment
strings, the decommitment in BatchChecking fails with a
non-negligible probability since COM is binding. The same
argument applies to the case where the adversary sends to Pi
its incorrectly reconstructed decommitment strings of (honest)
dropped parties in DroppedDecommitting.

The above argument implies that the adversary cannot
change the hash values it has committed in ShareMetadata
on behalf of corrupted parties without having Pi output ⊥.
Recall that, by protocol specification, the honestly aggregation
result a〈k〉 and the final hash h∗ satisfy

h∗ = LHH.Hash(a∗) = LHH.Hash

∑
k∈[`]

αka〈k〉


=

∏
j∈[d]

g
∑
k∈[`] αka〈k〉[j]

j

=

 ∏
j∈[d]

g
∑
k∈K αka〈k〉[j]

j

 ·
 ∏
j∈[d]

g
∑
k∈[`]\K αka〈k〉[j]

j



Meanwhile, with unchanged hashes committed in
ShareMetadata, we have another linear combination
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a←
∑
k∈K αkā〈k〉+

∑
k∈[`]\K αka〈k〉 and therefore

LHH.Hash(a)

= LHH.Hash

∑
k∈K

αkā〈k〉+
∑

k∈[`]\K

αka〈k〉


=

 ∏
j∈[d]

g
∑
k∈K αk ā〈k〉[j]

j

 ·
 ∏
j∈[d]

g
∑
k∈[`]\K αka〈k〉[j]

j

 .

Since Pi does not output ⊥, it should hold that h∗ =
LHH.Hash(a), i.e.,∏

j∈[d]

g
∑
k∈K αka〈k〉[j]

j =
∏
j∈[d]

g
∑
k∈K αk ā〈k〉[j]

j .

where a〈k〉 6= ā〈k〉 for k ∈ K. Notice that the coefficients
αk for k ∈ K are uniformly drawn from Fq , the event that
h∗ = LHH.Hash(a) and∑

k∈K

a〈k〉[j] =
∑
k∈K

ā〈k〉[j]

in which j ∈ [d] and a〈k〉 6= ā〈k〉 for k ∈ K happens with a
probability 1/|Fq|, which is negligible in the security param-
eter κ. In other words, conditioned on h∗ = LHH.Hash(a), it
is hold that ∑

k∈K

a〈k〉[j] 6=
∑
k∈K

ā〈k〉[j]

for some j ∈ [d], which induces a collision of LHH.
It is readily seen that such a PPT adversary can break either

the binding property of COM or the collision resistance (Def-
inition 1) of LHH with a non-negligible probability, which is
infeasible under the assumption. This completes the proof.

Theorem 1. Assume the hardness of discrete logarithm and
the security of COM. VERIFL achieves integrity of aggrega-
tion according to Definition 3.

Proof. This theorem is straightforward from Lemma 1.

Theorem 2. Assume the security of SE, KA, SS and COM.
VERIFL achieves input privacy according to Definition 4 in
the CRS-hybrid model.

Proof. The proof is identical to that for Theorem 6.3 in [7],
except that we should additionally take care of the hashes
being committed in ShareMetadata. Notice that SIM did not
know the real inputs of honest parties by the time it was asked
to compute the hash as well as the commitment. The strategy
of SIM is to hash a dummy vector (e.g., the one filled with
0’s) and commit this dummy hash value. Give that COM is
hiding and the secret sharing scheme hides messages being
shared, the joint view w.r.t. the aggregation phase of parties
in C will be indistinguishable from that in REALP,t,κC .

It remains to show that the joint view w.r.t. the verification
phase of parties in C can also be simulated by SIM. Note that
the simulated commitment is committed to the dummy hash
which is different (with an overwhelming probability) to that
of the vector sampled by SIM after it obtains the partially
aggregation result of honest parties by querying z〈k〉 for
k ∈ [`]. Recall that COM is equivocal and, in the CRS-hybrid

model, SIM has the trapdoor td which is associated with the
COMpp output by COM.Setup. So, using the trapdoor td,
SIM can equivocate these commitments to the hashes of inputs
sampled by it on behalf of honest parties. The equivocality
of COM (Definition 2) guarantees that these commitments
are consistent with hashes of the simulated inputs of honest
parties and therefore can be successfully decommitted with
an overwhelming probability. Moreover, since C forms an
unqualified set to reconstruct shared secrets by assumption,
SIM can adjust its shares held on behalf of honest parties
such that the reconstructed decomittment strings match those
obtained from equivocation. That is, the verification phase can
be simulated, which completes the proof.

