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Differentially Private Byzantine-robust Federated
Learning

Xu Ma, Xiaoqian Sun, Yuduo Wu, Zheli Liu, Xiaofeng Chen, Changyu Dong

Abstract—Federated learning is a collaborative machine learning framework where a global model is trained from different
organizations under the privacy restrictions. Promising as it is, privacy and robustness issues emerge when an adversary attempts to
infer the private information from the exchanged parameters or compromise the global model. Various protocols have been proposed
to counter the security risks, however, it becomes challenging when one want to make federated learning protocols robust against
Byzantine adversaries while preserving the privacy of the individual participant. In this paper, we propose a differentially private
Byzantine-robust federated learning scheme (DPBFL) with high computation and communication efficiency. The proposed scheme is
effective to prevent adversarial attacks launched by the Byzantine participants and achieves differential privacy through a novel
aggregation protocol in the shuffle model. The theoretical analysis indicates that the proposed scheme converges to the approximate
optimal solution with the learning error dependent on the differential privacy budget and the number of Byzantine participants.
Experimental results on MNIST, FashionMNIST and CIFAR10 demonstrate that the proposed scheme is effective and efficient.

Index Terms—Federated Learning, Differential Privacy, Byzantine-robust.

✦

1 INTRODUCTION

MACHINE learning shows outstanding performance in
many data-driven applications like image classifi-

cation, speech recognition, recommendation systems, and
self-driving cars, etc. The success of machine learning is
largely due to the availability of vast volumes of data. How-
ever, for most organizations, it is often difficult to collect
data with enough volume and variety to produce a good
predictive model. Therefore, collaborative learning which
enables learning from multiple data sources becomes an
increasingly popular solution. However, the training dataset
may contain highly private information about an individual.
Therefore, sharing the training data among all the partici-
pants or to a central server is undesirable from the security
and privacy view, and even sometimes is not allowed by
law. Hence, how to realize privacy-preserving collaborative
learning becomes a challenging research problem recently.

Federated learning [1] was first proposed by Google AI,
aiming to enable mobile phones to collaboratively learn a
global shared model without sharing the training data. Dif-
ferent from the centralized machine learning infrastructure,
in which all the training data are collected and processed on
one master server, in federated learning the training data is
kept on the mobile devices (workers) that run the machine
learning algorithm locally. Federated learning reduces the
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risk of privacy leakage by separating model training from
the need for direct access to raw training data.

However, federated learning itself does not completely
guarantee the security and privacy of the whole learn-
ing process. There are two seemingly independent but
entangled challenges: protecting the privacy of individual
worker’s training data and ensuring the robustness of the
global model against Byzantine faults. In federated learn-
ing, local parameters (gradients) and the global models
are exchanged, knowing those can enable multiple privacy
attacks. This is the first challenge in federated learning.
For instance, Zhang et al. [2] proposed a model inversion
attack with a high success rate of inverting deep neural
networks by leveraging partial public information. Nasr et.
al. [3] proposed a white-box membership inference attack
that allows an attacker to tell whether a given sample is in
the training dataset or not. To defend against privacy attacks
such as model-inversion attacks and membership inference
attacks in federated learning, various privacy protection
mechanisms have been proposed based on cryptography
[4], [5], [6], [7], [8], [9] or differential privacy [10], [11], [12],
[13], [14]. However, they are unable to resist the Byzantine
manipulation attacks explained below.

The second challenge is the Byzantine faults. The Byzan-
tine adversaries, who could control a subset of workers,
may send malicious parameters to the master server to
indiscriminately jeopardize the accuracy of the global model
or control the global model to output the specified re-
sult via poisoning attacks [15]. They can seriously damage
the robustness of the federated model. Bagdasaryan et al.
[16] proposed a new backdoor attack and showed that it
is sufficient to reach backdoor accuracy of approximately
50% for word prediction by controlling only 0.01% of the
participants. Some approaches have been proposed to re-
alize Byzantine-robust aggregation for federated learning
[17], [18], [19], [20], [21]. However, most of the existing
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Byzantine-robust techniques require access to the workers’
model updates, so they cannot adopt cryptography and
differential privacy technologies, which cause the risk of
privacy leakage. Privacy and robustness are two important
issues that have to be addressed in federated learning. In
this paper, we present a shuffle protocol for summation
(SPS) which satisfies differential privacy. Then, we com-
bine SPS with a Byzantine-robust stochastic aggregation
algorithm to construct a differentially private Byzantine-
robust federated learning scheme (DPBFL). Especially, our
contributions are as follows:

• We introduce DPBFL, a new method to improve the
privacy and robustness of federated learning. DPBFL
achieves differential privacy for the exchanged pa-
rameters during the learning process, and it can
converge to the optimum (sub-optimum) solution
even if there are Byzantine adversaries (workers).

• We present an efficient shuffle protocol for summa-
tion (SPS), based on which we design a differentially
private aggregation scheme for DPBFL. Then, we an-
alytically prove that DPBFL satisfies differential pri-
vacy. Compared to existing local differential privacy
or cryptography-based methods, DPBFL exhibits bet-
ter privacy utility and efficiency, respectively.

• We numerically validate the performance and ef-
ficiency of DPBFL on MNIST, FashionMNIST, CI-
FAR10 datasets. To do so, we implement DPBFL
in a distributed network of n = 1000 workers with
different proportions of Byzantine workers. The ex-
perimental results demonstrate that DPBFL can guar-
antee convergence against approximately 40% of
Byzantine workers with certain privacy protection,
and its test accuracy is higher than conventional
federated learning benchmarks.

1.1 Related Work
By sharing the model parameters, federated learning

completely opens the local models to the honest-but-curious
server and Byzantine workers. The model itself also reveals
information about its training data. To overcome the prob-
lem of shared parameter leakage during the federated train-
ing process, implementing a machine learning algorithm
that learns from noisy [22] or encrypted data [23] has also
been studied in recent years.

