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Abstract

Secure computation is a promising privacy enhancing tech-
nology, but it is often not scalable enough for data intensive
applications. On the other hand, the use of sketches has gained
popularity in data mining, because sketches often give rise to
highly efficient and scalable sub-linear algorithms. It is nat-
ural to ask: what if we put secure computation and sketches
together? We investigated the question and the findings are
interesting: we can get security, we can get scalability, and
somewhat unexpectedly, we can also get differential privacy
— for free. Our study started from building a secure compu-
tation protocol based on the Flajolet-Martin (FM) sketches,
for solving the Private Distributed Cardinality Estimation
(PDCE) problem, which is a fundamental problem with appli-
cations ranging from crowd tracking to network monitoring.
The state of art protocol for PDCE [33] is computationally
expensive and not scalable enough to cope with big data ap-
plications, which prompted us to design a better protocol. Our
further analysis revealed that if the cardinality to be estimated
is large enough, our protocol can achieve (g, §)-differential
privacy automatically, without requiring any additional ma-
nipulation of the output. The result signifies a new approach
for achieving differential privacy that departs from the main-
stream approach (i.e. adding noise to the result). Free differ-
ential privacy can be achieved because of two reasons: secure
computation minimizes information leakage, and the intrinsic
estimation variance of the FM sketch makes the output of our
protocol uncertain. We further show that the result is not just
theoretical: the minimal cardinality for differential privacy to
hold is only 10> — 10* for typical parameters.

fChangyu Dong and Zheli Liu are the corresponding authors.

1 Introduction

Data privacy has become an increasingly acute problem, espe-
cially when the hunger for data drives large-scale collection
and (mis)use, without well-thought-out precautions in place.
The tension between data utilization and data privacy has de-
veloped into a societal challenge and led to stricter regulations,
such as HIPAA [1], GLBA [2] and GDPR [3]. The pressing
need for privacy has greatly stimulated research on secure
computation [18]. Secure computation allows collaborative
computation over private datasets held by multiple mutually
untrusted parties, without revealing any information except
what can be inferred from the output. Thus, secure computa-
tion has been regarded as one of the key privacy enhancing
technologies [4].

While many secure computation protocols have been pro-
posed to carry out various data processing tasks in a privacy
preserving fashion, their scalability is often open to doubt.
Despite the fact that the efficiency of secure computation has
been drastically improved, secure computation is still orders
of magnitude slower than computation in the clear. The over-
head might be acceptable if the data to be processed is small,
but it can be prohibitive when the data is big. Yet, the “killer”
applications of secure computation are often data-intensive,
and this has become a major impediment to the widespread
use of secure computation.

One good example is Private Distributed Cardinality Esti-
mation (PDCE). Cardinality estimation, the task of determin-
ing the number of distinct elements in the union of multiple
sets, is of particular importance in databases, data mining and
distributed systems [5,37,38,67]. While the task is easy to
perform when data is in a single small database, it becomes
challenging when data is collected independently from multi-
ple sources at a high rate [52]. Naively maintaining a counter



at each source and summing the counters up will not work
because more often than not, there are duplicates in the data
being collected. The task is even more challenging if privacy
is needed. PDCE has numerous applications, for example:

* Scientific research and user studies. Surveys and ques-
tionnaires are commonly used in medical science, social
science and business studies to help researchers discover
interesting correlations (e.g. [56]). It is not uncommon that
several organizations independently collect data through
surveys and questionnaires over the same population. For
example, diet habits could be surveyed by researchers from
a medical institution, a government agency, and an insur-
ance company, for different projects. If pooled together,
the data would be of a much higher utility and could lead
to improved decision making. For instance, the number of
distinct individuals across all datasets having a certain diet
habit could help identifying risk factors related to chronic
diseases such as diabetes, while each individual dataset
may be too small to draw a convincing conclusion. How-
ever, the data cannot be pooled together in practice because
of privacy obligations imposed on each data collector.

* Crowd counting and tracking [66]. The task of estimat-
ing the number of individuals entering or passing by a
place is key in urban planning, surveillance, public health
study and retail analytics, to understand the effectiveness
of building and road design, the patterns of human mo-
bility, the spread of infectious diseases, and the patterns
of customer behavior. Many existing commercial systems
identify and track people though personally identifiable in-
formation (PII), such as fingerprints of mobile devices [11]
or MAC addresses of WiFi cards [51,53], collected through
a distributed network of sensors or WiFi hot-spots that
are deployed e.g. in a big shopping mall or a retail chain
across the country [62]. Usually, to obtain the estimate,
the data is transmitted to, stored and processed in a cen-
tral database. However, this has already raised widespread
privacy concerns [63,64]. Ideally the estimate should be
obtained without the need to store or transmit PII. Also,
if published, it should not disclose information about any
specific individual.

* Network monitoring and statistics. An example is the
detection of DDoS attacks by collecting information at
an ISP’s border routers and identifying sudden increases
in the total number of distinct source IP addresses. This
detection method works because the attacker usually com-
mands many “zombies” distributed across the Internet to
send packets with randomly spoofed IP source addresses
to the victim [50]. Another example is that many websites
nowadays use Content Distribution Networks to provide
load balancing and fast access. One statistic that web mas-
ters often want to estimate is the total number, across all
replicas, of distinct visitors who accessed the website [7].
This can be reduced to the distributed cardinality estimation

problem. In both examples, privacy concerns are raised due
to the fact that IP addresses can be used to track back users,
revealing confidential information ranging from their loca-
tion to personal and behavioral traits. A second concern,
posed by the scale of the Internet, is to be able to address
the distributed cardinality estimation problem efficiently.

Driven by the need, PDCE has attracted substantial inter-
est[10,19,23,26,30,31,33,41,47,61,65]. The current state of
the art is a secure computation protocol proposed by Fenske
et.al. in CCS’17 [33]. Functionality and privacy-wise, the
protocol is impeccable. However, it is not scalable enough,
because it relies on expensive public key encryption and com-
putationally demanding sub-protocols such as verifiable shuf-
fling. The running time of the protocol is in the order of hours
when the cardinality is in the order of 10*. The protocol can
fulfill its task for measuring the number of visitors to the Tor
network because the cardinality to be estimated is small. How-
ever, it cannot cope with mainstream big data applications,
involving million or billion sized sets, because the protocol
would require weeks or years to finish.

In the data mining community, the use of sketches has

gained popularity recently [17]. Sketches are space-efficient
data structures that summarize massive data, so that it can
be efficiently processed, stored, and queried. Sketches allow
representing data in sub-linear or constant space, and thus
can be employed to improve the efficiency and scalability
of algorithms. Sketches are lossy and do not preserve all the
information in the data they represent. Thus, sketch-based
computation returns only approximate answers. That said,
big data applications often do not require exact answers and
the parameters of sketches can often be adjusted to obtain
sufficiently accurate answers. Due to the use of sketches,
many real world systems can keep up with exponentially
increasing data (e.g. [6,40]).
Contributions In this paper, we build and analyse a new se-
cure computation protocol based on the Flajolet-Martin (FM)
sketch [34], for solving the PDCE problem. Initially, our inten-
tion was to make PDCE more practical. The protocol fulfils
this intention very well. As expected, the protocol achieves
high security, as well as much better efficiency and scalabil-
ity than the state of the art [33]. Yet, this is not the end of
the story. In the study we also found that the combination
of secure computation and the FM sketch allows us to ob-
tain differential privacy at no extra cost. This is interesting
because differential privacy is a much desired property in
PDCE, and neither secure computation nor the FM sketch
provides it on its own. In more detail, the protocol has the
following important features:

» Highly Secure Similar to exisiting work [30,31,33,41,47],
we consider the scenario where a set of Data Parties (DPs)
collect data and want to use some untrusted Computation
Parties (CPs) to aggregate the data and estimate cardinality.



In such a setting, the untrusted CPs are modelled as cor-
rupted and controlled by a single adversary. Unlike the vast
majority of previous work that considers only semi-honest
CPs, our protocol is developed on top of the SPDZ frame-
work [22], and thus is secure in the presence of malicious
CPs that can behave arbitrarily. For the total of d CPs, our
protocol can tolerate up to d — 1 corrupted malicious CPs.
Our protocol can achieve the following security goals as
long as there exists one honest CP: (1) the adversary learns
nothing from executing the protocol except the output of
the protocol; (2) the adversary cannot affect the correctness
of the computation without being detected. We formally
prove the security of the protocol in the UC model [14].

Efficient and scalable. We design our protocol around
the FM sketch. By using FM sketches, we can accurately
estimate the cardinality, while reducing the complexity of
our protocol to logarithmic (in the maximum cardinality
to be estimated). This is in contrast to the majority of
the existing protocols [10, 19, 23, 30, 31, 33,41, 47, 61]
whose complexity is linear. Also, we reduce much of the
computation needed for the online phase by using offline
pre-processing. As a comparison, the protocol in [33] needs
almost 1 hour in LAN to estimate the cardinality of a set
containing 30,000 elements; while our protocol only needs
less than 50 minutes (in WAN) to estimate the cardinality
of a set containing 1 billion elements, and the online phase
running time is only about 5 seconds.

Offers differential privacy for free. The most interesting
finding from our study is that our protocol can achieve dif-
ferential privacy [28] for free (i.e. without the need to add
noise and/or further manipulate the output). In the security
models for secure computation, the adversary is allowed
to infer information from the output of the protocol. This
sometimes is inadequate because individuals may still be
re-identified through such inference. It is often desirable
in applications like PDCE to additionally disallow such
inference attacks by making the output from the protocol
differentially private. We proved that, given the privacy pa-
rameters (€, §) and FM sketch parameters, if the cardinality
to be estimated is sufficiently large, then the estimated car-
dinality output from our protocol satisfies (€, 8)-differential
privacy. What makes the finding so interesting is that nei-
ther secure computation nor sketches provide differential
privacy on their own. However, we showed for the first
time that when we put the two together, they complement
each other by providing something the other lacks. The
intrinsic estimation variance of FM sketches now makes
the output of secure computation uncertain, thus can sub-
stitute the noise we usually need to add in order to achieve
differential privacy. Secure computation makes it possible
to do the computation without revealing anything except
the output, which means the sketches are now hidden and
any information leaked by the sketches is now concealed.

As a consequence, differential privacy can be achieved. We
further show that this is not just a theoretical result. The
lower bound of the cardinality for differential privacy to
hold is reasonably small. Given typical parameters, the
lower bound is usually only 10> — 10*. Thus, differential
privacy can be easily satisfied in real world applications
with our protocol. The technique used in our analysis is
quite general, thus we would expect that with some modi-
fications, it could be applied to other sketch based secure
computation protocols as well. As the last remark, existing
PDCE protocols [31,33,41,47,61], achieve differential pri-
vacy by adding noise, which however incurs a cost. This is
especially true in [33], in which a large portion of the com-
putation is spent on encrypting a large number (10* — 10%)
of noise bits and shuffling them with the data. Therefore,
free differential privacy is beneficial to the efficiency and
scalability of our protocol as well.

2 Related Work

In the literature, several PDCE protocols are also called Pri-
vate Set Union Cardinality (PSU-CA) protocols [19,23, 26,
30, 33]. However, the original definition of PSU-CA [19]
requires the output to be the exact cardinality, while quite
a few protocols [26, 30, 33] output an estimate close to the
exact cardinality. To avoid confusion, we use the term PDCE
in this paper and regard PSU-CA as a special case (in which
the estimation error is 0). Note that not outputting the exact
cardinality is not necessarily a deficiency. When differential
privacy is required, the output anyway cannot be exact.
There are two different flavours of PDCE protocols: the
first is that the DPs collect and compute the cardinality, with-
out using CPs; the second is that the DPs only collect the
data, and the CPs compute the estimation. We call the former
DP-PDCE and the latter CP-PDCE to differentiate them. Our
protocol is a CP-PDCE protocol. One approach [19, 23] for
DP-PDCE is to reduce it to a Private Set Intersection Car-
dinality (PSI-CA) problem. The cardinality of union can be
obtained by using the inclusion-exclusion principle. However,
the inclusion-exclusion principle leads to exponential com-
plexity (in the number of sets), therefore those protocols are
limited to the two-party case. There are a few DP-PDCE [23]
and CP-PDCE [10, 30] protocols based on Bloom Filters.
The protocol in [10] is not secure, and [30] proposed a more
secure variant of the protocol. The protocol in [23], as men-
tioned earlier, uses the inclusion-exclusion principle, thus is
not scalable. All the above protocols have computational and
communication complexity linear in the maximum cardinality
to be estimated. FM sketches were used by the DP-PDCE
protocol in [26] to lower its complexity to logarithmic. How-
ever, only a two-party protocol was given in the paper with a
brief statement that a multiparty protocol is feasible. The DP-
PDCE protocol in [65] also uses FM sketches. However this
protocol is not secure. The protocol reveals more information



than the cardinality itself because the parties learn the union
sketch in the protocol. It also assumes none of the parties
collude, which is a very strong assumption. None of the afore-
mentioned protocols supports differential privacy. There are
protocols that provide differential privacy [31,33,41,47,61].
The CP-PDCE protocols in [31,33,41,47] were all designed
for gathering statistics in the Tor network [25], which nat-
urally requires a high degree of privacy as the aim of Tor
is to keep users anonymous. The protocols in [31, 41, 47]
consolidate the observations of each DP into a counter, thus
cannot eliminate duplicates when the counters are aggregated
together. In [33], each DP maintains a hash-table with a public
hash function for the observations. If an observation occurs
multiple times, regardless by the same DP or by different DPs,
it will be hashed into the same bin of the hash-table and the
duplicates can be eliminated. However, in order to reduce
collisions and maintain a reasonable accuracy, the hash-table
size needs to be much larger than the maximum cardinality
to be estimated. This impacts the efficiency and scalability
of the protocol significantly. In [61], each DP represents its
observations as a bit vector, enforces differential privacy on
the vector using randomized response, and then passes the
vector to a CP who can estimate cardinality of the set union.
The estimation has a high standard deviation (in the order
of the size of the universe of the set), thus the result is not
accurate enough for many applications. All the above proto-
cols except [33] consider the semi-honest or an even weaker
adversary model, mainly for efficiency reasons, while our pro-
tocol and [33] are secure against more powerful malicious
adversaries.

There is a large body of research works on Private Data
Aggregation in which multiple data collectors (DPs) and data
aggregators (CPs) are involved in aggregating data and out-
putting some statistics. Some works consider a much weaker
security model and assume a trusted aggregator, who aggre-
gates data from the DPs in plaintext and then adds noise
before outputting the result [49, 60]. There are protocols that
consider an untrusted aggregator, e.g. for computing private
sum [16,55,59], or for frequency estimation over categor-
ical data [16, 32], or for computing KNN and median [48].
Sketches (e.g. Count and Count-min sketches) were used
in [48,49] to make the protocols more efficient.

3 Preliminaries

3.1 Flajolet-Martin (FM) Sketches

We briefly review FM sketches. More details and analysis can
be found in [26,34,57]. An FM sketch is a probabilistic data
structure for counting the number of distinct elements in a
multi-set. The data structure is a w-bit binary vector. Let FS
denote an FM sketch, and FS[i] (0 <i < w— 1) denote the
ith bit in FS. An FM sketch is built using two functions:

* H:{0,1}* — {0,1}¥~!: a hash function that maps an input
uniformly to a (w — 1)-bit string.

s p:{0,1}*~! — [0,w — 1]: a function that takes a (w — 1)-
bit string as input and returns the number of trailing zeroes
in it.