V. EVALUATION

A. Experimental Setup

We show the performance of our protocol based on a proto-
type implementation. The prototype is written in Java while we
use JNI to implement low-level cryptography algorithms. In
particular, linearly homomorphic hash LHH is realized using
elliptic curve over the NIST P-256 curve. For efficient equiv-
ocal commitment COM, we use folklore hash commitment
scheme instantiated with SHA-256, which is proved secure in
restricted programmable and observable global random oracle
model [30]. For secret sharing scheme, we adopt standard t-
out-of-N Shamir secret sharing. For key agreement, we use
elliptic curve Diffie-Hellman over the NIST P-256 curve with
SHA-384. The symmetric encryption is instantiated with AES-
OFB mode with 256-bits key and 128-bits IV. For pseudo-
random generator, we use AES-CTR mode. In addition, we
fix two moduli R = 224 and B = 234 (i.e., the maximum
number of clients is B/R = 210 = 1024) and assume all
clients will input honestly as in our adversarial model.

We simulate clients and the aggregation server on a 64-
bits Ubuntu 16.04 LTS desktop equipped with Intel i7-7700
CPU (3.60 GHz) and 16 GB RAM. The simulation is single-
threaded. Given that end-to-end networking time will not
significantly influence the asymptotic computation complexity
of our protocol and can be calculated using bandwidth, we
omit this part in our evaluation.

Dropout cases. For client dropout, we consider the follow-
ing two cases of dropout in our protocol:
• Case I dropout: In this case, clients drop out of the

protocol after sending their metadata to other clients
via server in ShareMetadata but before sending their
masked gradients to the server in MaskedInputCollec-
tion. As discussed in [7], this dropout case will lead to the
worst performance of aggregation phase in our protocol
for the expensive computation overhead to recover the
pairwise-mask.

• Case II dropout: In this case, some clients drop out before
reporting their decommitment strings to other clients via
the aggregation server in Decommitting. The server has
to recover these strings of dropped clients by asking all
surviving clients to send their shares of these strings
and running secret reconstruction algorithm to recover
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(f)

Fig. 6. Comparison between our protocol and VerifyNet [8] in terms of (i) outgoing communication overhead for verification, (ii) the total computation
overhead, and (iii) the total outgoing communication overhead, as the dimension of gradient vectors increases. (a) Outgoing communication overhead for
verification per client. (b) Outgoing communication overhead for verification of the server. (c) Computation overhead per client. (d) Outgoing communication
overhead per client. (e) Computation overhead of the server. (f) Total outgoing communication overhead of the server.

TABLE I
COMPUTATION OVERHEAD WITH RESPECT TO CASE I DROPOUT1

Num. Client Dropout Aggregation phase (Round #) Verification phase (Round #) Total
0 1 2 3 Receive result 0 1 2

1000

0.00% Client 0 ms 391 + 3947 ms 1798 ms 0 ms 45 ms 0 ms 17 ms 3931 ms 10129 ms
Server 0 ms 0 ms 1007 ms 1363 ms - 1 ms 0 ms - 2371 ms

10.00% Client 0 ms 411 + 4089 ms 1834 ms 0 ms 45 ms 0 ms 15 ms 3910 ms 10304 ms
Server 0 ms 0 ms 930 ms 216205 ms - 0 ms 0 ms - 217135 ms

30.00% Client 0 ms 408 + 3930 ms 1791 ms 0 ms 45 ms 0 ms 12 ms 3915 ms 10101 ms
Server 1 ms 0 ms 703 ms 561420 ms - 0 ms 0 ms - 562124 ms

500

0.00% Client 0 ms 128 + 3919 ms 896 ms 0 ms 44 ms 0 ms 8 ms 3904 ms 8899 ms
Server 0 ms 0 ms 501 ms 679 ms - 0 ms 0 ms - 1180 ms

10.00% Client 0 ms 123 + 3954 ms 909 ms 0 ms 45 ms 0 ms 7 ms 3969 ms 9007 ms
Server 1 ms 0 ms 466 ms 43921 ms - 0 ms 0 ms - 44388 ms

30.00% Client 0 ms 122 + 3943 ms 896 ms 0 ms 44 ms 0 ms 6 ms 3906 ms 8917 ms
Server 0 ms 0 ms 351 ms 107428 ms - 0 ms 0 ms - 107779 ms

1The dimension of gradient vectors is set to 100K and the batch size is 1. The underlined bold figures stand for the costs for verification in our protocol,
compared with our implementation of [7] in the same experimental environment and parameter settings.

them. This will lead to the most expensive computation
overhead in our verification phase.