From the perspective of differential privacy (DP) [22],
the methods involve adding noise to the data to obscure
the sensitive information until an accessor cannot distin-
guish individuals. Centralized differential privacy (CDP),
which requires a central trusted party to add noise to the
aggregated gradients, is a focus of most works [24], [25].
Papernot et al. [25] proposed a semi-supervised knowledge
transfer method(PATE) by learning noisy knowledge from
the ”teacher” models trained directly with private data
to train the final ”student” models used for publication
and application and avoid information leakage of training
data. Though CDP is a powerful privacy protection method,
computing the statistics and adding noise requires a trusted
third party. Multiparty computation (MPC) is one of the
powerful tools that can simulate a central model algo-
rithm without a trusted server, but due to the considerable

overhead in terms of computing, communication, etc., the
existing technology is difficult to be applied in federated
learning.

Consequently, some recent works tried to integrate local
differential privacy (LDP) into federated learning to achieve
privacy protection [10], [11], [13], [26]. Zhao et al. [11]
proposed integrating federated learning and LDP to facil-
itate training machine learning models via crowdsourcing.
However, each query result in federated learning involves
the worker’s dataset information, the amount of informa-
tion leaked will increase with the number of queries and
communication rounds increases. Most differential privacy
methods also face this problem [12]. Bhowmick et al. [13]
introduced an approach to training large-scale local models,
however, their schemes require at least 200 communication
rounds with a very high privacy budget, i.e., ϵ=500 on
MNIST and ϵ=5000 on CIFAR10, which means a weak
privacy guarantee. Therefore, how to obtain a strong privacy
guarantee in complex federated learning scenarios through
LDP is still an open problem.

The shuffle model [14], [27], [28], [29] lies somewhere
between centralized differential privacy and local differen-
tial privacy. Erlingsson et al. [14] showed that local dif-
ferential privacy can be amplified through a shuffler, who
randomly permute anonymized data submitted by clients.
Cheu et al. [27] formally defined an augmented local dif-
ferentially private model, including an asymmetric shuffler,
and studied sample complexity to solve several problems
with the shuffle model. In this paper, we also present a
shuffle protocol for summation, which is the main building
block to achieving a federated learning scheme with good
performance and privacy.

Another line of work involves ensuring that the model
is robust to Byzantine attacks during the protocol execution
and training process. The Byzantine adversaries can gain
control of compromised devices and launch poisoning at-
tacks or backdoor attacks by sending arbitrary malicious
messages to the server, which seriously threatens the se-
curity of the model. The main way to counteract Byzantine
attacks is to combine federated aggregation methods with
robust rules, such as Krum [20], Geometric Median [17],
Buyan [21], HeteroSAg [30]. The core of which is to com-
pare the local models received from different workers and
remove outliers. However, new attacks continue to emerge,
and almost all these defense methods have been proven
to be insecure. Therefore, Li et al. proposed the RSA [31]
method for Byzantine attacks, which is also suitable for
a wider class of applications because it does not rely on
the assumption of i.i.d. data. However, these methods do
not guarantee the privacy. In the study of federated learn-
ing, few schemes [32], [33], [34], [35] address both privacy
and robustness. For example, Ma et al. [32] proposed a
privacy-preserving Byzantine-robust method that combines
Byzantine-robust algorithm, distributed Paillier encryption
and zero-knowledge proof.

1.2 Organization
The remainder of this paper is organized as follows: In

Section 2, we provide the fundamental knowledge regard-
ing federated learning and differential privacy that under-
pins our protocol and basic model framework. In Section
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3, the system model and security model are described in
detail. The internal architecture and security analysis of
our scheme are presented in Section 4, and the results of
efficiency analysis and experimental evaluation are given in
Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

In this section, we review the concepts of federated learn-
ing, Byzantine-robust federated learning, and the shuffle
model.

2.1 Federated Learning

Federated learning, proposed by Google [1], has
emerged as a promising collaboration paradigm in which
the motivation is to share the model parameters instead
of the private data for better privacy protection. During
each iteration of the training process, each worker, the
owner of private training datasets, downloads the current
global model from the master server and updates a model
using its local dataset, then uploads all gradients or weight
parameters to the master server. The server aggregates such
parameters from workers and updates a new central model
(e.g., averaging all workers’ gradients) and then distributes
it back to a fraction of workers for another round of model
updates. This process is repeated until the global model
reaches a certain precision. Note that the model exchanged
between the master server and workers involve commu-
nication in the network, which can lead to privacy and
robustness issues.

2.2 Byzantine-robust Federated Learning

To cope with Byzantine workers, most of the previ-
ous Byzantine-robust federated learning schemes utilize
Byzantine-robust aggregation rules to eliminate outliers and
aggregate the ”correct” gradients. For example, Krum [20]
chooses a gradient sent by workers, compared with other
gradients, the Euclidean distances between the chosen gra-
dient and its adjacent gradients is the smallest. GeoMed
[17] tries to find the coordinate-wise geometric median of a
set of gradients, and so on. However, the sizable stochastic
gradient noise introduced by the heterogeneous datasets
and Byzantine workers makes it challenging to distinguish
malicious messages sent by Byzantine workers from noisy
stochastic gradients sent by honest workers. Consequently,
Li et al. proposed RSA [31], which significantly reduces the
negative impact of Byzantine workers and heterogeneous
datasets.