Initially, all bits in FS are set to 0. To estimate the cardinality

of a multi-set S, for each element x € S, we hash x and set

FS[p(H(x))] = 1. The quantity N, which is the number of

distinct elements in S, can be estimated using an estimator zy

that is the index of the first! 0 bit in FS, i.e. FS[zy] = 0 and

V0 < j < zy, FS[j] = 1. The expected value of zy is close to

log(0N), where ¢ = 0.77351 is a correction factor. Therefore,

N isroughly 2% /¢. It is clear that the size of the sketch w must

be larger than log(0N), otherwise zy might not be correct. As

suggested in [34], w > log(N) + 4 should suffice.

The standard deviation of zy is 1.12, which is too high (i.e.
an estimation using zy will typically be one binary order of
magnitude off the true cardinality). To remedy this problem,
[34] suggested to use m sketches, each with an independent
hash function. Then we can obtain m estimators Zy 1, ..., Zvm»
sum them to Zy = zy; + ...+ zZy.», and use the average ﬁ to
estimate the cardinality N. The standard deviation of Zy is
1.12-/m. Thus, the standard deviation of %’V is %, which
is much smaller. In [57], the authors suggested the following,
modified formula that can achieve better estimation accuracy:

ZyN ZN
~ 2w —=27K

N=Z" 1
P (H

where N is the cardinality estimated from m sketches, and
k = 1.75 is a correcting factor. In [26], it was shown that
the accuracy of the estimation can be improved by enlarging
m. This implies that the accuracy of the estimation can be
adjusted to the desired level, by choosing a suitable m.

An important property of FM sketches that we use in the de-
sign of our protocol is that they can be merged. If we have two
FM sketches FS; and FS; built with the same hash function,
but on different sets S; and S, respectively, then bit-wisely
ORing the two sketches produces a new FM sketch FS, that
counts the union of the two sets S; and S;. This process is
lossless: FS is exactly the same as the sketch built using
the union from the scratch. This holds also in the case of
more than two sketches. Our protocol will use this property
to union FM sketches from different DPs.

3.2 SPDZ

In this section, we briefly review the SPDZ scheme [21,22,
43, 44] that will be used as the underlying framework for
our protocol. We will follow mostly the notations in [43,44].
Essentially, SPDZ is a secret-sharing based multiparty compu-
tation (MPC) scheme that supports secure computation over a

I'We use the most significant bit first ordering throughout the paper.



finite field (e.g. IF,, for some prime p). One notable feature of
SPDZ is its 2-phase design: there is a pre-processing phase
that produces correlated random values that are independent
of the task to be securely computed, and the pre-computed
random values will then be consumed in the online phase
to enable very efficient computation. SPDZ aims to provide
highly efficient online phase primitives such as secure addi-
tion and secure multiplication. Then high-level protocols can
be implemented on top of SPDZ by calling the online phase
primitives to compute a task expressed as an arithmetic circuit.
In addition to efficiency, another benefit that SPDZ offers is
strong security: it is UC secure against a static, active adver-
sary corrupting up to n — 1 parties, and this strong security
extends to high level protocols implemented on top of it.

On the technical side, SPDZ utilizes authenticated shares.
In SPDZ, a value x € Z,, in the shared form is defined as:

HX]] = (xlv.” 7xn7mEX)7"' 7m}(1X)7A1;"' 7AI’L>7

and each party P; holds a tuple [x]; = (xl-,ml(x),A,-) such that:

x= Zn:x,-, m® = imgx), A= ZAi'
Pt . .

Each value is authenticated by a MAC. In the above, A is a
global MAC key and the MAC is m™*) = x-A. The authenticity
of x can be verified by letting each P, compute G; = mﬁx) —
x-A; and broadcast G;, then check if }' | 6; = 0. The three
parts in the tuple [x]; are additive shares of x, the MAC and
the MAC key respectively.

In our protocols, we will explicitly use the following online

phase primitives from SPDZ:

o [x+y] < [x] 4+ [y]: given shared values [x] and [y], com-
pute the sum. This is done locally by each party P, by

computing [x+y]; = (x; er,-,mgx) +m§y>,Ai).

* [a+x] < a+ [x]: add a shared value [x] with a public
value a. To do so, P| computes [a + x]; = (x; +a,m; +
a-Aj,A;), and each other party P; computes [a + x]; =
(xi, mi+a- A,’,A,’).

* [a-x] + a-[x]: multiply a shared value [x] with a public
value a. Each P; computes locally [a-x]; = (a-x;,a-m;, A;)
from [x];.

* reveal([x]): reveal x in a shared value [x], each P; broad-
casts x; in [x]; and computes x = Y7, x;.

* [x-y] « [x] - [¥]: multiply two shared values. It is done by
using Beaver’s triple [12], i.e. a triple ([@], [b], [c]) where
a,b are random numbers in I, and ¢ = a - b. The triples are
generated in the pre-processing phase. In the online phase
when computing multiplication, a fresh random triple is
used. It works by revealing (which requires broadcast) [€]
and [p] where [€] + [x] — [a] and [p] + [y] — [2]. Then

the product can be obtained as [x-y] < [c] +€[b] +p[a] +
ep.

* Output([x])): this is used at the end of a protocol to output
the final result x. It first checks the MACs of all values
previously revealed in the protocol. If it fails, then aborts.
Otherwise, it reveals x in [x] to all parties, and checks the
MAC of x. It aborts if it fails, and it outputs x otherwise.

Our protocols will use the pre-processing protocols in
SPDZ for generating Beaver’s triples. Since pre-processing is
necessary for our protocols, we will treat the pre-processing
phase as in place implicitly and not explicitly mention calling
it, in the description of the protocols.

In SPDZ (and in many other secret-sharing MPC schemes),
since computation over shares is simple modular addition
and multiplication in a small finite field, the performance
bottleneck of online protocols is often network communica-
tion [43,44]. Therefore, reducing the number of rounds and
number of interactions is crucial to the efficiency of the online
protocols.

3.3 Differential Privacy

Differential privacy [27] is a well-established principle that
quantifies the privacy impact on individuals, when their pri-
vate information is included in a dataset and some statistics
obtained from the dataset are released. The first definition of
differential privacy is the following:

Definition 1 (e-differential privacy [27]). A randomized
mechanism f : D — R_gives e—differential privacy, where
€ is a positive real number, if for all data sets Dy and D,
differing in at most one element, and all R C R,

e Pr{f(D2) € R) < Pr[f(D1) € R < - Pr{f(D2) €R].

Definition | is very strong but also often renders the output
unusable, since it incurs substantial distortion to be enforced.
Therefore, (€,d)-differential privacy is often used:

Definition 2 ((g,d)-differential privacy [28]). A randomized
mechanism f : D — R_gives (€,0)-differential privacy, where
(g,9) are positive real numbers, if for all data sets Dy and D,
differing in at most one element, and all R C R,

et Prf(D2) € R] - E < Prif(D1) € R < ¢ -Pr{f(D2) € R +38.

Intuitively, (&, d)-differential privacy ensures that for all
adjacent D1, D, the absolute value of the privacy loss will be
bounded by € with a probability at least 1 — 8.

3.4 Statistical Security

We briefly review the notion of statistical security [35] that
we use in our ZeroTest sub-protocol (see Section 4.5). This



notion requires that the views of protocol execution can be
simulated such that the distributions of real and simulated
views are statistically indistinguishable. Formally, let X and
Y be distributions with finite sample spaces V and W and
AX,Y) = 3 ¥, cvuw [Pr(X =v) — Pr(Y = v)| the statistical
distance between them. We say that the distributions are sta-
tistically indistinguishable if A(X,Y) < negl(A) where negl
is a negligible function and A is some statistical security pa-
rameter. As usual, a function is negligible if for every positive
polynomial p there is an N such that for all integers n > N it
holds that negl(n) < ﬁ. Statistical security is information
theoretic, i.e. it holds even if the adversary has unbounded
computational power. The statistical security parameter usu-
ally can be smaller than the computational security parameter
(e.g. 40 is often used in the literature [39, 54]).

3.5 Universal Composability (UC)

We briefly review the UC framework [14] that we use to
prove the security of our protocol. Being UC secure means
that our protocol can be freely composed with other protocols
and still be secure. The UC framework is defined in terms
of comparing a real world execution and the execution in an
ideal world, in the presence of an adversary (environment).
Security in UC is defined in terms of the adversary’s inability
to distinguish whether it is interacting with the real protocol
I1, or with a simulator in the ideal world which has access to
an ideal functionality ¥ . If so, then we say that the protocol
IT securely realizes the functionality # . Intuitively, the ideal
world is secure by definition, and a successful simulation
means that the adversary running the protocol in real world
cannot do more damage than what is allowed in the ideal
world, hence the protocol is secure.

Let the adversary be Z. In the beginning of an execution,
Z chooses inputs for all parties and gets their outputs when
the execution finishes. It also controls some corrupted parties,
which means Z will instruct what they should do during the
execution and see the communication and internal states of
them. When Z stops, it outputs a bit. Security is established
by showing the existence of a simulator S that interacts with
both F and Z. The simulator should be able to simulate the
view of the protocol that looks like what Z would see in a real
attack by playing the honest parties’ role when interacting
with Z, but without access to the input and state of the honest
parties. One significant difference in the simulation in UC and
in stand-alone environment is that Z can query the corrupted
parties during the execution (rather than just collect the views
after the execution). This means some techniques such as
rewinding cannot be used in UC proofs. For a more formal and
complete account of the UC framework, please refer to [14].

4 The PDCE Protocol

4.1 Overview

In the PDCE protocol, we have a set of n honest Data Parties
(DPs) and a set of d untrusted (up to d — 1 can be malicious)
Computation Parties (CPs). The DPs are responsible for data
collection. They observe the events of interest, e.g. IP ad-
dresses of the visitors, and record them locally as a set of FM
sketches. After the data has been collected, the DPs secret-
share the sketches among the CPs, who will securely combine
them, and compute the estimator Zy of the count of distinct
values. The protocol has four phases: initialization phase, of-
fline phase, data collection phase, and data aggregation phase.
Each phase involves certain sub-protocols.

4.2 Initialization Phase

In this phase, the parties negotiate parameters to be used in
the protocol. This phase only needs to run once when setting
up the system. Firstly, all parties need to agree on a finite
field IF,. This field will be used as the basis of data repre-
sentation, secret sharing and all computation. The modulus
p is decided by three parameters: (1) A, which is a statisti-
cal security parameter (e.g. 40); (2) T, which determines the
size of the plaintext domain (integers between [0,27 — 1]);
(3) M, e.g. 32768, which comes from the BGV somewhat
homomorphic encryption [13] used by SPDZ. Specifically,
the parties choose p that is a (A + T)-bit prime number and M
divides p — 1. Next, the parties agree on the parameters for
FM sketches. Given the accuracy and privacy requirements,
they decide m (the number of sketches to be used). Based on
the pre-knowledge of the maximum number of items that can
be observed collectively, the parties decide w (the size of each
sketch). Finally, the CPs run the setup protocol of SPDZ to
obtain the parameters and keys for SPDZ.

4.3 Offline Phase

In the offline phase, the CPs run the pre-processing protocol of
SPDZ. In addition, they also run a few other offline protocols
to generate various random values that will be used later in the
data collection and aggregation phases. The offline protocols
we use already exist in the literature, therefore we only give a
high level description of them here. The protocol details and
references can be found in Appendix B.

* Rand(): generates [r], the shares of a random value r €
F

p-
* Rand2(): generates [b], the shares of a random bit b €
{0,1}.

* RandExp(l): generates ([R™'], [R], [R*],---,[R']), the
shares of a random number R €, Z;, as well as the shares
of its ith powers (fori = —1 and 2 <i <).



4.4 Data Collection Phase

At the beginning of this phase, the DPs choose a keyed hash
function H, a pseudorandom function PRF, and establish a
secret key sk for PRF among them. The secret key sk can
be established using an authenticated group key exchange
protocol (e.g. [42]). The PRF and the key sk will be used for
deriving hash keys, so that m independent FM sketches can be
constructed using H and different hash keys. For 1 < j <m,
the jth hash key is k; = PRF (sk, j). Then each DP maintains
m FM sketches, observes items and adds them into its FM
sketches. At the end of this phase, each DP splits its FM
sketches into secret shared form, and sends the shares to the
CPs. The protocol for data collection is shown in Protocol 1,
and the sub-protocol Share(x) is shown in Protocol 2.

Protocol 1: Data Collection
Input: Each DP’s input is sk, the shared key for the PRF
Result: The CPs obtain the shares of the FM sketches
// Initialize FM sketches

1 Each DP; initialize m FM sketches, each is w-bit
// Collect data

2 Whenever DP; observes an item o, it does the following:

// add o to sketch (see Sec. 3.1)
3 for j=1;7<m;j++do

4 Compute I = p(H (kj||0));
5 Set FS!/[/] = 1;
6 end

// Finish data collection
7 After data has been collected, each DP; does the following:
8 for j=1;j<m;j++do

9 for | =0;l<w—1;l4++do

10 Run Share(FS{ [1]) with the CPs;
11 end

12 end

Protocol 2: Share(x)

Offline: CPs run [a]] - Rand(), where a € IF,.
Input: The DP’s input is x, the value to be shared.
Result: The CPs obtain [x]

1 CPs reveal a to DP;

2 DP computes x — a and broadcasts it to all CPs;

3 CPs obtain [x] = [a] + (x — a);

4.5 Data Aggregation Phase

This phase involves only the CPs. The CPs first merge the
shares from the DPs into m shared FM sketches such that each
slot in the sketches holds either a zero or a positive integer.
Then, they convert the integer FM sketches into binary FM
sketches. After that, they extract the estimator Zy from the
sketches, and compute the count from the estimator locally.

Merge Shares At the start of the data aggregation phase,
each CP holds the shares of all the FM sketches from all
DPs. The first step for each CP is to merge the shares of

the sketches to get the shares of a set of m (integer) FM
sketches that record the union of observations from all DPs.
As mentioned in Section 3.1, merging FM sketches can be
done by bit-wisely ORing the sketches. However, the Boolean
OR operation corresponds to multiplication of shared values.
A naive implementation of this step thus would require (n —
1) - m - w multiplication operations and thus (n—1) -m-w
rounds of communication, where # is the number of DPs, m is
the number of FM sketches generated by each DP, and w is the
bit-size of the FM sketches. To reduce the cost, in our protocol,
we merge the shares by addition. The protocol is shown in
Protocol 3. For the [-th bit in the j-th FM sketches, the CPs
locally sum up the n shares for that bit from all DPs. At the
end, the CPs obtains the shares of m integer FM sketches such
that O in the integer FM sketches corresponds to O in binary
FM sketches, and non-zero corresponds to 1. The integer FM
sketches will be converted to binary sketches in the next step.
The only operation needed in this step is addition. Thus, no
interaction is required. Looking ahead, the next step requires
in total 2 - m - w rounds of interaction, thus the total cost is
much less than the naive implementation in real applications
where the number of DP is often large.

Protocol 3: MergeShares

Input: Each CP; holds [FS![/]],
1<i<n1<j<m0<I<w—-1)
Result: [FS/[[[[s (1 <j<m0<I<w—1)
1 for j=1;j<m;j++ do
2 for [ =0;l<w-—1;l++do
3 [FSt e = Xy (IFS7L);
4 end
5 end

Protocol 4: ToBinary([FS,[0]], - ,[FSL[w —
1]ﬂ7 ) [[FSYS[O]]L ) HFSS[W— 1”])
Input: [FS/[1]] (1 < j <m,0 <1< w—1), shares of the m
integer FM sketches.
Result: [BFS{J ] (1 <j<m,0<I<w-—1),shares of the
m converted binary FM sketches.
1 for j=1;j<m;j++ do
2 for/ =0;/<w-—1;l++do
3 [BFS (1] = ZeroTest ([FS[1]]);
4 end
5 end

Convert to Binary Sketches As shown in Protocol 4, the
second step is to covert each FS/, back to the normal binary
FM sketches?, so that we can later extract the estimator from
them. This is done by running a zero test protocol among the
CPs on each slot that sets the slot to 0 if the value stored in it
is 0, or to 1 otherwise.