B. Comparison with VerifyNet [8]: Dimension-Independence

Given that the protocol in [8] does not allow Case II dropout
and amortization, we consider only the Case I dropout and
set the batch size to 1 in our comparison. In addition, we
set the number of clients N = 500 and fix the threshold
t = 1

2N . All other parameters remain unchanged as above.
It is readily seen from Figure 6(a) and Figure 6(b) that, in

our protocol, the outgoing communication cost for verification
of either each client or the server is independent of the
dimension of gradients. However, in [8], the two metrics
is linearly dependent on the dimension of gradients, which
results in impractical performance when the dimension is large
enough. A more comprehensive comparison with respect to
the overall overhead is presented in Figure 6. It is easy to
see that our protocol outperforms VerifyNet completely. A
more encouraging result is that our protocol can be scaled to
support high-dimensional gradient vectors (e.g., 100K) with
even better performance than that achieved by VerifyNet in
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TABLE II
OUTGOING COMMUNICATION OVERHEAD WITH RESPECT TO CASE I DROPOUT1

Num. Client Dropout Aggregation phase (Round #) Verification phase (Round #) Total
0 1 2 3 Receive result 0 1 2

1000

0.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 0.00 KB - 658.24 KB
Server 66.41 KB 68.29 + 97.56 KB 1.95 KB 488.28 KB - 66.41 KB 0.00 KB - 788.90 KB

10.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 0.00 KB - 658.24 KB
Server 66.41 KB 68.29 + 97.56 KB 1.76 KB 488.28 KB - 59.77 KB 0.00 KB - 782.06 KB

30.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 0.00 KB - 658.24 KB
Server 66.41 KB 68.29 + 97.56 KB 1.37 KB 488.28 KB - 46.48 KB 0.00 KB - 768.39 KB

500

0.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 0.00 KB - 573.28 KB
Server 33.20 KB 34.11 + 48.73 KB 0.98 KB 488.28 KB - 33.20 KB 0.00 KB - 638.51 KB

10.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 0.00 KB - 573.28 KB
Server 33.20 KB 34.11 + 48.73 KB 0.88 KB 488.28 KB - 29.88 KB 0.00 KB - 635.09 KB

30.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 0.00 KB - 573.28 KB
Server 33.20 KB 34.11 + 48.73 KB 0.68 KB 488.28 KB - 23.24 KB 0.00 KB - 628.25 KB

1The dimension of gradient vectors is set to 100K and the batch size is 1. The entries of server are outgoing communication sent from the server to a single
client. The underlined bold figures stand for the costs for verification in our protocol, compared with our implementation of [7] in the same experimental
environment and parameter settings.

TABLE III
COMPUTATION OVERHEAD WITH RESPECT TO CASE II DROPOUT1

Num. Client Dropout Aggregation phase (Round #) Verification phase (Round #) Total
0 1 2 3 Receive result 0 1 2

1000

0.00% Client 0 ms 392 + 3946 ms 1798 ms 0 ms 45 ms 0 ms 17 ms 3931 ms 10129 ms
Server 0 ms 0 ms 1007 ms 1363 ms - 1 ms 0 ms - 2371 ms

10.00% Client 0 ms 405 + 3931 ms 1792 ms 0 ms 45 ms 0 ms 15 ms 3927 ms 10115 ms
Server 0 ms 0 ms 1004 ms 1358 ms - 0 ms 172309 ms - 174671 ms

30.00% Client 0 ms 408 + 3930 ms 1796 ms 0 ms 45 ms 0 ms 12 ms 3925 ms 10116 ms
Server 0 ms 0 ms 1011 ms 1369 ms - 0 ms 517306 ms - 519686 ms

500

0.00% Client 0 ms 126 + 3921 ms 896 ms 0 ms 44 ms 0 ms 8 ms 3904 ms 8899 ms
Server 0 ms 0 ms 501 ms 679 ms - 0 ms 0 ms - 1180 ms