RSA for robust distributed learning In the server-
worker architecture, the goal of RSA [31] is to train a global
model using the private data of the workers. The objective
function introduces an l1-norm regularized form to restrict
the negative influence of Byzantine workers as follows:

ω∗ = argmin
ω=[ω0;ωi]

n∑
i=1

(E [L(ωi, ξi)] + λ||ω0 − ωi||1) + f0(ω0)

(1)
where ω∗ ∈ R(r+1)d is a vector of the desirable optimal-

ity for the global model, L(·) denotes the loss function of the
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Worker Server

Fig. 1. A simple instance of the shuffle model.

local model for a data point ξi sampled from dataset DBi of
worker pi, and ||ω0 − ωi||1 is the l1-norm penalty, whose
minimization enables ωi to approach ω0, λ is a positive
constant and the last term f0(·) is a regularization term. In
RSA [31], each worker possesses a local ωi, while the master
server holds the global ω0. At time k+1, in the ideal case in
which the identities of Byzantine workers are revealed, the
updates of the master server and worker pi are:

ωk+1
0 = ωk

0 − αk+1(∇f0(ωk
0 ) + λ(

∑
i∈H

sign(ωk
0 − ωk

i ))) (2)

ωk+1
i = ωk

i − αk+1(∇L(ωk
i , ξ

k+1
i ) + λsign(ωk

i − ωk
0 )) (3)

where αk+1 is the learning rate, ∇L(·) denotes gradient
of the loss function. sign(·) is the elementwise sign function
that returns the sign of the input. When the input to the
function is greater than 0, it returns 1, and when it is less
than 0, it returns -1; otherwise, it returns 0.

Rather than sending the value computed from (3) to
the master server, Byzantine workers will send an arbitrary
value, hk

i . H is the set of honest workers and B is the set
of Byzantine workers. Therefore, because the identities of
Byzantine workers are indistinguishable, the update of the
master server in the (k+1)-th iteration no longer follows (2),
but:

ωk+1
0 =ωk

0 − αk+1(∇f0(ωk
0 ) + λ(

∑
i∈H

sign(ωk
0 − ωk

i )

+
∑
i∈B

sign(ωk
0 − hk

i ))) (4)

The above is the specific construction of the Byzantine-
robust RSA scheme. RSA [31] lacks the privacy protection of
ωi sent by worker pi to the master server, which can lead to
the disclosure of workers’ private information.

2.3 Shuffle Model

A protocol P = (R,S,A) in the shuffle model [36]
consists of three randomized algorithms:
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Fig. 2. Framework of differentially private Byzantine-robust federated
learning

• Local Randomizer R :X → Y , R randomly out-
puts worker’s messages, e.g., the protocol gives it a
probability γ, and it will output its real value with
a probability of 1 − γ and uniform random noise
otherwise.

• A shuffler S : Y → Y , the shuffler outputs the mes-
sages sent by the workers in a manner that applies a
uniformly random permutation.

• Analyzer A: Y → Z , the analyzer computes on
messages received from the shuffler S by the specific
requirement of the model.

A shuffler (e.g. a mixnet [27]) collects all (locally random-
ized) messages, randomly permutes them, before sending
them to the analyzer. The messages are anonymized so that
the analyzer cannot link a message back to the message
owner who generated it. In our scheme, each worker runs
a local randomizer, the shuffler is treated as an abstract
service that randomly permutes a set of messages, which
implementation method is out of the scope of this paper,
and the master server is the analyzer.

3 SYSTEM MODEL AND SECURITY MODEL

In this section, we present the system model and security
definition of privacy and robustness in our scheme.

3.1 System Model
As illustrated in Fig. 2, we divide the parties in our

system into two classes: one is a master server that aggre-
gates the local model parameters, the other consists of n
workers, among which the b percent of workers are attacked
by Byzantine adversaries. In contrast to classical federated
learning, we integrate the shuffle protocol into our system
to further protect workers’ privacy.

Our system consists of four steps: (1) Initialization: All
the participants perform an initialization operation to ob-
tain the model parameters and the shuffle protocol during
the first iteration; (2) LocUpdate: Each worker trains the
local model based on its dataset and the global model and
computes a matrix of signs; (3) Shuffle: The sign matrices

from workers are shuffled and sent to the master server;
(4) Aggregation: The master server aggregates the data
from workers and updates the global model. Finally, each
participant returns to step (2) to start the next iteration.
Iteration continues until the learning process reaches the
optimum or a maximum number of iterations.

DPBFL consists of four subalgorithms as follows:

• (ω0
0 , ω

0
1 , · · · , ω0

n, γ) ← Init(1n): Initialize all the par-
ticipants’ learning models ω0

0 , · · · , ω0
n and choose a

parameter γ ∈ (0, 1) that will be used in the shuffle
protocol.

• xk+1
i ← LocUpdate(ωk

0 , ω
k
i ), i = 1, 2, · · · , n: In the

(k+1)-th iteration, the master server broadcasts the
parameters of its local model to all the workers, and
then each worker pi computes sign(·). Each worker
updates the local model based on these signs and its
dataset.

• yk+1
i ← Shuffle(γ, xk+1

i ), i = 1, 2, · · · , n: In the
(k+1)-th iteration, the signs received from worker pi
are shuffled and then uploaded to the master server.

• ωk+1
0 ← Agg(γ, yk+1

1 , · · · , yk+1
n ), i = 1, 2, · · · , n: The

master server aggregates all the shuffled signs and
updates its learning model in the (k+1)-th iteration.

3.2 Security Model

The definition of differential privacy (DP) proposed by
Dwork et al. [22] in 2006 is as follows:
Definition 1. (Differential Privacy) An algorithm A: T →

S satisfies (ε, δ)-differential privacy if, for every pair of
neighboring datasets T and T ′ and every subset S ⊂ T ,

P [A(T ) ∈ S] ≤ eεP [A(T ′) ∈ S] + δ

where T and T ′ are neighboring datasets that differ in at
most one piece of data, ε is the privacy budget and denotes
the distinguishable bound of all outputs on neighboring
datasets; δ is the probability that the difference of the
output distributions from A when using T and T ′ cannot
be bounded by ϵ. DP is not impacted by post-processing.
Formally, let A:T → S be (ε, δ)-differential privacy mecha-
nism and P :S → S′ be non-differential privacy mechanism,
then P ◦ A: T → S′ is (ε, δ)-differential privacy, where the
notation ◦ denotes a composition, that is, the output of A is
the input of P .