Here we use the protocol from [46]. The protocol is based
on the following idea: to test whether a is O or not, we first

2To clarify, here binary means {0,1} in ¥, not {0,1} in Fp



Protocol 5: ZeroTest ([a])

Offline:
fori=0,---,1—2, where l is the bit length of p do
[7i] < Rand2();
end
[r] « £i23 227 [n];
// interpolate the lookup polynomial
(t,Bo,- -, Pr) < interpolate();
Input: [a], where a is a T-bit integer.
Result: [b], where b =0 if a = 0, b = 1 otherwise
v [m] = [r] +[a];
2 Reveal [m];
s ) =1+ S ([l +mi = 2[n] - mi);
4 Hb]] = LOOkup([[l +h]]vtv B07 e 7B‘C)

Protocol 6: Lookup([x],¢,Bo,...,Br)

Offline: ([R'], [R], [R?*],---[R']) < RandExp(¢);
Input: [x], where x is an integer; ¢ is the degree of the
lookup polynomial f(-); Bo, ..., B¢ are the coefficient
of f(-).
Result: [y], where y = f(x).
t [a] = [R']- [x]:
2 Reveal [a];
3 fori=2,---,/do
4 [¥] =4 - [R]
5 end

6 [b] =X/ oBi-[¥]

compute r + a where r is a random integer, and then compute
the Hamming distance & between r +a and r. Obviously, if
a =0, then h = 0; otherwise & is a small integer in [1, 1], where
7T is the bit length of the plaintext. As A is small, it is feasible
to use a lookup function that is a polynomial f(-) such that
f(0) =0and f(x) =1 for all other x € [1,7]. There is a small
technicality that f(0) cannot be evaluated without leaking
information. To see that, note that in the first line of Protocol
6,if x =0 then a = 0, and revealing a will reveal whether x is 0.
Thus in line 3 of Protocol 5, 1 is added to £ so that the input to
the polynomial will never be 0. The lookup polynomial will be
interpolated accordingly (e.g. using Lagrange Interpolation),
and evaluating f at 2+ 1 will output O if 4 is O or 1 otherwise.
The ZeroTest protocol is shown in Protocol 5, and the sub-
protocol Lookup for evaluating the lookup function is shown
in Protocol 6 (both are from [46]).

Extract Estimator Recall that given an FM sketch, one can
extract zy, i.e. the index of the first O bit in the sketch. When
using m FM sketches, the sum Zy = Y7 | zy,; will be used
toZ Asastimazte the number of distinct observed items as N =

NN
W (see Section 3.1). The formula is deterministic

and invertible, therefore revealing N and revealing Zy are
essentially equivalent. Because of this, we can let the protocol
output Zy rather than N without compromising correctness
or security. With Zy, each CP can locally compute N.

Zy can be extracted using the following simple idea: firstly,

Protocol 7: ExtractZ([BFS![0]],---,[BFS}w —
1]],---, [BFST[O]], -, [BFST [w —1]])

Input: [BFS)[0]],---,[BFS,[w—1]],---, [BFS"[0]],-- -,
[BFS;[w — 1]], the shares of the m binary FM
sketches.

Result: Zy, the estimator extracted from the sketches

[Zn] = 0;

fori=1;i<m;i++ do

[Zn] = [Zn] + [BFSL[0]]:
end
fori=1;l<w-1;l++do
fori=1;i<m;i++ do
[BFSL,[1]] = [BFSL[Z - 1]] - [BFS, [1]];
[Zv] = [Zn] + [BFS{[]:
end
end
return Zy < Output([Zn]);
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for each sketch, set all bits after the first 0 bit to 0, then sum up
all bits in the sketch, and the result is the estimator zy;; then
Zy can be obtained by summing up all zy,;’s. This is essentially
what we do in Protocol 7. To set bits to O after the first O bit,
the protocol does the following: for each sketch FS} , it sets
FS!|[l] = FSi|[l — 1] - FS!|[l] sequentially for 1 <1 <w— 1.
By doing so, all bits before and including the first 0 bit remain
unchanged, and all bits after will be set to 0 due to the chained
multiplication.

Although Protocol 7 is simple, it requires w — 1 rounds
because the multiplication in each round is dependent on the
output of the previous round. To improve the round efficiency,
we designed another protocol (Protocol 13) that only requires
2log(w) rounds. The protocol can be found in Appendix E.
As we will see later in Section 6, the performance of Protocol
13 is better than Protocol 7 when the network bandwidth is
limited.

Estimate the Cardinality After extracting Zy, each CP com-
putes the estimated cardinality locally with the formula N =
Z,

2 o :
% s explained in Section 3.1.

S Security Analysis

5.1 Protocol Security

We prove the security of the protocol in Section 4 in the
Universally Composable framework [15]. This provides a
strong notion of security and allows our protocol to serve as a
component of a larger system without losing its security prop-
erties. We adopt a very strong adversary model in which the
untrusted CPs are modelled as corrupted by a single adversary
that is malicious, i.e. can behave arbitrarily. The adversary can
corrupt all but one CPs statically. Informally, with only one
honest CP, the security properties of the protocol are: (1) the
adversary learns nothing from executing the protocol except
the differentially private output of the protocol; (2) the adver-



sary cannot affect the correctness of the computation without
being detected. The security properties we considered in this
paper are confidentiality and correctness. We leave out other
properties such as robustness. In essence, the protocol will
terminate if any party aborts and no result will be computed.
This limitation is inherent in the underlying MPC framework
we use, namely SPDZ. That said, robust MPC is an active
research topic and our protocol can be migrated to a robust
MPC framework when it is available.

Our adversary model is quite similar to that in [33], except
that (1) in our model, the DPs are honest but in [33] they allow
DPs to be corrupted adaptively; (2) In our model, malicious
CPs cannot tamper with the data and the result, while in [33]
a malicious CP can insert elements into the hashtable and
change the result (and this cannot be prevented unless their
protocol is significantly changed). Regarding whether the DPs
should be assumed honest or not, we have the following re-
marks: (1) We model the DPs as honest mainly because, like
many other differential privacy mechanisms, we need to keep
the randomness, namely the PRF key, private from the adver-
sary. Compromising this key will break the differential privacy
guarantee. On the other hand, although [33] allows DPs to be
corrupted, once a DP is corrupted, differential privacy guaran-
tee is broken as well. This is because the adversary can now
see the raw data collected by the corrupted DP. If the element
x that differentiates D and D; happens to be observed by the
adversary, differential privacy is broken. (2) After corrupting
a DP, [33] can prevent the adversary from seeing the corrupted
DPs’ data before corruption. This is something our protocol
cannot achieve now. However, firstly [33] is used for Tor, and
they consider law enforcement forcing DPs to reveal data col-
lected a threat, but this is not common in other applications;
secondly, we can easily achieve it, by secret-sharing the FM
sketches when initializing them, and update them obliviously.
This only adds one round of communication between DPs and
CPs, and negligible computation. (3) Our DP side computa-
tion is cheap (hashing) and requires only small storage (a few
MB for thousands of FM sketches and one secret key). Thus,
it is relatively easy to secure DPs, e.g. using trusted hardware
like Intel SGX. Spending reasonable efforts on securing DPs
in exchange for much less computation on CPs seems to be a
worthy trade-off.

Note, as in many proofs, we prove the security modularly
in the so called ¥ -hybrid model. That is, we can replace an
already proven secure sub-protocol with an ideal functionality.
Theorem 5 states two ideal functionalities; Fsppz and Foffiine-
The first is the ideal functionality for the SPDZ protocol,
whose security has been proven in [22,44]. The details of
Fsppz can be found in Appendix C. The second is the ideal
functionality for our offline protocols. The offline protocols
are from the literature, therefore we also separate them as an
ideal functionality. The details of Fosine as well as the full
security proof (under the SPDZ framework) can be found
in Appendix D. Then, the security properties of the online

protocol that does the cardinality estimation are captured by
an ideal functionality in Figure 1. We have the following
theorem:

Theorem 1. In the Fsppz, Formine-hybrid model, the protocol
in Section 4 realizes Fppce with statistical security against
any malicious adversary who statically corrupts up to d — 1
CPs.

The full proof of Theorem | is in Appendix F.

Functionality 7ppce

The functionality maintains a dictionary, Val, to keep track of the
authenticated values. Entries of Val lie in the (fixed) finite field IF,
and cannot be changed, for simplicity.

Abort: On receiving Abort from the adversary, send _L to all
parties and terminate.

Share: On receiving (share, x,id) from DP, and (share, id) from
all CPs, set Val[id] < x.

Go: After receiving (go) from all parties, ignore messages from
DP and the following methods can be called from now on.
MergeShare: On receiving (mergeshare, id"S,id™V) from all
CPs, where id™S is a (mw x n) matrix and id™Sv is an mw vector,
all contain some ids, set for 1 <i < mw,

Valfid} >] « ¥"_, Val[id[$].

Lookup: On receiving (lookup, idy, idy, £, Bo, - - - ,B¢) from all
CPs, check that £, By, - - - , B¢ defines a lookup polynomial as
expected, then set Valfidy] < Y.f_, B; - (Vallidy])'.

ZeroTest: On receiving (zerotest, id,, idj,) from all CPs, if
Valid,] = 0, set Val[idp] <— 0, otherwise set Val[id] < 1.
ExtractZ: On receiving (extractZ,id}, -+ ,id}_,,id3,--,

idﬁ_1 yore ddgyy e idl) idzy,) from all CPs, count from the
beginning the number of continuous 1 in (Vallidy], -,
Vallid],_,]) to get zy,, then compute Zy = Y/ | zy,, set

Val[idZN] —ZnN.

Figure 1: Ideal Functionality for the PDCE Protocol

5.2 Differential Privacy

In this section, we will show that if the cardinality to be es-
timated by the FM sketches is large enough (larger than a
threshold Np), then our protocol in Section 4 satisfies (g,9d)-
differential privacy automatically, without requiring any fur-
ther manipulation of the output. We noticed that in [24], the
authors conclude that cardinality estimation by sketches does
not preserve privacy. However, our positive result does not
contradict their negative result. The reason is that in their
model, the adversary can access the sketches and the final
estimation result; while in our model, since MPC is used,
the adversary can only access the final estimation result. The
sketches are secret-shared in the protocol and are never re-
vealed (if at least one CPs is honest). In fact, the mitigation
strategies proposed in [24] are about restricting the adver-
sary’s access to the sketches, which is in line with what we do.
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Figure 2: Results from the Monte Carlo Simulations

5.2.1 Intuition

The notion of (g, d)-differential privacy requires that the out-
puts from a randomized mechanism on two neighboring
datasets should be close enough with high probability.

To start with, our protocol can be viewed as a randomized
mechanism F : 2V — 7. Let U be the universe of elements and
D C U aset comprised of the union of the observations of all n
DPs. F takes D as input, internally builds m FM sketches of D,
and outputs the random variable Zy = zy + - - - + zw,,. Note
that F' is a randomized mechanism because a randomly chosen
key is used in our protocol and is renegotiated in each run.
The random key is used to derive the hash keys for each FM
sketch. The use of hash keys also ensures the independence
of zy,’s, albeit they might be generated on correlated data. To
see that, for H that is modeled as a perfect random function,
Pr[H (k;||x) = y] is uniform and independent of Pr[H (k;||x) =
¥']. The independence of the hash output then implies zy,;’s
are independent. Also, as we mentioned in Section 3.1, FM
sketches can eliminate duplicates in data because the same
element will end up with the same hash value when hashed
under the same hash key, thus multiple copies of the same
element will be counted as one. Although data is collected
by individual DPs, we can think the final result is about the
union set of the elements from all DPs. We can model F' just
with one input D that is the union of the n sets from the DPs.

The output Zy from F is a random variable which can take
larger values as the cardinality of D increases. Intuitively, as D
becomes larger, each element in D has a smaller contribution
to Zy. Eventually, the contribution becomes so insignificant
and each element’s presence will have almost no effect on the
distribution of Zy. In other words, when D is large enough, the
addition or removal of an element from D will cause almost
no change to the distribution of Zy, i.e., differential privacy
can be achieved. To illustrate the intuition, we conducted three
Monte Carlo simulations. The results are shown in Fig. 2. In
each simulation, two sets D and D, were used, such that Dy
had N elements and D, was obtained from D by adding one
extra element. We set N =99, N =999 and N = 19999 in the
three simulations. Each simulation had 10 million rounds. In
each round, we generated a random set of m hash keys, built
m sketches for D and m sketches for D;, and then computed
F(D;) from the sketches. Fig. 2 shows the distributions of
F (D) and F (D), each obtained from 10 million samples. As
can be seen, when N becomes larger, the two curves become
closer.

Note that our protocol is designed for applications that

10

require one-off or periodical release of statistics (e.g. the
number of distinct IP addresses per hour). In each run of our
protocol, fresh randomness is introduced by renegotiating the
PRF key, so that the sketches are independent of those in
the previous run. The protocol does not use sketches from
previous runs, and only one query is answered in each run
(i.e. the output of each run is Zy). The protocol does not
support correlated queries, e.g. how many new elements have
been added since the last estimation. If our protocol is used
for answering correlated queries, differential privacy may no
longer hold because correlated queries leak more information.
In the following, we will start by showing that when using
a single FM sketch, we can find an Ny such that the protocol
satisfies (€, 0)-differential privacy whenever the input set to
the protocol has cardinality at least Ny. Then the bound N, for
(g,d)-differential privacy to hold in the m FM sketches case
can be obtained by using the composition theorems of differ-
ential privacy [29]. The bound obtained from the composition
theorems can be refined, to get a much smaller (better) Ny.

5.2.2 PMF: Single FM Sketch

Let zy denote the discrete random variable extracted from
an FM sketch when the input cardinality is N. We first work
out the probability mass function (PMF) of zy. In [34], the
complementary cumulative distribution function of zy was
given as:

2k N

gnx = Pr(zy > k) = Z(—l)v(-’)e72T

Jj=0
where 0 < k < w— 1 and v(j) denotes the number of ones in
tl}"e binary representation of j. Then, we can derive the PMF
of zy as:

PNk = PV(ZN = k) = 4Nk — qNk+1
2k . 2k+1 .
— Y (1) e B - Y (—1) e el
Jj=0 i=0
- 2k i
_ (_1)1’(]')8727 _ (Z(_l)v(Zj)ew

J=0

21 Ly @i
+ Z (_1)V(21+1)e KT ) )
j=0
In the above, (2) is obtained by summing odd i and even
i separately. Then, since the binary representation of 2j is
almost the same as that of j except one more O at the end, we
have v(2j) = v(j). Therefore, the first two terms in (2) are
cancelled. Also, because v(2j+ 1) = v(j) + 1, we obtain
2%k—1 )
Y (—1)0e
j=0

Qj+1)-N
oKFT

3

Pnik =

Note, the sequence (—1)*U) is actually the Morse-Thue
sequence [9]. Let X be an indeterminate, the following always
holds for k > 0 (Proposition 2, [8]):

2k ,

Y (71)"(-f>xf:ﬁ(1fxz"),

j=0 i=0

“



This is because
k

[T0-x*)=0-x")1-x*")(1-x¥). -

i=0

(1-x%)

:]+(—1)1X20+(—1)1X21+(—1)1“X21+20+(—1)1X22

+ (71)H1X22+20 R (71)k+1X2k+21<71+__+2]+20

:]—X—X2+X3—X4+X5-~~+(—l)k“X2H1’l
ok+1_q
= Z (= 1)U +b(ik) 7
j=0
okt
= Z (71)"(1')Xj.
j=0

In the above, b(j,!), is the /th bit in the binary representation

of j (bit numbering starts at O for the least significant bit).
We can then rewrite (3), and get the formula for py;:

N
e 2
PNk = __N_
k—1
{e 2k+1 Hj:()(l

The above is obtained as the following: the k = 0 case is

ifk=0
ifk>0

(&)

__N_
—e J°T)

N
derived directly from (3); when k > 0, we can let X = ¢ 2T

and use (4):
k-1
1)*0) ij>

2’
,1)"(./)X2/+1 -X ( Z (-

Jj=0

Let j = k—i— 1, the final form of the above is:

v k=l

N
pui=e FT[[(1—e 27T).