10.00% Client 0 ms 140 + 3917 ms 896 ms 0 ms 45 ms 0 ms 7 ms 3912 ms 8917 ms
Server 0 ms 0 ms 502 ms 680 ms - 0 ms 21377 ms - 22559 ms

30.00% Client 0 ms 136 + 3928 ms 899 ms 0 ms 45 ms 0 ms 6 ms 3938 ms 8952 ms
Server 1 ms 0 ms 507 ms 681 ms - 0 ms 64462 ms - 65651 ms

1The dimension of gradient vectors is set to 100K and the batch size is 1. The underlined bold figures stand for the costs for verification in our protocol,
compared with our implementation of [7] in the same experimental environment and parameter settings.

TABLE IV
OUTGOING COMMUNICATION OVERHEAD WITH RESPECT TO CASE II DROPOUT1 .

Num. Client Dropout Aggregation phase (Round #) Verification phase (Round #) Total
0 1 2 3 Receive result 0 1 2

1000

0.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 0.00 KB - 658.24 KB
Server 66.41 KB 68.29 + 97.56 KB 1.95 KB 488.28 KB - 66.41 KB 0.00 KB - 788.90 KB

10.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 6.84 KB - 665.07 KB
Server 66.41 KB 68.29 + 97.56 KB 1.95 KB 488.28 KB - 59.77 KB 6.64 KB - 788.90 KB

30.00% Client 0.07 KB 68.29 + 66.37 KB 488.28 KB 35.16 KB - 0.07 KB 20.51 KB - 678.75 KB
Server 66.41 KB 68.29 + 97.56 KB 1.95 KB 488.28 KB - 46.48 KB 19.92 KB - 788.90 KB

500

0.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 0.00 KB - 573.28 KB
Server 33.20 KB 34.11 + 48.73 KB 0.98 KB 488.28 KB - 33.20 KB 0.00 KB - 638.51 KB

10.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 3.42 KB - 576.70 KB
Server 33.20 KB 34.11 + 48.73 KB 0.98 KB 488.28 KB - 29.88 KB 3.32 KB - 638.51 KB

30.00% Client 0.07 KB 34.11 + 33.17 KB 488.28 KB 17.58 KB - 0.07 KB 10.26 KB - 583.53 KB
Server 33.20 KB 34.11 + 48.73 KB 0.98 KB 488.28 KB - 23.24 KB 9.96 KB - 638.51 KB

1The dimension of gradient vectors is set to 100K and the batch size is 1. The entries of server are outgoing communication sent from the server to a single
client. The underlined bold figures stand for the costs for verification in our protocol, compared with our implementation of [7] in the same experimental
environment and parameter settings.

dealing with low-dimensional one. C. Comparison with Secure Aggregation [7]
In Table I, Table II, Table III and Table IV, we give out the

additional costs for verification in our protocol. The baseline
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Fig. 7. Comparison between total computation cost for verification, amortized
computation cost for verification and total computation cost per client. The
dimension of gradient vectors is set to 100K and the number of clients is 500.
Assume no dropout.

protocol is [7] that addresses the input privacy of mobile
clients. It is easy to see from underlined bold figures that our
protocol does not introduce too much additional communica-
tion overhead to the baseline secure aggregation protocol per
client. For example, when the dimension of gradient vectors
is set to 100K, the communication for transferring a gradient
is always 488.28 KB, which takes the largest proportion of
the overall communication per client. Compared with that, the
additional communication caused by verification protocol is
insignificant. As for the computation overhead, the one caused
by our protocol is also affordable compared with the one in
[7]. In the real-world applications of FL, it is not uncommon
that each local iteration of machine learning requires tens of
seconds. When deploying our protocol to these applications
where dropout is not severe (e.g., <1% occurred naturally
as reported in [7]), the overall computation overhead will not
blow up since our protocol has similar wall-clock running time
with a local iteration of machine learning.

D. Other Experimental Results

Amortized Verification. In Figure 7, it is clear that, with
the growth of batch size, the amortized verification overhead
per epoch can be reduced nearly to that of a single LHH.Hash
call. In other words, with a large enough batch size, we can
approximately halve the computation overhead of a client in
the sense of amortization. However, in real-world applications
where there are dropouts in each epoch, the batch size cannot
be set too large given that too large verification batch will lead
to severe accumulation of dropouts and therefore the expensive
overhead to run secret reconstruction algorithm. We regard this
phenomenon as a tradeoff and therefore the batch size should
be fine-tuned in real-world applications.