However, local differential privacy (LDP) in distributed
learning is a model of differential privacy with the added re-
striction that even if the master server and an adversary has
access to the workers’ shared parameters of an individual,
they will still unable to learn too much about the worker’s
dataset.
Definition 2. (Robustness) Robustness is that when the

proportion b of Byzantine workers is less than (1− 1
2−γ )

throughout, the global model can still converge to the
optimum.

Where γ ∈ (0, 1) is the probability that a worker will
send uniform random noise in shuffle model. In our scheme,
the robustness is mainly affected by two aspects: Byzantine
workers who may send malicious messages, and the honest
workers who follow the SPS protocol may send random



JOURNAL OF LATEX CLASS FILES 5

Algorithm 1 A shuffle protocol Pn,γ = (R,S,A) for com-
puting the sum of {−1, 0, 1}

//Local Randomizer R
Input: x ∈ {−1, 0, 1}, parameters n ∈ N, γ ∈ (0, 1)
Output: y ∈ {−1, 0, 1}
Sample g ← Ber(γ)
if g=0 then

Let y ← x
else

Sample y ← Unif({−1, 0, 1})
end if
return y
//Analyzer A
Input: (y1, · · · , yn) ∈ {−1, 0, 1}n, parameters n ∈ N, γ ∈
(0, 1)
Output: z ∈ [−n, n]
Let z ← 1

1−γ

n∑
i=1

yi

return z

noise (to achieve differential privacy). However, our scheme
can still converge to the optimum and has good robustness
with the (1− 1

2−γ ) percent of Byzantine workers.

4 OUR CONSTRUCTION

We build DPBFL upon the baseline Byzantine-robust
federated learning algorithm RSA presented by Li et al.
[31] for robustness, which is described in section 2.2. To
realize differential privacy, we utilize the shuffle model to
construct a differentially private summation protocol(SPS).
In the construction of the DPBFL scheme, the worker and
master server comply with the SPS protocol in the process
of parameter uploading and aggregation respectively to
achieve parameter privacy protection and accurate aggre-
gation, as shown in the last two subalgorithms of section
4.2. Finally, we present the security analysis of the DPBFL
scheme.

4.1 Shuffle Protocol for Summation (SPS)
SPS protocol Pn,γ = (R,S,A) consists of three com-

ponents, Local Randomizer R, Shuffler S and Analyzer A.
According to the given probability γ, the specific structure
is as follows:

• Local Randomizer R : The local randomizer R ran-
domizes the worker’s message x ∈ {−1, 0, 1}. It first
outputs a bit g ← Ber(γ):

g =

{
0 with the possibility of 1− γ

1 with the possibility of γ
(5)

As shown in formula (5), the function Ber(γ) in
Algorithm 1 outputs 0 or 1 according to probability γ.
Then, according to the result in formula (5), it outputs
y:

y =

{
x g = 0

Unif({-1,0,1}) g = 1
(6)

The bit g indicates whether the worker outputs the
truthful value or a uniformly random value from
{−1, 0, 1}.

• Shuffler S : The shuffler receives y from each local
randomizer, then randomly permute them before
outputting them to the analyzer, we omit this step
in Algorithm 1.

• Analyzer A: The analyzer A estimates the sum on
values yi(i = 1, · · · , n) as follows:

z ← 1

1− γ

n∑
i=1

yi (7)

4.2 The DPBFL Scheme
DPBFL consists of four subalgorithms, each of which is

specified below:

• (ω0
0 , ω

0
1 , · · · , ω0

n, γ) ← Init(1n): Initialize all the par-
ticipants’ learning models ω0

0 , · · · , ω0
n and generate a

probability γ ∈ (0, 1), that will be used in the shuffle
operation.

• xk+1
i ← LocUpdate(ωk

0 , ω
k
i ), i = 1, 2, · · · , n: In the

(k+1)-th iteration, worker pi has a local learning
model ωk

i and downloads the master server’s learn-
ing model ωk

0 , and then computes:

xk+1
i = sign(ωk

0 − ωk
i ) (8)

Worker pi updates its local learning model ωk+1
i

using private dataset DBi and current xk+1
i by a

deep learning algorithm DLi is given by:

ωk+1
i = ωk

i − αk+1(∇L(ωk
i , ξ

k+1
i )− λxk+1

i ) (9)

where sign(·) is the elementwise sign function, αk+1

is the learning rate, ∇L(·) denotes the local loss
gradient of worker pi, and λ is a positive constant.

• yk+1
i ← Shuffle(γ, xk+1

i ), i = 1, 2, · · · , n: Worker pi
launches the local randomizer R of shuffle protocol
for summation (SPS) using xk+1

i as the input, obtains
the noisy output yk+1

i , then uploads it shuffled to
the master server. The formal representation is as
follows:

yk+1
i = R(xk+1

i ) (10)

• ωk+1
0 ← Agg(γ, yk+1

i ), i = 1, 2, · · · , n: In the (k+1)-
th iteration, the master server performs a summation
operation on the values yk+1

i obtained from the
honest workers in H and the hk+1

i values obtained
from unidentified Byzantine workers in B. Then, it
computes an approximate solution zk+1 according
to the analyzer A of SPS by:

zk+1 =
1

1− γ
(
∑
i∈H

yk+1
i +

∑
i∈B

hk+1
i ) (11)

Subsequently, the master server updates the local
model:

ωk+1
0 = ωk

0 − αk+1(∇f0(ωk
0 ) + λzk+1) (12)

where the ∇f0(·) denotes the gradient of regulariza-
tion term.