J=0

5.2.3 Finding Ny: Single FM Sketch

We want (€, §)-differential privacy to hold for any sufficiently

large datasets Dy and D, differing in at most one element.

When using a single FM sketch in our protocol, it is equivalent
to say that we want to find an Ny such that for all N > Ny and
for all &, the following holds:

Prizy = k] < ¢€®-Prizy., = k| +0
Prizy. =k] < €*-Prizy = k] + 98

which is equivalent to:

_ )
e ® *DN1k— w <pvi < e - Pns1x+0.
It is easy to see that the above holds, if at each k either of

the following two conditions is true: (1) ¢ & < % <€t
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(e-differential privacy holds at those k), or (2) py: < & and
Pk < O (the probability of getting to this k is sufficiently
small). When condition (1) is true, (€, 8)-differential privacy
holds because

e = — <€ C Pk < pwi <€ priii <€ piitd

When condition (2) is true, (g,d)-differential privacy holds
because

_ 3
e prik— = <0< pyi <8< ey +9

To start with, we prove the following lemma:

PN
PN+1k

Proof. When k > 0, we have:

Lemma 1.

decreases monotonically in k.

N
— 51 77k 1
B e kT Hj:O(
- N+1
— kT A1
e 2k H_/‘:O(

—e z/+1) k—1 l—e zﬁl)

T Nk
J:O 1—6 2/“)

Pk

Pk

—e 2/+1 )

71 . .
The first term e2**" decreases monotonically in k. In the
N
l—e 2JF
N+1
l—e 2/+]

increases in k. Therefore the value of the product decreases
when k increases. So, PNk decreases monotonically in k

product, each term < 1, and the number of terms

PN+1k
when k > 0. N~ 1
When k=0, pp]i?o —e 2T 2 =e2,anditis greater than
PN,1 Ly e 5
L —ed . )
PN+1,1 1_6—%
Thus decreases monotonically in k forallk > 0. O

Looking ahead, based on Lemma 1, our strategy for finding
Ny consists of two steps:

1. Find N; such that for all N > Ny, there exists k,;,,, and (i)
for all k > Kyin, p’%jk < €® and (i) for all k < kyin, pyi < &

and py;ix < 8.

2. Find N, such that for all N > N,, there exists k,qy, and

PN k

@) for all k& < kyay, PR > e ¢ and (ii) for all k > kar,

Py < dand pyiix < 9.

Then, we take Ny = max(N;,N,). Clearly, for all N > N,

we have: (i) e ¢ < pf]Nk < €& for kyin < k < kypay, and (ii)

prix < 0and pyyix < 8 for k < kyin ot k > kiygy. Thus,(g,3)-
differential privacy holds for all N > Ny and all k (see Figure
3).

Finding k,,;, and Ny We first show the existence of k,;;:

Lemma 2. Let ky;, = max([log, '] —1,0). For any € >0

and any k > ki, it holds that mi:‘k < et
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Prk
P < 0 Prvx < 0
Pnsin <0 Prsin <0
kmin k’maw
PN.k T T T
PN+1,k € < PNk < e
T
e€
e—¢€
kmin kmaz

Figure 3: k;;i, and kyqx
Proof. Recall that for k = 0,

PN k
PN+1.k

and JT\_

= e%, and for £ > 0,

N
1 — 571
PNk — o2k (1—e 2711

[ e I
PN+1k

=0 Nl . < 1.
(1= 2T ® o

pplilkk < T forall k > 0. It is clear that kak <

Therefore,

1
€® holds, if e2**T < ¢* or equivalently < €. From the last

2k+1
inequality, we get kpin, = [log, é] — 1. By definition, k is a
non-negative integer, so ki, = max([log, 11—1,0). O

Lemma 2 tells us that k,,;, always exists for any € > 0,
and that it is independent of N. Next we will show that the
increase of N can eventually make py; < & and py.; < for
all k < k. First, we show the following lemma:

Lemma 3. For all ky;, > 0, Przy < kpin] decreases mono-
tonically in N, and limy_,e Pr{zy < kiin] = 0.

Proof. Using (4), we can rewrite ¢y

‘min *

2Kkmin N
AN ki = Pr(ZN > kmin) = Z (*I)V(])e 2kimin
Jj=0

2kmin — 1 ) N )
= Y () Fa N

= H (lfe_#)fe_l\’: H

- .- . p
Note that 1 —e 2/ > 0 and it increases monotonically in

N. Thus, [T ’""‘(1 —e v ) increases monotonically in N. Fur-

~N increases monotonically in N. Thus, gy

thermore, —e min
increases monotonically in N. Also, because Przy < kmin] =

1 —qny,,,» Prlzn < kimin] decreases monotonically in N.
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Clearly, limy_yeo gy

Limy oo (1 = g, ) = lIMN 00 (Przn < Kmin]) = 0.

= 1, for any ky;, > 0. Thus,
O

Now we are ready to state the following theorem:

Theorem 2. Let kyin = max([log, 1] —1,0) and Ny be the
smallest positive integer such that 1 —qy, . < 0. Then, for
all N > Ny, it holds that py, < 8 and py, 1 < dwhen k < kpin,

Pa
an dele < €& when k > kpyp.

Proof. When k,;;, > 0,

* 1—qni,, = Pr{zy < kiin] and by Lemma 3, this quantity
decreases monotonically in N. Hence if 1 — gy, .. <
8, VN > Ny, Prizy < kmin] < 8, and because Przy <

Zk<km,,, PN k> Vk < kleHka <.

mzn]

* Because Prlzy < kpin| decreases monotonically in N,
if Prizy < kiin] < 0 then Przyy1 < kmin] < Prizy <
kmin] < 6’ hence VN > Ny, Vk < kmin;pNH,k < 0.

When ki, = 0, then for all k < ky,;, it holds that py,; =
Pw+1x = 0 because by definition, k cannot be negative. Hence
in this case py; < d and py, 1, < 8 holds trivially for all N > 0.

pz N, lkk < e® when k > ki, follows directly from Lemma 2 [

Finding k,,,, and N, 'We now show the existence of k.
Note that unlike ki, kimqy 1S @ value that is dependant on N.

1+,/1+8log, L
Lemma 4. Let kyqr = [logy, N|+c and c = fﬁ]

Forall0 <8< 1and N €Z", py, <8 and py,,, <38 forall
k> kiax-

Proof. Letc € Z" and k > c, the following holds:

k—1
pug=e BT [(1—¢ 77) ©)
=0
N N
<(l—e ) (1= ) 7)
N N
<30 G ®

In the above, (7) holds because it is obtained from (6) by
throwing away certain terms whose value is less than 1. (8)
holds because by the Maclaurin expansion of e ™, 1 —e™ <x
for0<x<1.

Then for all k > [log, N| + ¢, we have:

N

®) < (2“0gzNHc ) (2[10gzNW+c—c)
N N
< Grognre) " Gogw)
1 1
—_— e — . — —(1+2++C)
<% 1=2 .

To let py . < 8, it is sufficient to have 2~ (172++¢) < § which
is equivalent to 1c(c+1) > logz(%). Solving this, we get

—1+1/1+48logy (})

¢z 2

. Therefore py; <3 if k > [log, N| +c.



Similarly for py,,. Also let ¢ € Z" and k > ¢, we have:

k=1
DN+ =€ 2k+11 H 2’“
,M _ N+l
<(l—e 2¢)---(1—e 27°)
N+1 N+1
<( 2k )”.( 2](*C ) (9)
Then for all k > [log, N] + ¢+ 1, we have:
N+1 N+1
O) = (2(10g2NW+c+1 ) o (z[logzNW+C+17c)
N+1 1 N+1 |
(2(1og2m+1 'E)”'(z[logzmﬂ 1)
1 1
< —.o 201 10
T (10)

In the above, (10) holds is because 2/1022NI+1 — pflogaN]
2Mo N > N 41, then -2t — < 1. To let Drsrx < 0, itis

log2N T+1 —=
sufficient to have 27(1+2+ +¢) < §, which is equivalent to

—144/1+8log, (L
(c+1) >10g2( ). Solving this, we get ¢ > f‘)gﬂf’)_

Hence DPniix <O 1fk > [logyN|+c+1.

Combine all together, for all N € Z* and all 0 <
8 <1, pyvy <38 and py.x < & when k > [log,N] +
—144/1+8log, (1

s 0g2<5) +1.
71+,/1+81
ger ¢ = = 61 then k > [log,N| + ¢ implies
1+81
k> [log, N|+ fogz%) + 1, and hence py, < & and
Prnrix < d. O

We take ¢ to be the smallest inte-

Next we want to find N, such that for all N > N,,

LNdmax > =€ Tf this holds, then by Lemma 1, P Nk > =€
PN+1,kmax +I,k
PN k

for all k < k4. Recall that for k = 0, i —e? > e ¢ for
all N trivially. Then we only need to con51der the case k > 0.

. Y
In this case, =¥k — e . H —¢ N+,> Let us define
PN+1k (l . 2/+1)

k—1 1—6 m)

Nk:n Ntl

j:0 lfe ZJT)
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DN .k

e ¢ then %
PN+1.k

We can see if ¥(N,k) > > ¢ € because

ezkﬁ > 1.

It is actually not difficult to find some N, such that
W(Ny, kax) > e €. The tricky part is whether for all N > N,
W(N, kmax) > e~ € still holds. If W(N, knqy) is monotonically
increasing in N, then this can be proved. However, this is only
partially true. Regarding this, we have the following:

Lemma 5. Let k. as defined in Lemma 4, (N, kyay) <
W(N + 1, kmax) if [logy N| = [log, (N +1)].
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Proof. Let [logyN| = [log,(N+1)] =1 and kpax =1+,

H—C 1 t+¢ 1 — b
PN, kmax) (I—e ¥ ‘) (I—e 27T)
lP(N-i—],kmux) t+c l(l N ) t+c 1(1767%)
N+2
t+c l(l—e ')/+ ) I+c 1( 6_2"%)
- t+c 1 t+c 1 *N»f”l
(1—e 7)) I (1—e o)
therl (1 —¢” T Y(1—e” zj+l)
= W
j=0 (1—e 27T)2
N2 N Nt2
te=l 1 _, 2/+1 —e — ot Je TiTe” T
=0 1—2¢ 2 4 (¢ )2
N+2 W42
t4c— llfe 2,+1 — e 2T o it
= TNl —oN+2
j=0 1—2¢ 21 ¢ 271
Observe that:
__N_ _ N+2 _ N+1
e DT e 2wl Qe 2
__N_ N 2 _N 1
—e VT o T ¢ T Qe 3 ¢ 27

__N_ _ 2 R __N_ -7
—e 2.H~1(1+e 2T Qe zj+1):e 2”'(176 2}'+l)

>0.
_ N N+2 N+1 (N fomar)
Hence, e 2/tT 4 ¢ 2771 > 2¢ 2741 and Wm 1,
which means W(N, kyqy) < (N + l,kmax) O

In the case that [log, N| # [log,(N + 1)], there is a
problem because k., changes. Recall that the value of

kmax = [log, N| 4+ c. In the border case if N =2' — 1 then
[log, N| =¢—1 and [log,(N 4+ 1)] =t¢, so we need to com-

pare W(N,t — 14 c¢) and ¥(N + 1,7 +¢). In this case:
YN —1+¢) 155720 —eT) me'a —e 2
“P(N‘Fl,l‘“rC) HT;(‘) 2( 7(3_2]\,’.1]]) Ht]i?) 1( 7(3_2]\,’%]])
=2 (] _ oy T (1 —e T [ e
R ] b ) NI
J=0 (1—e 27T )2 1—e 2=

While the product term in (12) is less than 1, the term in the
big brackets is greater than 1. It is hard to decide whether
the whole formula is less than 1 or not. Although we cannot
compare W(2' —1,# — 1+4c¢) and ¥ (2", +c¢), in Lemma 6 we
can show a weaker result (note 2! in the lemma instead of
26 —1):

Lemma 6. Forallt € Z+, ¥(2'~ 1,1 —
where c is as defined in Lemma 4.

Proof.

l4+c¢) <¥P(2,14c¢)

21 241
—e ) e )

v -1+ TG0

. r—1 of
W(2',t+c) H’;% 2(176*22/4:]) Hf/izo 1( —e V)
t—1 ot 4
e (1o T (1—e 1) | [(1-e )
= II T | —— |- 13
=0 (1= T ) (1—e 27T) (I—e %)



Let us keep only the last two terms in the product (when
j=t+c—3and j =t+c—2), we have:

o1 _ 24
e 2F2)(]l —e 2:—(-—2)

(1-
2= 1+1
(1—6 ot

2
21+r

(l—e )
1,6 2r+r
(I—e T
2= 1+1
(1—6 2f+c—

—e 2r+(-—2 )

2c—1 ) e 2tc 1) )

((1e 5f+f*2'><1fe )) ((1)@/“/)
(1—6 %ricl)
=il

241 _ 2t
] — e 20Fc2 ) (1 — e 2tcT )
o=l 1 ) 72z—l+]
(1—e 2r+c—z Y(1—e 27) (1—¢ 2 T)
_ 241 _2her _2l4
_ (1,6 2t+r—2) (176 ot+c—T ) (1,6 2t+r)
- 1 ! —1 ' —1
(1—e 2¢°7) (]_e’zwjzl) (1_e’§j+cjll)

Lt _2lppl _27249712
((l—e E=3 )) ((l—e S )) ((l—e i ))
1 : 211 ’ 22511 :

(I-e 2“2) (1—e = ) (1—67;772)

o1 241
(1 e 2Fc— 1)(] e 2/+( 1)

) ((1—e )1 —e v >>
) ( (176*%;)(17523%) )
(1—e T T)(1-e ¥ 7)

X
-ewe)

—_e 2r+r )

H1-e 77)

Fi1—e et

2041

(1—e )

Thenletb=e2 “andy=e"2 " °, the above can be rewritten
as:
1—-b** 1-b%> 1—by
[ I
B 1— by _ b2y2 + b3y3 _ b4y4 + b5y5 +b6y6 _ b7y7 B fl ()’)
= = (=) = (=B (B =BT ()
Let f(y) = f1(y) — f>(y), we can prove that when b € (¢, 1),

f(y) <Oforally e (b,1) (see appendix H). This means for
any ¢ € (0,+o) andt € Z*, W(2' 1t — 1 +¢) < WP(2',t +c¢),
and that the lemma statement is true. O

Lemma 6 is useful because combining it and Lemma 5, we
can prove the following lemma:

Lemma 7. Letty € ZT, if ¥(20 1ty +¢) > e, then for any
N >20e> 0, ¥(N, kpax) > e 5, where kygy is as defined in
Lemma 4.

Proof. For all N > 2/, we can write N = 20* + j for some
i>20and0<j < 20+ _ | When Jj =0, by Lemma 6, we can
see that W(N, kyar) = (207 19 +i+c) > P+ y+i—
l+c)>-->¥(2,19+c). When j #0,by Lemma 5, we can
see that (N, kyay) = P(20 4+ jitg +i4c) > P (207 15+
i+c), then by Lemma 6 W(2107 1) +i+c) > P(2" 1y +c).
Therefore W(N, kyax) > (20,19 +c) > e 5. O

Now we are ready to state the next theorem:
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Theorem 3. Let € > 0, and ¢, kyqy as defined in Lemma 4. Let
to be the smallest positive integer that satisfies ¥ (20,9 +c¢) >

~¢ Let N, be the smallest integer in (200! ,20] such that
‘P(Nz,to +¢) > e Then, (1) YN > Ny, k < kpaer -5 >

PN+1k —

£, and (2) YN > No,k > kmax, pvy < 0 and py.ix < 0.