Number of clients. Both the computation and communica-
tion cost in client side grows linearly in the number of clients,
which results from the fact that the number of secret shares
generated in ShareMetadata is proportional to the number
of clients. For the wall-clock running time of the server, it
grows quadratically in the number of clients. The reason is
that, in Unmasking, the server has to run secret reconstruction
algorithm to recover the secret mask key of dropped clients

and both the threshold t and the number of dropped clients
are proportional to the number of clients N .

Dropout. As shown in Figure 8 and Figure 9, it is clear that,
in client side, either the computation cost or the communica-
tion cost is independent of how many other clients drop out
of the protocol execution. However, the two metrics in server
side is influenced by the dropout rate, especially the wall-clock
running time of the server. We note that the overhead suffered
by the server is acceptable.

VI. RELATED WORK

In this section, we briefly discuss the works related to secure
verifiable aggregation in federated learning.

Generic maliciously-secure multiparty computation. In
general, FL involves an aggregation server and a set of clients
and therefore can be regarded as a specific multiparty compu-
tation problem. Although there are piles of works [14], [15],
[16], [17], [18], [19], [20], [21], [31] guarantee the integrity
of computation in the existence of a malicious (i.e., active)
adversary, they are not suitable for FL settings. For garbled
circuit-based protocols [19], [20], [21], [31], they deal with the
malicious adversary at the cost of expensive communication
overhead (e.g., that led by commit-and-prove [18] or cut-and-
choose [32], [21] technique) and cannot be deployed on a large
scale. For secret sharing-based protocols [14], [15], [16], each
client has to divide each entry of its input into (additive) shares
and send them to each other client, which results in a rather
expensive communication overhead in O(Nd). In addition,
these protocols rely on homomorphic encryption to compute
MACs of shares. Their distributed homomorphic decryption
sub-protocols cannot tolerate dropout in a threshold manner
directly and therefore are not suitable for FL settings where
dropout is common.

Machine learning based on cryptographic protocols.
There are two lines of the cryptographic research regarding
privacy and verifiability issues in machine learning, i.e., secure
model prediction and secure model training. For secure model
prediction, the goal is to securely query a model without
revealing model inputs and the information of the model. All
works [33], [34], [35], [36], [37] require that the model being
queried was well-trained in advance, which differs from the
motivation of FL.

For secure model training, there are several works [38], [39],
[40] being proposed to train a model while guarantee integrity
of the derived model and the privacy of users. Unfortunately,
these works will result in expensive overhead when applied
to FL settings. For example, Mohassel et al. [38] proposed a
framework to convert between any two kinds of secret shares
and built up general protocols to train a neural network, where
each client is supposed to share each entry of its gradient
vector. The communication overhead will blow up as the
dimension of vector increases. In addition, as the number of
clients increases, to preserve the robustness against dropout,
the size of the share held by each client blows up as well.

There are also some works [41], [42] based on homo-
morphic encryption (HE) which address input privacy only.
These works rely on a stronger adversarial model where the
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(d)

Fig. 8. Total computation and outgoing communication overhead, as the number of clients increases. (a) Computation overhead per client. (b) Outgoing
communication overhead per client. (c) Computation overhead of the server. (d) Outgoing communication overhead of the server (for a single client). The
dimension of gradient vectors is set to 100K and the batch size is 1. Assume Case I dropout.
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Fig. 9. Total computation and outgoing communication overhead, as the dimension of gradient vectors increases. (a) Computation overhead per client. (b)
Outgoing communication overhead per client. (c) Computation overhead of the server. (d) Outgoing communication overhead of the server (for a single client).
The number of clients is set to 500 and the batch size is 1. Assume Case I dropout.

secret decryption key of encrypted gradients is only known
to all clients and these clients are honest. However, in our
adversarial model (Section II-C), the adversary can acquire
this key from controlled corrupted clients and decrypts all
encrypted gradients, which undermines the security of [41],
[42]. It is possible to secret share the decryption key (in a
threshold manner, e.g., [43], [44]) among all clients to mitigate
this issue. Unfortunately, such a construction complicates the
decryption of encrypted gradients and, in the FL setting where
dropout is common, will significantly increase the size of
key shares and the communication between the server and a
client as the number of clients increases. So, we believe the
protocol based on double-masking is more efficient than that
based on HE. In addition, HE is a primitive that can be used
to address input privacy only. To achieve both input privacy
and verifiability, some other cryptographic primitives (e.g.,
zero-knowledge proof) are required. This paper finds such a
primitive that can be used to replace time-consuming zero-
knowledge proof adopted by [8].