Repeat the last three steps until the stop condition is
reached. To better protect the privacy of the worker pi, the
worker’s local model ωk+1

i is private and not sent to the
master server. Finally, we privately train an available global
model ω∗

0 .
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4.3 Security Analysis

In this section, we present the privacy analysis and
convergence analysis of DPBFL. The results demonstrate
that DPBFL satisfies differential privacy and converges to
the approximate optimal solution. To show the superiority
of our scheme in achieving a trade-off between privacy and
utility, we present the comparison of SPS and the LDP-based
protocol for summation.

Privacy Analysis. In the following analysis, we show
the level of DP that can be achieved when there are n honest
workers in our scheme. We do not consider Byzantine work-
ers here because as shown in formula (11), the summation
can be viewed as to first sum up the honest workers’ yi, then
sum the result with the Byzantine workers’ hi. This step can
be viewed as post-processing, hence the Byzantine workers’
inputs will not weaken the privacy level of the honest
workers. Moreover, the shuffle protocol in our scheme has
the parallel composition property [37] of differential privacy,
i.e., the execution of the shuffle protocol Pn,γ on each
worker satisfies (ϵ, δ)-differential privacy, DPBFL is (ϵ, δ)-
differentially private.

According to the shuffle protocol Pn,γ , approximate γn
workers will randomly select a value from {−1, 0, 1} and
send it to the master server as random noise, and approxi-
mate (1 − γ)n workers will submit their truthful signs, we
then use histograms Y1 and Y2 to represent the statistics
of random noise and truthful signs, respectively. The in-
formation obtained by the master server is the histogram
Y = Y1 ∪ Y2 figured by the mixture of Y1 and Y2.

Without loss of generality, we assume two neighboring
datasets D = (x1, x2, · · · , xn) and D′ = (x1, x2, · · · , x′

n)
that represent the sets of workers’ truthful signs as the input
of local randomizer and differ on xn from the n-th worker
pn. We further assume that the master server knows the
inputs from all workers except the n-th worker pn.

We then set the value γ of protocol Pn,γ , so that when
computing on these neighboring datasets in which only the
n-th worker’s value changes, Y can change in an appropri-
ate limited amount. Intuitively, the privacy of protocol Pn,γ

is essentially set γ to allow Y1 to hide xn appropriately. The
proofs of Theorem 1–5 and Corollary 1 are in the Appendix.

Theorem 1. For n ∈ N, ϵ ∈ (0, 1), δ ∈ (0, 1), and γ =

max{ 42 log (2/δ)
(n−1)ϵ2 , 81

(n−1)ϵ} < 1, Pn,γ is (ϵ, δ)-differentially
private.

Corollary 1. For n ∈ N, ϵ ∈ (0, 1), δ ∈ (0, 2e−27/14), and
γ = 42 log (2/δ)

(n−1)ϵ2 < 1, Pn,γ is (ϵ, δ)-differentially private.

Concerning the precision of SPS, the upper bound of the
mean squared error is

Theorem 2. For n ∈ N, ϵ ∈ (0, 1), δ ∈ (0, 2e−27/14), and
n ≥ 1 + 42 log (2/δ)

(n−1)ϵ2 , and X = (x1, · · · , xn) ∈ {−1, 0, 1}n

MSE(Pn,γ(X)) = O(
1

ϵ2
log

1

δ
)

Note that the estimation is unbiased, in which case the
mean square error is equal to the variance. When we preset
the γ > 8

3n log 2
β , we can obtain the upper bound of the

probability so that the deviation is higher than a small
threshold:

Theorem 3. For n ∈ N, ϵ, δ ∈ (0, 1), n ≥ 1 + 84 log (2/δ)
(n−1)ϵ2 , X =

(x1, · · · , xn) ∈ {−1, 0, 1}n, γ > 8
3n log 2

β , and β ∈ (0, 1),

P

[∣∣∣∣∣Pn,γ(X)−
n∑

i=1

xi

∣∣∣∣∣ > 6

ϵ

√
22 log

2

δ
log

2

β

]
< β

In DPBFL, we utilize shuffle protocol Pn,γ to realize
privacy and accuracy improvements by a shuffler. Similarly,
LDP can be directly utilized in constructing a local differ-
entially private Byzantine-robust federated learning scheme
(LDPBFL). But, we will prove that the utility of the shuffle-
based scheme (DPBFL) is superior to the LDP-based scheme
(LDPBFL).

We define the LDP-based protocol as P ′
n,γ = (R,A), in

which the shuffler S is removed so that the worker’s output
is no longer anonymized. We formally analyze the privacy
budget of the LDP-based scheme and draw the following
conclusion.
Theorem 4. For γ ∈ (0, 1), P ′

n,γ is ϵ-local differentially
private, where ε = log

(
1− 2

3γ
1
3γ

)
.

In Corollary 1, we proved that Pn,γ is (ϵ, δ)-differentially

private, where ϵ =
√

42 log (2/δ)
(n−1)γ and δ ∈ (0, 2e−27/14). The

result shows that the privacy budget of Pn,γ will drop
down when the number of the worker grows. However,
Theorem 4 shows that the privacy of LDPBFL is not affected
by the number of the workers. In the following numerical
experiments, we compare the impact of different privacy
budgets on the accuracy of the models obtained from these
two schemes in detail.

Convergence Analysis. The main challenge of ensuring
model convergence is that the Byzantine workers can col-
lude and send arbitrary malicious values to bias the opti-
mization process. We assume the proportion of Byzantine
workers is b < 1 − 1

2−γ throughout, that is, the proportion
of honest workers sending their truthful values is always
greater than the proportion of Byzantine workers to ensure
the model is updated in the correct direction. Then, we
further prove the convergence of the model in the scheme.
Assumption 1. (Strong convexity and Lipschitz continuity

of gradients) The local loss functions E [L(ωi, ξi)] and
the regularization term f0(ω0) are µi and µ0-strongly
convex, respectively, and have Lipschitz continuous gra-
dients with constants Li and L0, respectively.