Proof. We first show (1): for all N > N, there are two
cases: (i) when N € [N,,2'], then by the definition of N,
Y(N, kypax) > €€, which implies % > ¢~ ¢, (ii) when

L kmax

N > 20, by Lemma 7 W(N,kmax) > e &, which implies

LNhnas > o=€ Then by Lemma 1, if PNy > e ¢, then
PN-+1 kmax PN+1 kmax

for all k < k;;;ur We have pp Lk fk > ¢~ %, hence complete the

proof of the first part.

(2) follows directly from Lemma 4. O]

Computing Ny Combining all the above together, we can
use Algorithm 8 to compute N for a given (g,d) pair:

Algorithm 8: FindNy(g,d)
Input: € >0,0<d< 1
Result: Ny € ZT
kinin = max([log, %l -1,0);
/* 1—qyy,, decreases monotonically in N. x/
2 Starting from 1, use an exponential search in [1, 40| to find
Nj that is the smallest integer satlsfymg

-

/‘Illl’l il
L= Qv s, = 1= X320 (—=1)" ()™ Fun < &
—1+44/1+8log, &
3e=——F5—— 28 ;

4 Starting from 1, use an exponential search in [, +oo] to find

to that is the smallest integer satisfying
20

knax—1 (1—¢ 2771
I_Ij:0 _ 20041

(1—¢ 27T

/* search backwardly in (2001 2]

s fori=20;i>20"1l:;j_ _do
N

> e~ €, where kiyax = to +C;

*/

o (TS U <o) then
(1—¢ 277T)

7 N =i+1;

8 break;

9 end

10 end

Output Ny = max(Ny,N3);

Regarding the algorithm, we have the following theorem:

Theorem 4. For all €, € RT and & € (0,1), let Ny =
FindNy(g,d). When all DPs use a single FM sketch, our pro-
tocol satisfies (€,0)-differential privacy if the cardinality of
the union of all DP’s set is greater or equal to Ny.

The proof is straightforward, given the already proven the-
orems, and therefore it is omitted.

The running time of Algorithm 8 is bounded by the search
time, and in turn the values of, Ny and N,. We have the fol-
lowing Theorem:



Theorem 5. In algorithm 8, N1 and N, increase monotoni-
cally as the parameter € or 8 decrease.

Proof. First we show that as € decreases, the value of N in-
creases monotonically. When € decreases, é increases mono-
tonically, then ki, = max([log, +1—1,0) increases monoton-
ically (weakly). We know that gy, 4. = Yi<x,.. Prlzn, = K]
decreases monotonically in ky;,, then 1 — gy, 4 . increases
monotonically in k,;,. Therefore with a smaller €, we gets a
larger 1 — gy, «,,,,- We know also that gy, «, . increases mono-
tonically in Ny. So if we want 1 — gy, 4. > 0 to hold, we need
to increase V.

Next we show that as § decreases, the value of Nj increases
monotonically. This is obvious, because with a smaller 9, if
we want 1 — gy, 4. > d to hold, G, ky,» @nd in turn Ny, must
increase.

Then we show that as € decreases, the value of N, increases
monotonically. When € decreases, e ¢ increases monoton-

ically. Then by Lemma 5 and 6, the smallest N, to ensure

_ M
1 —1 (1— 2+l _ . .
H}Qjo‘ (871\%1) > ¢~ % must increase monotonically.
(1—e 21T

Last we show that as & decreases, the value of N, in-
creases monotonically (weakly). When & decreases, % in-
creases monotonically, and there are two cases:

—144/1+8log, 1
* When § decreases, ¢ = [—Y—5—] and

max —

_ 20
. kmax—1 (1—e 27+1
to + ¢ remains unchanged, hence [] 0 (672,(”]) re-
' (1- 77T

mains unchanged. In this case, N, remains unchanged.

,H»\/H»Slogz%_l and k _
max =

* When & decreases, ¢ = | 5
to + ¢ increase, and in turn the number of terms in
_ 20
—1 (1—e 27F1) .
Hl;'i"(; ! % increases. As the value of every term
(1—e 2771

in it is less than 1, then the value of it, as the product,
decreases monotonically. To ensure the value is greater
than or equal to ¢~ %, by Lemma 6, we know the value
of 19 should increase. Hence the value of N, increases
because 7) = log, (Nz).

O

Therefore for smaller (g, ), the algorithm will take longer
to run. However this will not be a problem in practice. As an
example, we ran Algorithm 8 with extremely small parame-
ters € = 2740 and & = 278, Ny = max(N;,N,) found by the
algorithm is 30,865,997,083,798, and the running time was in
the order of seconds?. Therefore, for all (g,3) normally used
in practice, N1, N> will not be too large and the algorithm can
be efficiently computed (see also Table 1, in which the values

were computed with £, %).

3The implementation is based on Arb (http://arblib.org/),aC library
supporting arbitrary precision real arithmetic.
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e 100 1000 2000 4000
1 2053 4596 9387 9564
0.5 4123 9210 | 18791 19146
0.3 8261 18437 | 37601 | 38310
0.2 8261 | 36891 | 37601 | 76638
0.1 16538 | 73800 | 75219 | 153295

Table 1: The value of 1/\75 for different €, m and fixed
§=2"w=32

5.2.4 Find Ny: Multiple Sketches

The Bound By Composition Theorems If the DPs use m
FM sketches, then the output of the protocols is Zy = zy; +
-+ 42y ., Where zy, is extracted from the i-th FM sketch. The
input set encoded by each FM sketch is the same, i.e. the
union of observations from all DPs, and the hash keys are
different. Therefore, using m FM sketches is like querying
a privacy mechanism m times, and the randomization of the
mechanism is independent for each query. The basic compo-
sition theorem (Theorem 3.16, [29]) states that if the base
differential privacy mechanism is (&g, 8¢ )-differentially pri-
vate, then after m queries, any function of the m query results
is at least (mgg, mdy)-differentially private. Therefore, in the
m sketches case, given the target (€, 8) we want to achieve, it
suffices if each single FM sketch satisfies (%, %)—differential
privacy. When m is large, the advanced composition theorem
(Theorem 3.20, [29]) gives a better bound. For a base mecha-
nism that is (€9, dp) differentially private, after m queries, the
result is at least (€, m8y + &')-differential privacy, where

1
e= \/2mln§£0+m£0(e€0—l),f0r any & >0. (14

Hence, given the target (€,58), we can obtain (€p,dp), then
an initial bound Ny = findNo(go,8). For all N > No, (€, 8)-
differential privacy holds, due to Theorem 4 and the composi-
tion theorems.

In Table 1, we show some J/VB for different combinations of
parameters. When m = 100, the basic composition theorem
gives better results, so we set €y = 18—0760 = %. For all other
m, we obtain €y, &y through the advanced composition theo-
rem. We simply set &' = % and 8y = 2%, then we can get €y by
(14). Note that in the table, when m = 100, we get the same
Z/VB in the cases when 8/:\0.2 and € = 0.3. This is because in
both cases Ni > N», so Ny = N;. The value of N is a function
of [log, %] — 1 and &. The same & is used in both cases

and [log, %] — 1 =[log, %W — 1, so the algorithm gives

the same ]/VB For the same reason, we get the same NB for
€ =0.2 and € = 0.3 when m = 2000.

The bound K/E by composition theorems is rather loose
and can be further improved. Next we will first show how to
compute the PMF of Zy, then how we can get an improved
bound Ny computationally.


http://arblib.org/

PMF: m FM sketches The PMF of Zy can be obtained
through the probability generating functions (pgf for short)
[36]. We know that the pgf of a discrete random variable X
taking values in non-negative integer [0, j] is defined as:

J
Gx (1) =E(*) =Y Prix =] -*.
k=0
Therefore for zy;, the pgfs are:

w—1
Gy, (1) = Z P 1k,
k=0

We use pgfs here because they are particularly useful for
dealing with the sum of independent random variables. In

fact, for Zy = ZZNJ” the pgf is:
i=1

=

15s)

w—1 m
Gz, ([) = (GZN.i(I))m = (Z PN k ‘tk) .
k=0
Another property of a pgf is that the PMF of X can be recov-
ered by taking derivatives of Gx (f):

G (0)
kK

PriX = k] = (16)

Expanding Gz, (t), we will get the m(w — 1)-th degree poly-
m(w—1)
nomials Z aKtK , where ag are coefficients and ¢ is the

K=0
indeterminate. Then by (16), we have:

Gy (0)

Prizy =K] =

=ag. a7

Refining the Bound In the m FM sketches case, (g,9)-
differential privacy holds if for every 0 < K <m(w—1):

)
¢ CPriZya = K| - < PriZy =K <& Prizy =K +8. (18)

Therefore, we can use algorithm 9 to find the improved Np.

Algorithm 9 starts from No and computationally verifies
N < Ny backwardly. It stops at Ny when Ny — 1 does not sat-
isfy differential privacy anymore. This Ny is the improved
bound and it is guaranteed that for all N > Ny, our protocol
satisfies (&, 8)-differential privacy at the given (m,w) parame-
ters. In Table 2, we show the improved bound computed from
Algorithm 9. Compared to the values in Table 1, the improved
bound is significantly better.

The running time of Algorithm 9 is dominated by Step 5,
in which the pgfs are computed. Computing pgfs involving
polynomial exponentiation and the time increases when m in-
creases. For example, to get numbers in Table 2, it took 78 ms,
5350 ms, 21468 ms and 90237 ms to compute a single Gz (1)

when m = 100, 1000,2000,4000 respectively. When I/VB is
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Algorithm 9: Re fineBound (e, S,JTIB, m,w)

Input: £,6 € R™ and & € (0, 1),1/\Ig,m,w ezr
Result: Ny € Z+
1 stop =false;
2 Ny = I/VB+1;
3 do
4 N() = No — 1;
5 Compute the polynomials Gz, (f) and Gzyy- (t) using (15);
6 for K=0;K <m(w—1);K++ do
7 Let Pr{Zy = K] be the coefficient of the K-th degree term

of GZNU—I (t);
8 Let Pr[Zy+1 = K] be the coefficient of the K-th degree
term of Gz, (t);
9 if Pr(Zy = K] and Pr[Zy+1 = K] don’t satisfy (18) then
10 stop =true;
11 break;
12 end

13 end
14 while stop = false and Ny > 0;
15 output Ny

e 1100 | 1000 | 2000 | 4000
1 85 254 355 497
0.5 166 | 496 693 969
0.3 273 | 813 | 1136 | 1587
0.2 404 | 1205 | 1682 | 2351
0.1 790 | 2359 | 3293 | 4600

Table 2: The value of Ny by Algorithm 9 for different €, m
and fixed § = 2740, w = 32

large, backward verification by Algorithm 9 could take quite
long time. That said, it should be noted that this verification
needs only to be done once for each parameter combination.

The bound Ny can easily be achieved in real world applica-
tions. For example, when € = 0.3, which is recommended for
safe measurements in anonymity networks [41], even with a
large m = 4000, Ny is only 1587. For smaller € values, Ny are
still reasonably small across different m values. Note that Ny
is the lower bound, therefore the privacy level is guaranteed
even if the actual cardinality is larger than Ny. We can also
see that for the same privacy parameters, a larger set allows
us to get a better accuracy (by allowing a larger m at the same
privacy level). This means we can get both good utility and
good privacy if the set is large.

6 Experimental Evaluation

We have implemented a prototype of our protocol in C++.
The source code of the protocol is available online*. We used
the implementation of Overdrive (low gear) in the SPDZ2
repository” for the pre-processing part, and implemented our
offline and online protocols on top of that. We compare the
performance of our protocol to the state of the art [33]. The

4https://github.com/saftoes/pdce
Shttps://github.com/bristolcrypto/SPDZ-2


https://github.com/saftoes/pdce
https://github.com/bristolcrypto/SPDZ-2

N = 20000 N =10° N =10’

m=1000 | m=2000 | m=4000 | m=1000 | m=2000 | m=4000 | m=1000 | m=2000 | m=4000

LAN | Offiine 66.5 132.2 222.8 78.1 154.7 307.6 149.3 2573 515.8

Running Time (s) Online 0.079 0.151 1.997 0.110 0.189 0.271 0.201 0.377 0.522
WaN |_Offfine 320 6241 1470.5 4117 8I1.1 1578.9 7571 1421.8 294472

Online 2414 2.036 2.623 1.754 2.360 2.934 2.689 3.031 5.026

Communication Offline 10.7 21.4 352 12.09 24.18 48.5 233 39.05 78.3

(GB) Online 0.008 0.016 0.031 0.010 0.020 0.041 0.028 0.056 0.120

Table 3: Total running time and communication cost: 5 CPs (16 threads), 20 DPs.

implementation of [33] provided by the authors is in Go and
does not fully support multi-threading. For a fair comparison,
we re-implemented the protocol in [33] in C++. In this im-
plementation, we use OpenSSL 1.0.1 for all cryptographic
operations and pthread for multi-threading. The performance
of our new implementation is much better than that reported
in [33]. We used 40 for the statistical security parameter and
128 for the computational security parameter in all experi-
ments.

We ran all CPs in Amazon AWS. We used the EC2 instance
type r5.4xlarge (on-demand) for each CP. Each instance has
16 vCPUs (8 physical cores) based on Intel Xeon Platinum
8000 series (Skylake-SP) CPUs, 128GB RAM, one network
interface up to 10 Gpbs LAN speed, and costs $1.008 - $1.12
per hour in US data centers. We conducted experiments both
in a LAN environment (all CPs were in the Oregon AWS data
center), and a WAN environment (CPs were distributed in
4 different AWS data centers in the US®). The DPs ran on
desktops, with a typical hardware configuration of an Intel
Quadcore i7-6700k CPU and 16 GB RAM. We used 20 DPs
in all experiments and varied the number of CPs.

In Table 3, we show the total running time and communi-
cation (send-+receive) cost of our protocol in the offline and
online phases. We implemented the group authenticated key
exchange protocol in [42]. The offline phase measurement
includes the costs of the SPDZ pre-processing protocol and
our offline protocols. The online phase measurement includes
all online protocols, from DP sharing the sketch to the CPs
outputting Zy (using the ExtractZ protocol in LAN and Ex-
tractZBS protocol in WAN). Note we do not include the time
used by the DPs to collect data because this time is irrelevant
to our protocol. In the experiments, the DPs first did the initial
sharing and then immediately the final sharing of the Oblivi-
ous FM sketches. The running time and communication cost
shown in the table are the average of those measured over
all CPs. For the running time, we show the time measured in
LAN and WAN. The communication costs in LAN and WAN
are almost the same, thus we only show the larger one of the
two. We varied the number of distinct elements in the experi-
ments, from 20000, to 1 million (10°), to 1 billion (10°). This
change affects the size of the modulus p (55, 60, 70 respec-
tively) and the size of the sketches w (19, 24, 34 respectively).
We also used different number of sketches (m) for different

N Virginia, Ohio, Northern California, Oregon.
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accuracy levels. As we can see in the table, the total running
time is dominated by the offline phase. While the offline run-
ning time is in the order of minutes, the online running time is
only in the order of seconds. We can also see that the offline
running time is less than 1 hour even with the largest param-
eter group, and since the offline computation can be done
during the period when the DPs are collecting the data, the
performance should be acceptable (many applications may
only require daily or even less frequent update of the esti-
mate). The protocol has good scalability: when N increases
from 20000 to 10° (50000 times), the running time increases
only to about 2 times (log(10%)/10g(20000) ~ 2). The run-
ning time in LAN is much less than that measured in WAN.
The differences in network bandwidth and latency are likely
the causes of the slowdown. Communication-wise, the offline
phase cost is much higher than the online phase cost. As we
can see in Table 4, most of the cost in the offline phase is
due to the Triple generation protocol in SPDZ, which utilizes
heavy machinery such as somewhat homomorphic encryption
and zero-knowledge proofs. In Table 4, we also show the
differences in performance for the ExtractZ (Protocol 7) and
ExtractZBS (Protocol 13, Appendix E). The results confirm
that in the high network latency setting, ExtractZBS performs
better due to fewer communication rounds/interactions.