To the best of our knowledge, there is only one work [8] for
secure verifiable aggregation in FL. However, this work adopts
heavy zero-knowledge proof, which results in impractical
performance and unaffordable communication overhead.

Differential privacy. A notable fact is that privacy-
preserving cryptographic protocols cannot fully prevent pri-
vacy disclosure in machine learning. It is known that privacy
disclosure can be resulted from the statistical characteristics
(e.g., confidence information, prediction outcome) of machine
learning algorithms. For example, there are some black-box
privacy attacks [22], [23], [24], [25], [26] leveraging these
statistical characteristics. Treating cryptographic protocols as
black-box oracles, such black-box attacks can be applied to the
machine learning paradigms even if they are securely realized

by cryptographic protocols. That is, as long as these protocols
implement the functionality of machine learning, the statistical
leakage is inevitable. A possible defense is to combine the
cryptographic protocols with differential privacy [45], [46],
[47], [48].

Differentially private federated learning [49], [50], [51],
[52], [53] has been extensively studied in the literature. A
few of existing works [49], [53] consider how to combine
differentially private mechanisms with multiparty computation
to protect not only the statistical characteristics but also the
raw inputs of all honest clients. However, these works do not
address the verifiability issue in FL. In this work, we are
devoted to fix this issue of FL with practical overhead and
differential privacy is not the primary goal. A straightforward
way to make our protocol differentially private is to add
Gaussian or Laplacian noises to original gradients and then
regard the noisy gradients as inputs to our protocol, although
it might not achieve the best utility of the global model. An
interesting direction for future work would be to explore how
to design an optimal differentially private mechanism that is
compatible with our practical secure verifiable aggregation
protocol.

Byzantine-robust aggregation. A Byzantine client in FL
can send arbitrary values to the aggregation server to influence
model convergence. To deal with this issue, one popular
mitigation is to use Byzantine-robust aggregation, which is
mostly related to our aggregation protocol. There are several
alternative aggregation mechanisms [54], [55], [56], [57] to the
standard federated averaging to ensure that convergence is not
significantly influenced by Byzantine clients, in which [57] is
for non-IID settings. As noted in [58], it is quite challenging to
devise a Byzantine-robust aggregation mechanism for non-IID
FL datasets.
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Byzantine-robust aggregation can be regarded as a supple-
ment to the secure verifiable aggregation based on crypto-
graphic protocols since the latter guarantees only input privacy
and the integrity of aggregation with respect to the used inputs.
In other words, secure verifiable aggregation cannot prevent
Byzantine clients to use malformed inputs to do harm to either
the training process or the resulting global model.

However, how to combine Byzantine-robust aggregation
[54], [55], [56], [57] with secure verifiable aggregation is still
an open problem. There are several technical challenges to
be addressed by future work. First, these works adopt a com-
pletely different adversarial model to that of secure verifiable
aggregation (e.g., Section II-C). That is, Byzantine aggregation
assume only Byzantine clients that send arbitrary values to an
honest aggregation server and does not consider the case where
the server is corrupted. Second, these works implicitly assume
the aggregation server has access to the plaintext stochastic
gradients uploaded by clients, which violates input privacy.
Since Byzantine-robust aggregation mechanisms usually adopt
more complicated arithmetic (e.g., median or trimmed mean)
than federated averaging, it is challenging to devise a tailored
dropout-tolerant protocol for these mechanisms to achieve
input privacy and verifiability additionally.

VII. CONCLUSION

In this paper, we studied how to realize verifiable ag-
gregation in FL in a communication-efficient and fast way,
and proposed a protocol named VERIFL. We show by ex-
periments that VERIFL is capable of dealing with (i) high-
dimensional gradient vectors, (ii) a large number of clients,
and (iii) high dropout rate in real-world applications with
practical performance. Notably, in VERIFL, the verification
cost in terms of the outgoing communication is independent
of the gradient dimension, resulting in 110.6× improvement
in communication even with 5× larger gradient vectors in our
experiments.
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