Assumption 2. (Bounded variance) For every worker i, the
data sampling is i.i.d. across time such that ξki ∼ Di. The
variance of ∇L(ωk

i , ξ
k
i ) is upper bounded by δ2i . That is,

E
[
||∇E[L(ωi, ξi)]−∇L(ωi, ξi)||2

]
≤ δ2i .

Assumptions 1 and 2 are standard for performance anal-
ysis of stochastic gradient-based methods [38], the former
is standard in convex analysis, and the other bounds the
variation of gradients. We show our scheme’s convergence
under Assumptions 1 and 2 against the Byzantine workers.
Theorem 5. Under Assumptions 1 and 2, we have:

E||ωk+1
0 − ω∗

0 ||2 ≤
(
1− ηαk+1

)
E||ωk

0 − ω∗
0 ||2

+ α2(k+1)∆1 +∆2, (13)

where
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(a) b = 0% (b) b = 30% (c) b = 40% (d) b = 50%

(e) b = 0% (f) b = 30% (g) b = 40% (h) b = 50%

Fig. 3. Threshold Experiments(Gaussian attack). (a-d) and (e-h) shows the accuracy of DPBFL in different γ at b = 0%, 30%, 40%, and 50% on
MNIST and FashionMNIST dataset, respectively.

∆1=
(

2λ2d
(1−γ)2

(
4r2 + b2n2

)
+ 8λ2r2d

)
∆2= 198αk+1λ2d

ξϵ2 log 1
δ

η =
(

2µ0L0

µ0+L0
− ξ̄

)
Theorem 5 indicates that the local iterative sequence

sublinearly converges to the approximate optimal solution
of (1) and is quadratically dependent on the proportion of
Byzantine workers b and the number of honest workers r.

5 EFFICIENCY ANALYSIS AND EXPERIMENTAL
EVALUATIONS

In this section, we first report the results showing that
our scheme is comparable to Byzantine-robust stochastic
aggregation one (RSA) [31] in terms of efficiency and then
provide a systematic comparison with several representa-
tive cryptographic approaches. Finally, we test the perfor-
mance and robustness of the model and the utility of SPS
through experiments on the MNIST, FashionMNIST, CI-
FAR10 datasets.

5.1 Efficiency Analysis and Comparison
DPBFL is better than RSA [31] in the communication

efficiency and computation efficiency theoretically. On the
one hand, unlike worker in RSA proposed by Li et al. [31]
directly transfers the model parameters computed from (3)
to the master server, in our scheme, the worker transfers
only a one-bit sign computed from (8) to the master server.
Therefore, under the same scene, the number of bits trans-
ferring to the mater server in our scheme is much less, which
makes our scheme is more efficient than RSA [31] in commu-
nication. On the other hand, since the values received by the
master server are model parameters and signs respectively
in the two schemes, resulting in the computation efficiency
for aggregation of the master server in DPBFL is better than
that in RSA [31]. In addition, the random output required by

the shuffle protocol is only a simple random selection within
the worker, and the consumption of computing resources
and time is negligible. Therefore, the efficiency in the com-
munication and computation of DPBFL is better than RSA
[31]. Furthermore, as shown in Table 1, the model accuracy
of DPBFL is close to RSA [31] when the Byzantine workers
are less than 40%, and according to Theorem 2, once b is
close to (1− 1

2−γ ), the model may be controlled by Byzantine
workers and the model accuracy decreases sharply.

TABLE 1
Accuracy comparison between RSA [31] and DPBFL

γ b = 0% b = 30% b = 40% b = 50%
RSA [31] 0 89.96% 89.92% 89.88% 5.08%

DPBFL
0.283 89.92% 89.61% 87.55% 0.18%
0.383 89.90% 89.51% 0.16% 0.17%
0.483 89.89% 89.07% 0.13% 0.17%

In Section 4.3, we present the privacy analysis and ef-
ficiency analysis of DPBFL. In TABLE 2, we additionally
provide a systematic comparison with other representa-
tive cryptographic approaches. BatchCrypt [39] is a sys-
tem solution for cross-silo FL that substantially reduces
the encryption and communication overhead caused by
homomorphic encryption (HE), but HE will still bring a
large computation overhead. Bonawitz et al. [40] design a
communication-efficient, failure-robust protocol for secure
aggregation using secure multiparty computation (SMC),
but they did not verify whether their scheme can defend
against inference attacks. Hybrid [41] utilizes both DP and
SMC to defend against inference attacks and improve model
accuracy. However, the SMC method is inefficient. LDP-
Fed [26] is an efficient federated learning system with a
formal privacy guarantee using local differential privacy
(LDP). Moreover, none of the above-mentioned schemes
takes effective means to defend against Byzantine attacks.
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(a) b = 0% (b) b = 30% (c) b = 40% (d) b = 50%

(e) b = 0% (f) b = 30% (g) b = 40% (h) b = 50%

Fig. 4. Threshold Experiments(sign-flipping attack). (a-d) and (e-h) shows the accuracy of DPBFL in different γ at b = 0%, 30%, 40%, and 50% on
MNIST and FashionMNIST dataset, respectively.

TABLE 2
Comparison of cryptography tools for private federated learning

Privacy-Preserving
Federated Learning Scheme

Cryptography
Tools Efficient Defenses

Inference Attacks
Byzantine-

robust
DPBFL DP ! ! !