Rﬁgﬁng T”anl(\f) Comm. (GB)
Group AKE (per DP) 0.014 0.46 | 6.36x107°
Triple 417.0 | 2414.1 68.5
. Rand 50.6 4524 7.4
Offtine (—pndz 474 | 703 183
RandExp 0.8 7.4 0.61
Share (per DP) | 0.155 1.877 0.0087
MergeShare |0.00130|0.00129 N/A
Online ZeroTest 0.32 2.345 0.070
ExtractZ 0.049 | 1.482 0.034
ExtractZBS 0.063 | 0.803 0.042

Table 4: Performance breakdown: 5 CPs (16 threads), 20
DPs, N = 10°, m = 4000

As a comparison, we show in Figure 4 the total running
time and communication cost of the protocol in [33]. In the
experiments, we used 5 CPs (16 threads) and 20 DPs. We
varied N from 20000 to 50000, and as in [33], set the number
of bins to 10 N so the collision probability is less than 10%.
We also set (&,8) for differential privacy to (0.3,107!2), the



default values used in [33]. Note the parameters are weaker
than those for our protocol: with N = 20000 and other pa-
rameters in the experiments, our protocol can easily achieve
(0.1, 10~ '2)-differential privacy, and even better privacy when
N grows bigger. We only tested with all CPs in the same LAN,
as the figures in the WAN setting would be even higher. As we
can see, the protocol in [33] is much slower than ours, and its
running time increases much faster. When N = 20000, its run-
ning time in LAN is about 1.2 times of ours in WAN, and 8.5
times of ours in LAN (both m = 4000); when N = 50000, it
needs almost 2.5 hours in LAN, while our protocol (in WAN)
with N = 10° only needs less than 50 minutes (offline+online).
The running time of [33] is slightly convex due to a quadratic
step in a zero-knowledge proof sub-protocol. The communi-
cation complexity of the protocol in [33] is linear. When N
is small, the protocol in [33] has a much smaller communi-
cation cost compared to ours, e.g. 1.4 GB vs 35.2 GB when
N =20000. However since the communication complexity
of the protocol in [33] is linear and that of ours is logarithmic,
the communication cost of the protocol in [33] will exceed
that of ours eventually. As an estimation, when N is 100, the
communication cost of the protocol in [33] would be 60 GB
roughly, which is already higher than ours (48.5 GB).

) —
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Figure 4: Performance of protocol in [33] (LAN)

Next, we show in Figure 5 the performance of our protocol
and the protocol in [33] with a varying number of CPs. For
our protocol, we fixed N to 10° and m to 4000, with a varying
number of CPs from 2 to 7. As we can see, the communication
cost and the running time in LAN increase linearly in the
number of CPs. The line of the running time in WAN is not
very regular, but we can see that the running time is roughly
linear. In typical applications, the number of CPs is quite
unlikely to exceed 10. However in the case of more CPs, we
could switch the SPDZ pre-processing protocol to High Gear.
High Gear’s performance surpasses Low Gear (we currently
use) when executed with a high number of parties (more
than 10 as reported in [44]). As the computation time of
our protocol is dominated by the SPDZ pre-processing, this
would allow us to handle more CPs more gracefully. For the
protocol in [33], we fixed N to 20000, and used 2, 5, 7 CPs
in the experiment. The communication cost of this protocol
is also linear in the number of CPs, but the running time is
slightly worse than linear. The results are consistent with
those reported in [33].

In Figure 6, we show the distribution of the relative errors

(M where N is the cardinality estimated from the sketches
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Figure 5: Performance with different number of CPs

and N is the true cardinality) when using a different number
of FM sketches. We used m = 1000, 2000 and 4000 sketches,
using two sets with 20000 and 10° random elements as inputs.
We repeated each experiment 1000 times and drew the his-
tograms. As we can see, when m increases, the max relative
error decreases, and the distribution gets more concentrated
towards 0. With m = 4000, about 99% of the estimations have
a relative error less than 3%, and the maximum relative error
observed was 4.3%. On the other hand, the estimations using
the method in [33] had a slightly higher relative error (see
Figure 10 in Appendix G) due to the hash collisions and the
noise added to achieve differential privacy.
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Figure 6: Distribution of relative errors

Since the cardinality count produced by the protocol in [33]
is also approximate, it would be interesting to see whether
our differential privacy analysis can result in a cheaper vari-
ant of that protocol, and if so how would the performance of
the variant compare to that of our protocol. In principle the
protocol of [33] could also obtain differential privacy for free
with honest DPs and a private hash key, although we have not
done the analysis and the analysis may not be trivial. If [33]
achieves differential privacy by hashing, then the CPs do not



need to add noise. However, the performance improvement
would be around 20-30% at most, based on our experience
of implementing the protocol. The performance would be in
the same order as it is now, and thus still much worse than
that of our protocol. This is because the main factors affecting
the performance of [33] are not adding noise but (1) public
key encryption; (2) verifiable shuffling and zero-knowledge
proofs; (3) superlinear (in the maximum measurable cardinal-
ity) computational and communication complexity.

In Appendix G, we show additional experimental results,
which could not be presented here due to limited space.

7 Conclusion and Future Work

In this paper, we present and analyse a PDCE protocol.
The protocol is efficient and scalable, due to the use of FM
sketches as the underlying data structure for cardinality es-
timation, and the use of efficient secret sharing based MPC
primitives. We proved the security of the protocol against a
malicious adversary in the UC framework. More interestingly,
we showed that the combination of secure computation and
the FM sketches allows us to get (€, d)-differential privacy for
free. We implemented our protocol and evaluated it experi-
mentally. Our experiments showed that the protocol is much
more efficient and scalable than the state of the art [33].

We would like to continue investigating the use of data
structures in secure computation protocols to improve their ef-
ficiency and scalability. Data structures such as sketches could
lead to sub-linear complexity protocols, which are highly de-
sirable for Big Data applications. We would also like to in-
vestigate the relationship between differential privacy and
sketches, to extend and generalize the results in this paper to
other sketches/data structures.
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List of Notations

Fp: the prime field.

DP: the Data Parties.

CP: the Computation Parties.
n: the number of DPs.

d: the number of CPs.

N: the number of different elements in the set for the FM
sketch.

N: the estimated value of N.

m: the number of FM sketches we should use to improve the
accuracy.

w: the bit length of the FM-sketch

H:{0,1}* = {0,1}*~!: a hash function that maps an input
uniformly to a (w — 1)-bit string.

p: {0,111 — [0,w— 1]: a function that takes a (w — 1)-bit
string as input and returns the number of trailing zeroes in it.

0: a correcting factor for FM sketches, which is 0.77351.

k: a correcting factor for FM sketches, which is 1.75.

A: a security parameter for statistical privacy, which can be set
to be 40 at least.

7, the bit length of the plaintext domain.
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B Protocols in Our Offline Phase

Here we provide the details of the offline protocols used by us. The
protocols (10 — 12) were originally proposed in [20].

Protocol 10: Rand|()
Result: [a], where a €, I,
1 for (i=1;i<mi++) do
3 Party P; samples r; €, IF,, and calls f[[-]] with
(input, r;, P;);

5 All parties obtains [[r;];
6 end
8 return [a] = Y1 [n]

Protocol 11: Rand2()

Result: [b] where b €, {0,1}
1 do
3 [a] < Rand();
5 [a?] < [4] - [a], reveal a?;
6 while a> =0;
8 r=1/(a%); // ré€gfa,—a}
10 [c] < r ! [a];
12 return [b] <271 ([c] +1);

Protocol 12: RandExp(l)
Input: /, a positive integer.
Result: ([R~'],[R], [R*],---, [R']), where R &, z;
do

3 [R] < Rand();

5 [r] < Rand();

- [a] < [R] - [r], reveal a;

8 while a=0;

10 [R]«a ' [r];

1 fori=2;i<l;i++ do

| IRT« [R]-[R™'];

14 end

return ([R™'], [R], [R?],--- , [R']):

-
w

-
=)

C SPDZ Ideal Functionality

We summarize the ideal functionality realized by SPDZ in Figure 7.
it is taken from [44], and we will use it in our proof.

D Security Proof of the Offline Protocols

The offline protocols presented in Appendix B were developed be-
fore SPDZ. However, they can run on top of SPDZ and enjoy the
strong security guarantees provided by SPDZ. Since we will use
these protocols as sub-routines, here we provide the security proof
of those protocols.

The ideal functionality of the offline protocols is shown in Fig-
ure 8. The functionality serves as a trusted blackbox generating
authenticated random numbers. As a remark, since we are dealing
with authenticated values, the ideal functionality has the same inter-
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Functionality Fsppz

The functionality maintains a dictionary, Val, to keep track of the
authenticated values. Entries of Val lie in the (fixed) finite field I,
and cannot be changed, for simplicity.

Commands for share authentication
Input: On receiving (input, idy,...,id},x1,...,x;,P;) where

x; € F, from party P; and (input,id,...,id;, Pj) from all other
parties, set Val[id;] < x; for 1 <i <.

Linear comb.: On receiving (LinComb, id, idy, ... ,id;,c1,..., c,
¢), from all parties where (idy,...,id;) € Val.keys() and the
combination co-coefficients (cy,..., ¢;, c) € IF,, set

Vallid] + ¥!_, Vallid;] - c; +c.

Reveal: On receiving (Reveal, id) from all parties, where

id € Val.keys(), send Val[id], wait for x from the adversary, and
output x to all parties.

Check: On receiving (Check, idy,...,ids,x1,...,x;) from every
party P;, wait for an input from the advery. If it inputs OK, and
Vallid;] = x; for all j, return OK to all parties, otherwise return L
and terminate.

Abort: On receiving Abort from the adversary, send L to all

parties and terminate.
Commands for pre-processing

Input Tuple: On receiving (InputTuple, P;, id) from all parties,
sample r €; IF,,, set Val[id;] < r and output it to P;.

Triple: On receiving (Triple, id,, id, id.) from all parties, sample
a,b €; F, and set (Val[id,], Val[idp], Vallid.]) < (a,b,a- b)

Commands for online computation

Initialize: On input (Init,F,) from all parties, store F,.

Input: On receiving (Input, P;,id,x) from p; and (Input, P;,id)
from all other parties, with id a fresh identifier and x € ¥, store
Val[id] < x.

Add: On receiving (Add, idy,id,,id3) from all parties where

(id ,idy € Val.keys()) and idj is a fresh identifier, set

Val[ids] « Vallidy] + Val[ids).

Multiply: On receiving (Mult, idy,id;,id3) from all parties where
(id ,idy € Val.keys()) and id5 is a fresh identifier, set

Vallids] < Vallidy] - Val[ids).

Output: On receiving (Output, id) from all honest parties (where
id € Val.keys()), retrieve y +— Val[id] and output it to the
adversary. Wait for an input from the adversary. If this is Deliver
then output y to all parties, otherwise abort.

Figure 7: Ideal functionality realized by SPDZ

nal (i.e. a dictionary) and contains commands from the Fsppz ideal
functionality that are used to operate on authenticated values.

The theorem is stated below in Theorem 6. The proof follows the
theorem. Because we use the UC model, we can take the advantage
of the universal composability and prove security in F -hybrid model
[45]. That is, instead of proving the indistinguishability between
a real world execution and ideal world execution, we construct a



Functionality Foine

The functionality maintains a dictionary, Val, to keep track of the
authenticated values. Entries of Val lie in the (fixed) finite field I,
and cannot be changed, for simplicity. The functionality includes
all commands in Fsppz

Rand: On receiving (rand, id) from all parties, sample a uniform
r < F, and set Val[id] < r.

Rand2: On receiving (rand2,id) from all parties, sample a
uniform r < {0, 1} and set Val[id] < r.

RandExp: On receiving (randexp,/,idy, idy, ... ,id;) from all
parties, sample a uniform r < F, and store rln?, - fhin
Val[idy), Vallid}],- - - , Val[id;] respectively.

Figure 8: offline Ideal functionality

hybrid protocol in which all invocations to the SPDZ sub-routines
are replaced by calls to the SPDZ ideal functionality, then prove
the execution of this hybrid protocol and the ideal world execution
are indistinguishable. Since the security of SPDZ has already been
proved, the indistinguishability between the real and ideal executions
is entailed by the UC theorem.

Theorem 6. In the Fsppz-hybrid model, the protocol Iyfine imple-
ments Fofmine against any static active adversary corrupting up to
n— 1 (computation) parties.

Proof. We show how to construct an ideal world simulator Sygfiine SO
that a PPT adversary (or environment) Z cannot distinguish between
whether it is executing the hybrid version of I1yjine OF is interacting
with the simulator who has access to the ideal functionality Foffiine-
The adversary is static, which means it chooses the parties to corrupt
at the very beginning, and is active, which means it can deviate
arbitrarily from the protocols. The simulator runs Iine With the
adversary and simulates all SPDZ ideal functionality internally. It
simulates the same interface that Z will see when interacting with
a real protocol. The specification of the simulator Syssine 1S as the
following:

Simulator Syine

Let H denote the set of honest parties and A the complement
thereof.
Rand:

1. On receiving (input, id;, x;, P;) from the adversary for all
P; € A, emulate Fgppz.input.

2. Onreceiving (Add, id},- - ,id},id) from the adversary for
P; € A, emulate Fsppz.Add.

3. Call %oftiine-Rand with input (Rand,id).
Rand2:

1. Run simulation for Rand as stated above, at the end, call
Fottline-Rand with input (Rand, ida).

2. Emulate Fsppz.Multiply on receiving (Mult,id,,id,,id,)
from the Adversary for all P; € A. At this point, the simulator
does not have the value for id in its emulated SPDZ ideal
functionality, so it cannot compute the value for id 2, i.e. a1t
notes this down and puts a dummy value there for id,2, then
calls Fosiine-Multiply with input (Mult, id,, id,, id,2).
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3. One Receiving (Reveal, id,) from all Adversary P; € A, call
Fottiine-Reveal with input (Reveal,id 2 ) and obtains the value
of a2, then replace the dummy value in the SPDZ ideal
functionality for id,» with a?, emulate Fsppz.Reveal with the
value.

4. If a® = 0, repeat the above steps, otherwise compute locally
r=Va? and r~! and continue.

5. On receiving (LinComb, id,, id,,r~') from the adversary for
all P; € A, emulate Fsppz.Linearcomb, and call
Foffiine - Linearcomb with (LinComb, id,., id,,r~ '), (i.e.
compute ¢ = r~'a and stores the result in id, — a dummy
value for now in the emulated SPDZ ideal functionality).

6. On receiving (LinComb, idy, id.,2~1,271) from the adversary
for all P; € A, emulate Fsppz.Linearcomb, and call
Foftiine - Linearcomb with (LinComb, idy,, id.,2~",271), (i.e.
compute b = 27! (c+ 1)) and store the result in id), — a
dummy value for now in the emulated SPDZ ideal
functionality).

RandExp:

1. Run simulation for Rand as stated above, at the end of each
run, call Fosmine-Rand with input (Rand, idg) and (Rand, id,).

2. Emulate Fsppz.Multiply on receiving (Mult, idg, id,id,)
with a dummy value there for id,, then calls Foffine . Multiply
with input (Mult, idg, id,, id,).