BatchCrypt [39] HE % ! %

Practical Secure Aggregation [40] SMC % – %

Hybrid [41] DP+SMC % ! %

LDP-Fed [26] DP ! ! %

However, DPBFL does not require computation-
intensive cryptographic protocols and can defend against
inference attacks because the data exchanged throughout
the entire training phase is differentially private. At the
same time, DPBFL also reduces the negative impact on
Byzantine workers.

5.2 Experimental Evaluations
In this section, we first evaluate the threshold of our SPS

to ensure that our scheme satisfies differential privacy and
guarantees convergence. Then, we evaluate the robustness
of our model under the presence of Byzantine workers and
compare our scheme with RSA [31] and other schemes that
combine different aggregation rules (Median [18], Krum
[20]). Finally, we experiment on the influence of the worker
scale on the accuracy of our model and do a comparative
experiment to compare the accuracy of DPBFL using shuffle
protocol and LDPBFL using LDP under the same privacy
budget.

Experiment Settings. (1) In the experiments, we used
the MNIST and FashionMNIST datasets. The MNIST dataset
contains 60,000 training samples and 10,000 testing samples
with 10 classes, and each data sample is a one-dimensional
matrix with a length of 784 containing a 28 × 28-pixel
handwriting image. FashionMNIST dataset also covers a
total of 70,000 samples and has the same size, format, and

training/test set partition as the MNIST dataset. Unlike the
MNIST handwriting dataset, the samples in FashionMNIST
are images of different products from 10 categories. (2)
To simulate non-i.i.d. training data, we use Label skewing
[42] in which the data is distributed based on the Dirichlet
distribution with a specific parameter α = 0.2. We also show
the data distribution for 10 random workers in Fig. 5. (3)
We simulated 1000 worker processes and 1 master server
process on a computer with an AMD Ryzen 9 4900H with
a Radeon Graphics CPU @ 3.30 Mhz. (4) We used softmax
regression with a batch size of 32 and used test accuracy as
the performance metric. In all experiments, unless otherwise
specified, the Byzantine attack is the sign-flipping attack,
which is the most aggressive Byzantine attacks against
DPBFL.

Threshold Experiments. We show how the percentage
of Byzantine workers (b) and the probability of the honest
worker sending random value in SPS (γ) impact the per-
formance of learning. Fig. 3 and Fig. 4 show how fast the
learning process converges and the maximum accuracy can
be achieved.

Fig. 3 shows that under Gaussian attack, the model
utility of DPBFL has little effect at 50% Byzantine workers.
Fig. 4 shows the model utility of DPBFL under Gaussian
attack. When γ = 0, DPBFL is essentially RSA without
differential privacy. In figure (a) with b = 0% on the MNIST
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Fig. 5. Synthetic populations generated from Dirichlet distribution with
concentration parameters α = 0.2. Distribution among classes is repre-
sented with different colors and populations.

dataset, we can see with larger γ, i.e. with stronger DP, the
convergence speed and the maximum accuracy are similar
to RSA, and DPBFL introduces random noise to protect
privacy, the initial convergence speed and accuracy are
slightly lower than that of RSA. Figures (b)–(d) show the
results with larger b. We can see the learning performance
is not significantly affected when b = 30%. However, when
b is larger than 40%, we can observe a significant drop in
the maximum accuracy. The specific values are recorded in
TABLE 1. In figures (e)–(h), we can observe similar results
using the FashionMNIST dataset.

Therefore, as a result of the threshold experiment, when
γ = 0.283 (minimum γ at n = 1000) and the percentage of
Byzantine workers exceeds 50%, the accuracy of our model
decreases with the number of iteration rounds, and the
model does not converge. Even so, the DPBFL scheme guar-
antees convergence of the federated model when less than
40% of Byzantine workers participate, so it has enhanced
privacy protection while superior Byzantine robustness.

Robustness Comparison. In this experiment, we com-
pare the performance of DPBFL, RSA, Krum, federated
average (FedAvg), Median.

Fig. 6 shows that under Gaussian attack, the accuracy of
DPBFL is slightly lower than that of RSA but superior to
Median, Krum, and FedAvg. Fig. 7 shows the model utility
of these Byzantine-robust schemes under the Sign-flipping
attack, note that when b = 0% in figure (a), DPBFL, RSA,
and Median have approximate accuracy, they are slightly
less accurate than FedAvg and higher than Krum. In figure
(b), we can observe that the accuracy of FedAvg, DPBFL,
RSA, and Median are similar and significantly higher than
the Krum. In figure (c), the accuracy of DPBFL is lower than
RSA and similar to Median, and at this time, the FedAvg
scheme failed. In the case of b = 50%, the DPBFL’s model no
longer converges, and other robust methods cannot guaran-
tee the robustness of their model. Figures (e)–(h) show the
test results on the FashionMNIST dataset, all the patterns
are consistent with the MNIST dataset.

Therefore, compared with other schemes, ours still has
good Byzantine robustness under the premise of increased
privacy protection.

Runtime Comparison. Fig. 8 shows the runtime of the
schemes when b = 30%. The total number of iterations
for every scheme is 100. As shown in Fig. 8, DPBFL has
a faster per-iteration runtime than does RSA and Median
and slightly slower than does FedAvg, and the accuracy of
DPBF is only lower than RSA.

In conclusion, due to the additional computational costs
incurred when disposing of Byzantine workers, DPBFL is
only less efficient than the benchmark FedAvg but much
more efficient than other robust aggregation schemes, and
in the same number of rounds, our scheme maintains good
accuracy. Therefore, DPBFL achieves an effective trade-off
between efficiency and availability.

Impact of Worker Scale. We also tested our scheme
in settings with 1000, 2000, 3000, 4000, and 5000 workers
and γ = 0.283 to evaluate the change in accuracy under
different numbers of workers. The experimental results in
Fig. 9 compare the accuracies of RSA and DPBFL on the
FashionMNIST dataset, showing that the accuracy of both
schemes increases steadily as the number of workers in-
creases, and the accuracy of DPBFL is close to RSA.