3. One Receiving (Reveal, id,;) from all Adversary P; € A, call
Fottiine - Reveal with input (Reveal,id,) and obtains the value
of a, then replace the dummy value in the SPDZ ideal
functionality for id, with a, emulate ¥sppz.Reveal with the
value.

1

4. If a = O repeat the above steps. Otherwise compute ¢~ and

continue.

5. On receiving (LinComb, idg-1,id,,a”") from the adversary
for all P; € A, emulate Fsppz.Linearcomb, and call
Fotiine-Linearcomb with (LinComb, idg-1,id,,a™ "), (i.e.
compute R~! = a~!r and stores the result in idp-1 —a dummy
value for now in the emulated SPDZ ideal functionality).

6. For 2 <i <, onreceiving (Mult, idg, idgi-1,idgi ), emulate
Fsppz-Multiply with a dummy value there for idgi, then calls
Fottiine-Multiply with input (MU“7 idR, idgi-1 ,idRi).

As we can see, the simulator can perfectly simulate the hybrid
execution, in which the adversary’s view consists of the SPDZ ideal
functionality calls and output if any from the ideal functionality (e.g.
Reveal). The view of the adversary in the simulated execution and
the hybrid execution are identically distributed. In various places in
the simulation, the simulator puts a dummy value as a place holder
in it emulated Fsppz functionality. If the value is never revealed,
then this is fine. But if the value needs to be revealed, the simulator
calls the Reveal command of the Fqsine functionality to get the
value, and replace the dummy value with the right one, so that in the
joint outputs will be consistent. When executing the protocol, the
adversary can invoke Check or Abort, the simulator calls the same
command in Fofine to handle it. O



E Alternative Protocol for Extracting Estima-
tor

Recall that zy is the index of the first 0 bit in a sketch, thus extracting
Zy can be converted to a search problem. Protocol 13 performs
essentially a binary search. In Protocol 13, the bits in the sketch are
first negated (lines 3 - 5). Then the sketch is divided into two halves.
If all bits now in the first half are 0, then before negation, all of them
were 1, which means the first 0 we are looking for is in the second
half. Then we know zy must be the size of the first half plus some
offset into the second half, and we can throw away the first half and
do a binary search on the second half to find the offset. If not all
bits in the first half are 0, then the first 0 we are looking for is in the
first half. Then we can throw away the second half and do another
binary search on the first half. Obviously, we cannot reveal whether
the first half is all O in the protocol, as this leaks information. So
what we do is to sum all bits in the first half into x, then interpolate
a lookup polynomial f such that By = f(x+1) =1 if x =0 and
0 otherwise (lines 8 — 10). Then we obliviously combine the first
half and the second half, by multiplying every bit in the second half
with By and add the result to the first half (lines 12 — 17). Since
the multiplications are independent, they can be batched together.
Note also that an extra addition is needed if the two halves are not
of the same size. If the first half is all 0, then we need to continue
searching the second half. In this case, Bg is 1 and what we get after
the addition is the second half. If the first half is not all 0, then we do
not have to search the second half at all. In this case By is 0 and we
get the first half after the addition. Then we start the while loop again
until there are only few bits left to search. In this case, we take the
bits left and do a lookup to finish the search (lines 20 — 22). There
are log(w) iterations in the while loop, and in each iteration, we need
two rounds: one round for line 10 (because of the multiplication in
the Lookup protocol) and one round for the multiplications in the
for loop staring at line 12.

F Proof of Theorem 1

Note in the theorem, we use the notion of statistical security. This is
because of the ZeroTest protocol (Protocol 5). More specifically, in
line 1 — 2, m is computed from [r] and [a], and the value of m is re-
vealed. The distribution of /. and that of r are not identical, therefore
we need to ensure the difference is negligible in a security parameter.
The statistical security is ensured by the following Lemma [58]:

Lemma 8. Let M and K be positive integers with M < K. Let X,
U be random variables in [0,--- ,M — 1], [0,--- ,K — 1] respectively
such that U is uniform. Then A(U;X +U) < (M —1)/K and this
bound is tight.

Essentially we achieve this by requiring r to be much larger than
a. Recall that in the protocol a is an integer from [0,2* — 1] and
r is and integer from [0,2%7¥ — 1], therefore by the above lemma
the statistical distance between the two distribution is at most 2~¥.
This guarantees the simulated execution and the real execution is
statistically indistinguishable up to the security parameter K.

Now we are ready to prove Theorem 1.

Proof. We construct a simulator Sppcg such that a poly-time envi-
ronment Z cannot distinguish between the execution of the hybrid
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Protocol 13: ExtractZBS([BFSL[0]],- -, [BFS},[w—
1]],---, [BFST[0]], - - -, [BFST[w — 1]])
Input: [BFS)[0]],---,[BFS,[w—1]],---, [BFS"[0]],-- -,
[BFS;[w — 1]], the shares of the m binary FM

sketches
Result: Zy, the estimator extracted from the sketches
1 [Zy] =0;

2 fori=1;i<m;i++ do

3 for j=0; j<w-—1; j++do
4 [BFSL[jIl =1—[BFSL[jIl;  // negate the bit
5 end
6 size =w,t = [25¢] [z,,] = 0;
// binary search until not worth it
7 while size > 3 do
s [+ 1] = 1+ 1A [BFS, (1] ;
// interpolate the lookup polynomial
9 (t,B0, - ,Br) < interpolate();
// Bp=1 if x=0, By=0 otherwise
10 [Bo] = Lookup([x+1],t,B0, - ,B:);
1 [zv.] = lzwi] +2 - [Bol:
12 for j =0; j <size—t; j++ do
13 [BFSE (1] = [BFSE )] + [Bol - [BFS, i +1]]
14 end
15 if size is odd then
16 [BFS![size —]] = [BFSI,[size —t]] + [Bo]:
17 end
18 size=t,t = (sizze‘l;
19 end
0 [ =1+156 20 [BFS] [size — 1]];
// interpolate the lookup polynomial
21 (25%2¢ By, -+, Bosice ) < interpolate();
// final lookup for the rest of the bits
2 lzw:] = [zn.] + Lookup([x],25%¢,Bo, - - - , Basize )
23 [Zn] = [Zn] + [z
24 end

25 return Zy < Output([Zy]);

protocol and the execution in the ideal world. The specification of
the simulator SppcE is as the following:

Simulator SPDCE

Let H denote the set of honest parties and A the complement thereof.
When executing the online protocol, the offline part has already
been done and necessary values have been generated prior to the
start, but to make it clear we show which offline protocol is used
and which values are generated in the simulation.

Share:

1. On receiving (rand, id,) from all CPs in A, emulate
Foftiine-Rand by sampling a random a < F), and setting
Val[id,] < a.

2. On receiving (Reveal, id) from all CPs in A, take the value
Val[id] = a and creates shares of [a], and send them to the DP
only.

3. If the DP is in A, wait for it to broadcast x' — a, then compute
x' =% —a-+a. If the DPis in H, then x is its input, which is



not known by the simulator. However the simulator can
simulate it by choosing a random x’ — a and broadcast it.

On receiving (Linearcomb, idy, (x' — a)) from all CPs in A,
emulate Fsppz.Linearcomb to compute a +x' —a.

. Call Fppce.Share with (share, idy) for all CPs in A. If the DP

is in A, also call Fppce.Share with (share, id,,x’). It should
be clear that if the DP is honest, Fppce will set Val[idy] < x
and if the DP is corrupted, Fppce will set Val[id,] < x’ with
the value chosen by the adversary.

Data Collection:

1.

3.

For each DP;, run simulation for Share m - w times to share its
OFS with CPs.

For each DP;, run simulation for Share m - w times to share its
OFS with CPs.

Then send (go) to Fsppz on behalf of each honest party.

MergeShare:

1.

Emulating Fsppz.Add for all additions needed in the
MergeShare protocol. Make sure the id’s of the addends are
valid in the process and record the id’s of the sums and the
addends. After all finished, put the id’s in the correct positions
of idOFS, idOFS7 l'dFSU

2. Call Fppce-MergeShare with

(mergeshare, id°FS | id®FS | id™Sv) for all CPs in A.
Lookup:

1. Emulate Fofiine.RandExp on receiving
(randexp, l,id,1,idy, ... ,id,:) from all CPs in A.

2. Emulate Fsppz.Multiply on receiving (Mult, idy, id,-1,id,)
from all CPs in A.

3. On receiving (Reveal, id,) from all CPs in A, emulate
Tsppz-Reveal with a random a.

4. For 2 <i <, compute d,on receiving
(linearcomb, id,i, id,:,a") from all CPs in A, emulate
Fsppz-Linearcomb.

5. On receiving (linearcomb, idy, id,o, .. .idy,Bo,B;), from all
CPs in A, emulate Fsppz.Linearcomb.

6. Call Frpce.lookup with (lookup, idy, idy, Bo, ;) for all CPs
inA.

ZeroTest:

1. For 0 <i<[—2,onreceiving (rand2, id,,) from all CPs in A,
emulate Foffiine.Rand2.

2. On receiving (linearcomb, id;, idy,,-- - ,id2,2"72,--- ,20)
from all CPs in A, emulate Fsppz.Linearcomb.

3. Interpolate the lookup polynomial and obtains (T,Bg, -, Bc).

4. Onreceiving (Add, idy,id,,idy,), emulate Fsppz.Add.

5. Onreceiving (Reveal,id,,), emulate Fsppz.Reveal with a

. Run simulation for Lookup with id;j, and By, - -

random m.

. Emulate Fsppz.Linearcomb for the Hamming distance

computation, with result in idy .

, Bt with the
result in id),
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8. Call Fppce.ZeroTest with (zerotest, id,, id),) for all CPs in A.
ToBinary:
1. For1 < j<mand0</<w-—1,run the simulation for

ZeroTest, each on idFS-" ] (as id,) and store the result in
U
idBFSﬁ U] (as idb).

ExtractZ:
1. Emulate Fsppz.Add for Zy = ¥, BFS![0]
2. Emulate Fsppz.Add and Fsppz.multiply for the iterations, in

which BFS{,[I] = BFS{,[/ — 1] - BFS{,[/] then
Zn =zy;+BFS{[l], where 1 </ <w—1land 1 <i<w-—1.
The final result is in idz, .

. Call Fppce.ExtractZ with

(eXtraCtZ, idBFSL [O]’ s 7idBFSL[W*1]7 Ty
idgrsrio),*** »idrgry—1],idzy ). Then emulate

Fsppz.Output with idz, .

ExtractZBS:
1. Do the following m times, in the ith iteration:

(a) Emulate Fsppz.Linearcomb for negating the bits, the

results are in idBFS'U[j] for0<j<w-—1.

(b) Setsize = w,t = [*5¢] then while size > 3, do the
following:

Emulate Fsppz.Linearcomb and Fsppz.Add for
computing x+ 1 = 1 +X",' BFS{[j], the result is in
idy+1. Then interpolate the lookup polynomial to get
Bo,- - -, PBr, and run the simulation for Lookup with
idyy1 and Bo,-- -, By, the result is stored in idp,.

Then emulate Fsppz.Linearcomb to compute

Zyi = Zyi +1 - Bo with result stored in id,. Then emulate
Fsppz-Add and Fsppz.Multiply for computing
BFS![j] = BFS![j] + Bo - BFS,[j +1] for

0 < j < size —t, and if size is odd, compute also
BFS{[size — 1] = BFS{)[size — 1] 4+ Bo. Then set size =1
andt = [%5¢].

(c) Emulate Fsppz.Linearcomb for computing
x=1+Y¢12/BFS] [size — 1] with the result in id;.
Then interpolate the lookup polynomial to get
Bo, -+, Bosice.

(d) Simulate Lookup with idy,2%%¢ By, - - , Basizz With the
result in idj,, then emulate Fsppz.Add for computing
Zy: = Znvi + b, then Zy = Zy + zy;, store the result in
idz,.

2. After all finished, take the last idz, then call Fppce.ExtractZ,

with (extractz,idBF31U o) ,idBFsb[Wfl], e
idgrsr(o], »idgrgy[w—1]-1dz, ). Then emulate

f}'—spDz.Output with idZN-

Corrupt:
1. On receiving (Corrupt, DP;) from the adversary, move DP;

from H to A. Then call ppce.Corrupt with (Corrupt, DF;).

Abort:
1. On receiving (Abort) from the adversary, call Fppce.Abort

with (Abort) and terminate. If an honest party calls
Fepce-Abort with (Abort), also send (Abort) to the adversary
in the name of that honest party then terminate.

O
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Figure 9: Running time with different numbers of threads: 5
CPs (16 threads at most), n = 109,m = 4000, 20 DPs

G Additional Experimental Results

In Table 5, we show the performance of a DP updating its sketches.
In the experiment, we used different number of sketches, from 1000
to 4000. We use w = 24 for all sketches. We measure the total time
for adding 10° elements into the m sketches. The experiment ran
with 4 threads on a quadcore desktop (i7-6700k CPU and 16 GB
RAM). As we can see, the time for building is reasonable. Even with
m = 4000, the total time is just about 30 seconds. This means a DP
with such a hardware configuration can handle 33,244 updates per
second, which should be high enough for most applications.

m 1000 2000 | 4000
Time (s) 7.64 15.25 | 30.08
Throughput (updates/s) | 130,890 | 65,573 | 33,244

Table 5: Performance: adding 10° observations into sketches

Next we show the CPs’ running time with different numbers
of threads. Each CP is a R5.4xLarge instance in Amazon AWS
cloud, with 16 vCPUs (8 physical cores). In the experiment, we ran
the CPs with 2, 4, 8, 16 threads. As we can see in Fig. 9, multi-
threading is effective in reducing the total running time. However,
generally the benefit of using more threads diminishes gradually
when approaching the physical limit.

In Table 6, we show the performance of our protocol with p of
different sizes. The prime number p decides the underlying finite
field we use in the secure computation. Its size is dependent on the
size of the plaintext domain T and the statistical security parameter A.
For example, if we want to increase the statistical security parameter,
then we need to use a larger p. As we can see, the size of p does have
a significant impact on the performance of the offline computation.
This is because in the SPDZ pre-processing protocol, somewhat
homormophic encryption is used, whose performance is sensible
to the size of p. Previously, the largest size of p we used was 70-
bit. When the size of p increases to 160-bit, the running time of
the offline phase increases to almost 4 times in LAN, and almost 2
times in WAN. The online protocol however is less affected. The
communication cost increases as well when the size of p increases.
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[=70[1=110]1=160

LAN Ofﬂ.ine 515.8 | 1167.7 | 2088.0

Running Time (s) Onh.ne 0.522 | 0.598 | 0.733
WAN Offline [ 2944.2 | 4162 | 5672.2

Online | 5.03 5.25 5.52

Communication Offline 73.7 149.6 | 226.6
(GB) Online 0.121 | 0.125 | 0.168

Table 6: Performance with different p:5 CPs (16 threads),
N = 10°,m = 4000, 20 DPs
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Figure 10: Distribution of relative errors of the protocol
in [33]

In Figure 10, we show the distribution of relative errors of the
estimations made using the protocol in [33]. The errors come from
two sources: (1) Hash collision. The protocol in [33] hashes element
into a hashtable and there is a probability of collision. The authors
use a hashtable of size 1/f times the maximum size of the set to be
measured, where f is a threshold collision probability. The default
f = 0.1 means the collision probability will be less than 0.1, and
accordingly the hashtable size is set to 10 times of the input size.
(2) (g, 9)-differential privacy. The protocol adds binomial noise to

the data. The number of noise bits to be added is {%22/8)-‘ , which

is 20,142 when € = 0.3,8 = 10~ '2 and 181,275 when e = 0.1,8 =
10~ 12, We can see that the relative errors are distributed around 4%.
The errors become more concentrated, when the input size increases.
This could be because the amount of noise added for differential
privacy is constant, therefore the errors become relatively smaller
when the cardinality becomes smaller. The maximum relative error
is larger than that of our protocol when m = 4000.