Therefore, the experimental results show that in the
large-scale worker application scenario, our scheme can
achieve similar performance to the RSA scheme, and at the
same time is better than the RSA scheme in terms of privacy.

Utility Comparison. We do this comparative experiment
on the MNIST dataset with 150 iterations and 20% of byzan-
tine workers to compare the utility of shuffle protocol and
LDP by comparing the accuracy of the models under the
different ε ∈ (0, 1) in the DPBFL and LDPBFL schemes.

In DPBFL, since the shuffle protocol has a constraint
42 log (2/δ)
(n−1)ϵ2 < 1 with n ∈ N, ϵ ∈ (0, 1), δ ∈ (0, 2e−27/14),

and DPBFL needs to satisfy the definition of robustness, i.e.,
the number of Byzantine workers is less than (1 − 1

2−γ ).
Therefore, with fixing δ = 10−6, we can compute the
lower bound of the ε under n= 10000, 50000, and 100000
respectively in TABLE 3, and then we compare the accuracy
difference between the two schemes under the same privacy
budget in Fig. 10.

TABLE 3
Minimum privacy budget required for shuffle protocol under different

number of workers in DPBFL

n ε
10000 0.28505544898604424
50000 0.12747557282703412
100000 0.09013839128179175

We can observe through all the figures and tables that al-
though the accuracy of DPBFL model is lower than LDPBFL
at n = 10000 and ε < 0.2, once the number of workers is
up to 50000 or a lower value, DPBFL can achieve a smaller ε
while having the higher accuracy than LDPBFL, especially
when ε < 0.4, the difference in accuracy is more obvious.

Therefore, compared with LDP, our shuffle protocol can
achieve higher utility and privacy in large-scale worker
application scenarios.

Performance on DNN and CIFAR10. We aim to develop
a convergence theory that is relevant for real problems in
federated learning. For this reason, we use logistic regres-
sion functions which abide by strong convexity assumptions
to perform experimental verification. Moreover, we also use
DNN whose loss function is usually not convex to verify the
effectiveness of our scheme.

Due to the complex parameters of the DNN, we use
the model accuracy of a single worker as the test metric
and every worker in FL trains Alexnet on the CIFAR10



JOURNAL OF LATEX CLASS FILES 10

(a) b = 0% (b) b = 30% (c) b = 40% (d) b = 50%

(e) b = 0% (f) b = 30% (g) b = 40% (h) b = 50%

Fig. 6. Robustness Comparison(Gaussian attack). (a-d) and (e-h) shows the accuracy of DPBFL, RSA, FedAvg, Median, and Krum at
b = 0%, 30%, 40%, and 50% on MNIST and FashionMNIST dataset, respectively.

(a) b = 0% (b) b = 30% (c) b = 40% (d) b = 50%

(e) b = 0% (f) b = 30% (g) b = 40% (h) b = 50%

Fig. 7. Robustness Comparison(sign-flipping attack). (a-d) and (e-h) shows the accuracy of DPBFL, RSA, FedAvg, Median, and Krum at b =
0%, 30%, 40%, and 50% on MNIST and FashionMNIST dataset, respectively.

dataset. (1)AlexNet [43] is a convolutional neural network
architecture, designed by Alex Krizhevsky in collaboration
with Ilya Sutskever and Geoffrey Hinton. In PyTorch, the
model’s subpackage torchvision.models contains definitions
for the AlexNet model architectures [44] for image classifi-
cation. Specifically, AlexNet contained eight layers: the first
five were convolutional layers, some of them followed by
max-pooling layers, and the last three were fully connected
layers. It used the non-saturating ReLU activation function,
which showed improved training performance over tanh
and sigmoid. (2) The CIFAR10 dataset consists of 60000
32x32 color images in 10 classes, with 6000 images per class.
There are 50000 training images and 10000 test images. The

test batch contains exactly 1000 randomly-selected images
from each class. (3) This is epoch training where each worker
takes 200 local updates on its samples, and at every epoch,
every worker estimates its local gradient on the batch of 64
samples. (4) We built the federated learning framework in
Pytorch and simulated 100 worker processes and 1 master
server process.

In Fig. 11, we can observe that the DPBFL scheme
converges a little slower than the SGD and RSA schemes,
and the accuracy of the DPBFL scheme at the 50th iteration
is slightly lower than that of the SGD and RSA schemes.
In the presence of 40% Byzantine workers, DPBFL can still
converge to good accuracy. As long as the DPBFL scheme
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Fig. 8. Runtime comparison with
different schemes under b = 30%
and MNIST dataset.

Fig. 9. Accuracy comparison with
the increase of workers under b =
30% and FashionMNIST dataset.

(a) (b)

(c)

Fig. 10. Utility Comparison. With b = 20% and δ = 10−6, the utility
comparison of shuffle protocol in DPBFL and LDP in LDPBFL with the
increase of the number of participant workers on MNIST dataset.

still converges on AlexNet and CIFAR10, all conclusions can
be extended to DNN and more complex datasets.

Fig. 11. Performance on DNN and CIFAR10: The accuracy of SGD, RSA
and DPBFL with b=0%, 20% and 40%.

6 CONCLUSION

In this paper, by integrating an efficient shuffle protocol
SPS with federated aggregation method RSA, we develop
a differentially private Byzantine-robust federated learn-
ing scheme (DPBFL) under the presence of an honest-but-
curious master server and Byzantine adversaries. To ensure
DPBFL’s privacy and robustness, we also provide theoretical

proof that our scheme can resist privacy leakage caused by
model parameters exchanged during the learning process,
and verify its high performance with the experiments on
the MNIST, FashionMNIST, CIFAR10 datasets.
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