H Analysis of f(y)

fO) =A0)—1£0)
=b* —by+ (b—b —b*)y* +b%y> + (B> — b5 — b*)y* + 1%y
F (B =B BT — BTy
== b= 1) (65 + (B2 =57y + (07— b° — by
LD b b)Y (P b b)Y (B — 1)y+b3)

In the above, b =e 2 “ and y = e~ 2 " *, where ¢ and ¢ both are
integers and ¢ € (0,~+o0) and ¢ € (0,+o0). Therefore b € (¢7!,1)

andy € (b, 1).
Theorem 7. When b € (e~!,1), f(y) <0 forally € (b,1)

Proof. In f(y),b>0andy—1 <0, therefore the term —b(y—1) > 0.
To prove the theorem it is sufficient to show

g(y) =650 + (b2 — b))y’ + (b —b° — b )y + (b +b° —b* —b)y?
+(B = bt —b)y? + (B — 1)y +b’
<0

in the given range. To do so, we analyse its derivative, from the 6-th
derivative backwards. The derivatives are:
g'(y) =6b°y* +5(b* = b7)y* +4(b* —b° —b*)y* +3(% +b° —b* —b)y?
+2(0° —b* —b)y+b° -1
g () =300°* +20(6° = 0°)y* + 12(6° = b° = b*)y* +-6(b” +b° —b* — D)y
+2(b° —b*—b)
() =1206°%y +60(b> — b°)y* +24(b* — b° — b*)y +6(b* +b* — b* —b)
¢ (y) =360b°)2 +120(b* — b° )y + 24(b* — b° — b*)
)
)

y) =7206°%y + 120(h* — b°)

1. It easy to see that g% (y) > 0 forall b e (e7',1) y € (b,1).
Therefore g(5) (y) increases monotonically in the same range.

2. Sinceforallbe (e~!,1) g®)(y) increases monotonically when
y € (b, 1), let us first check g (b):

g (b) = 72067 — 1206° + 1206 = 1206° (66* — b + 1)

We can see that when b € (¢~ !, 1), both 12063 > 0 and (6b* —
b +1) > 0, then g®)(b) > 0. Since g (b) > 0, for all b <
y<1,g® (y) > 0. Therefore g (y) increases monotonically
in the same range.

3. By Lemma 9, g®(b) > 0 for all b € (e~ !,1), then g@)(y)
increases monotonically iny € (b,1)

4. By Lemma 10, g®)(b) > 0 for all b € (e~!,1), then g” (y) in-
creases monotonically iny € (b, 1)

5. By Lemma 11, g"’(b) > 0 for all b € (0.552466,1), and
¢"(b) <0 forall b € (e~!,0.552466), g" (1) > 0 for all b €
(e 1 1).

(a) when b € (0.552466,1), g”(b) >0, g"(1) > 0, as g" (y)
increases monotonically in y € (b, 1), then g”’(y) > 0
forally € (b, 1), then g'(y) increases monotonically in
y € (b,1). By Lemma 12, ¢’(b) < O for all b € (e~ !, 1),
g'(1) < 0forall b € (e!,0.594173) and g'(1) > 0 for
all b € (0.594173,1).
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i. when b € (0.552466,0.594173), we know g'(b) <
0and g'(1) <0, as g’(y) increases monotonically
in y € (b,1), then g'(y) < 0 for all y € (b,1).
Then g(y) increases monotonically in y € (b,1).
By Lemma 13, g(b) < 0 forall b € (e~!,1), and
g(1) < 0 for all b € (¢e7!,1), then g(y) < 0 for
all y € (b,1), which completes the proof when
b € (0.552466,0.594173).

ii. when b € (0.594173,1), we know g'(b) < 0 and
g'(1) > 0, as g'(y) increases monotonically in
y € (b,1), then there exists a yg € (b,1), which
makes g'(yp) = 0, and g’(y) < 0 for y € (b,y0)
and g'(y) > 0 for y € (yo, 1). Then g(y) decreases
monotonically in y € (b,yo) and increases mono-
tonically in y € (yg,1). By Lemma 13, g(b) < 0 for
allbe (e7!,1),and g(1) <O forall b e (e71,1),
then g(y) < 0 for all y € (b, 1), which completes
the proof when b € (0.552466,0.594173).

(b) when b € (e~1,0.552466), g"(b) < 0, g"(1) > 0, as
&"(y) increases monotonically in y € (b, 1), then there ex-
istsay; € (b, 1), which makes g”(y;) =0,and g"(y) <0
fory € (b,y1) and g"(y) > 0 fory € (y1,1). Then g'(y)
decreases monotonically in y € (b,y;) and increases
monotonically in y € (y;,1). By Lemma 12, ¢'(b) <
0 for all b € (e~',1), and g'(1) < 0, then g'(y) < 0
for all y € (b,1). Then g(y) decrease monotonically
in y € (b,1). By Lemma 13, g(b) < 0 for all b €
(e71,1),and g(1) < Oforall b € (e~ !, 1), then g(y) < 0
for all y € (b,1), which completes the proof for b €
(e1,0.552466).

O

Lemma 9. g (b) = 24b%(15b% — 5b* —b> — b2 +5b+1) > 0 for
allbe (e7',1)

Proof. Let ha(b) = 15b% — 5b* — b3 — b? +5b + 1, then hy(b) =
906 — 206> — 3b% — 2b + 5, hjj(b) = 450b* — 60b> — 6b — 2, and
) (b) = 1800b% — 1206 — 6, 1Y (b) = 540062 — 120.

As B (b) = 540062 — 120 > 0 for all b € (=1, 1). Then h{” (b)
increase monotonically for all b € (e~ !, 1).

Ash) (e71) ~39.4712> 0, then A (b) > O forall b € (e, 1).
Then h}(b) increase monotonically for all b € (e~ !, 1).

As Ij(e7!) ~ —4.08536 < 0 and hj(1) = 382 > 0, and
1}(0.43333) = 0, Then /) (b) increase monotonically when b €
(¢71,0.43333) and decrease monotonically when b € (0.43333,1).

For the monotonically increasing part of 1 (b), since hﬁl(e_l) ~
3.46891 > 0, then /2 (b) > 0 when b € (e=1,0.43333). Then the
monotonically decreasing part of i} (b), since #}(1) =70 > 0,
h(b) > 0 when b € (0.43333,1). Overall /4 (b) > 0 and thus /4 (b)
increase monotonically when b € (efl7 1).

As hy(e™!) ~2.59988 > 0, then hiy(b) > O forall b € (e~1,1).

Then g (b) > 0 forall b e (e~',1). O

Lemma 10. g©®)(b) = 6b(206% — 106° — 46 — 4b* +9b° + 5b +
b—1)>0forallbe (e ,1)



Proof. Let h3(b) = 20b% — 106° — 4b° — 4b* 496> 4+ 5b> + b — 1,
then:

Iy (b) =160b" — 606> — 20b* — 16b> +27b* +10b+ 1
3 (b) =1120b° — 30b* — 80b> — 48b% + 54b+ 10

1) (b) =6720b° — 12063 — 240b* — 96b + 54

Y (b) =336006* — 360b> — 4805 — 96

1S (b) =33600 x 4b* — 7205 — 480

W (b) =33600 x 1257 — 720

As b (b) > 0 forall b € (¢, 1), then A5 (b) increase monotoni-
cally when b € (e71,1).
As i) (e71) & 5946.51 > 0, then 1\ (b) > O forall b € (¢!, 1),

Q)

so hy’ (b) increase monotonically when b € (¢!, 1).

Y (e 1) ~294.103 > 0, then A (b) > 0 forall b € (71, 1),

Ash
®) (b) increase monotonically when b € (e~ !, 1).

$0 hy

As h{) (e71) 255077 > 0, then Y (b) > O forall b € (¢!, 1),
so 1 (b) increase monotonically when b € (e~!,1).

As h(e~1) ~21.6132 > 0, then hj(b) > 0 forall b € (¢!, 1),
so Iy (b) increase monotonically when b € (e 1, 1).

As Hy(e7!) ~ 6.91157 > 0, then K;(b) > 0 forall b € (e~ 1,1),
s0 h3(b) increase monotonically when b € (e~ 1).

As hy(e 1) ~0.374347 > 0, then h3(b) > O for all b € (e~ 1, 1),
50 g3(b) > 0 forall b € (e~!,1). By the monotonicity of g3 (y), for
allb <y <1, g®)(y) > 0. Therefore g (y) increases monotonically
in the same range. O

Lemma 11. g"(b) = 2b(15b° — 10b7 — 6b° — 6b° + Tb* + 85> +
4b? —3b—1) > 0 for all b € (0.552466,1), g"(b) < 0 for all b €
(e71,0.552466) and g" (1) > 0 forall b € (e7',1)

Proof. Let hy(b) = 15b° — 10b7 — 6b° — 6b° + Tb* 4 8b° + 4b* —
3b—1, then we have:

Hy (b) =135b% —706° — 36b° — 30b* + 28b° + 24b +8b —3
1 (b) =1080b7 — 420b° — 180b* — 120b° + 84D + 48h + 8
1§ (b) =1080 x 755 — 21006* — 7206° — 360b* + 168b+ 48
1Y (b) =1080 x 42b° — 8400b° — 2160b* — 7205+ 168
1) (b) =1080 x 2105* — 2520062 — 43205 — 720
1) (b) =1080 x 840b° — 504005 — 4320
1" (b) =907200 x 367 — 50400
As h(27) (b) >0 forallb € (e”!,1). Then h(26) (b) increase mono-

tonically for all b € (e~ !, 1).

W (e=1) &~ 22305.7 > 0, then A¥ (b) > 0 for all b € (=1, 1).
Then h(zs) (b) increase monotonically when b € (e~ !, 1).

W) (e71) ~ —1565.7 < 0, (1) > 0 and £$Y(0.41812) = 0,
then h(25)(b) < 0 when b € (¢7!,0.41812) and h(zs)(b) > 0 when

b €(0.41812,1). Then hg‘) (b) decrease monotonically for all b €
(e=1,0.41812) and increase monotonically for all b € (0.41812,1).

WY (e 1) ~ —501.776 < 0, h$Y(0.41812) ~ —545.02 < 0,

WY (1) ~ 34248 > 0, 1 (0.5496) = 0, then 4S") (b) < 0 for b €
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(e=1,0.5496) and A" (b) > 0 for b € (0.5496, 1). Then hS”) (b) de-
crease monotonically for b € (¢~!,0.5496) and increase monotoni-
cally for b € (0.5496,1).

As 1) (e1) ~ 551288 > 0, 1Y (0.5496) ~ —71.1883 < 0,
W (1) ~ 4596 > 0, h$)(0.378693) = 0 hS)(0.648449) = o,
then 1S (b) > 0 for b € (e7!,0.378693) and b € (0.648449, 1),

W) (b) < 0 for b € (0.378693,0.648449). Then Al(b) increase
monotonically for b € (e~!,0.378693), decrease monotonically
b € (0.378693,0.648449), and increase monotonically for b €
(0.648449,1).

Ashy(e™1) > 0,15(0.378693) > 0, h5(0.648449) > 0 i (1) > 0,
then 3 (b) > 0 for all b € (e~!,1). Then h) (b) increase monotoni-
cally for b € (e71,1).

As Hy(e™') > 0, then hy(b) > 0 forall b € (e~!,1). Then hy(b)
increase monotonically for b € (e~!,1).

As hy(e™!) ~ —1.09836 < 0, hy(1) = 8 > 0, h2(0.552466) =
0, then hy(b) > 0 for all b € (0.552466,1) and hy(b) < O for all
b€ (e71,0.552466). Then g” (b) > 0 for all b € (0.552466,1) and
g"(b) < Oforall b€ (e7!,0.552466).

Then we will show that g”(1) = 306 — 32b° — 17b* + 6b° +
3502 —5b—1>0forallb e (e, 1).

Let hp(b) = 306° — 32b° — 17b* + 6b> +35b> — 5b — 1, then

180b° — 160b* — 685> + 18b> +70b — 5
900b* — 640b° — 204 + 36b + 70

I (b)
1 (b)
15 ()
2 (b)
(b)

36006° — 192067 — 4085 + 36

)
A

b) =10800b> — 3840b — 408
b) =21600b — 3840

As h$”) (b) =21600b—3840 > 0 forall b € (¢!, 1). Then 45" (b)
increase monotonically for b € (e~ !, 1).

As h$Y (1) < 0, V(1) > 0 and A{Y(0.44118) = 0. Then
WY(b) < 0 for b € (e1,044118) and AV(b) > 0 for
b € (0.44118,1). Then hés)(b) decrease monotonically b €
(e1,0.44118), and increase monotonically for b € (0.44118,1).

As Ve < 0, Y 044118) < 0, (1) > o,
1§ (0.67860) = 0. Then A’ (b) < 0 for b € (e~!,0.67860)
and h$Y(b) > 0 for b € (0.67860,1). Then h)(b) decrease
monotonically b € (¢~!,0.67860), and increase monotonically for
b e (0.67860, 1).

As WP > 0, i0.67860) < 0, KP(1) > o,
n?(0.57476) = 0, n$(0.76562) = 0. Then A (b) > 0 for
b€ (e,0.57476), WP (b) < 0 for b € (0.57476,0.76562) and
hgz) (b) > 0 for b € (0.76562,1). Then h,(b) increase mono-
tonically b € (¢~1,0.57476) and b € (0.76562,1), and decrease
monotonically for b € (0.57476,0.76562).

As (1) > 0 Ky(0.57476) > 0, I, (0.76562) > 0 hy(1) > 0,
then i, (b) > 0 for b € (e~ !, 1). Then hp(b) increase monotonically
forb € (e71,1). As hy(e™!) > 0, then hy(b) > O forall b € (e71,1).
then g”(1) > O forall b € (e7!,1) O

Lemma 12. g'(b) < 0 for all b € (e7',1). g'(1) <0 when b €
(¢1,0.594173). ¢'(1) > 0 when b € (0.594173,1).



Proof.
&' (b) =6b'"" —5b° —4b® —4b” +25° +5b° + 5b* — 203 — 207 — 1
=(b—1)(b+1)(b* +1)(6b7 —5b° —4b* +2b° +2b° +1)

Let hy(b) = 6b” — 5b° — 4b* +2b> +-2b% + 1, then

Iy (b) =42b° —25b* — 16b° + 6L +4b
=b(42b° —25b° — 16b% 4+ 6b +4)
Let 1(b) = 42b° — 25b° — 16b + 6b + 4, then
1'(b) =210b* —75b* —32b+6
1" (b) =840 — 150b — 32
1B) (b) =2520% — 150

As tO)(b) > 0 for all b € (e',1). Then ¢”(b) increases
monotonically b € (e, 1). "(e™') =~ —45.3608 < 0, "'(1) =
658 >0, 1(0.50412) = 0, then ¢’ (b) decreases monotonically b €
(¢71,0.50412) and increases monotonically b € (0.50412,1).

As '(e7!) < 0, /(0.50412) < 0, (1) > 0 and ¢/(0.71700) =
0. Then #/(b) < 0 for b € (¢~!,0.71700), and #'(b) > O for
b € (0.71700,1). then #(b) decreases monotonically when b €
(e~1,0.71700) and increases monotonically when b € (0.71700, 1).

As t(e”1) > 0.£(0.578329) = 0, 1(0.71700) < 0, £(0.822) =0
#(1) > 0. Then K (b) < 0 for b € (0.578329,0.822), and /| (b) > 0
for b € (e=',0.578329) and b € (0.822,1). Then /; (b) decreases
monotonically when b € (0.578329,0.822) and increases monotoni-
cally when b € (¢~!,0.578329) and b € (0.822,1).

As hi(e™') >0, h1(0.578329) > 0, h{(0.822) > 0, A (1) > 0,
then iy (b) > 0and g’(h) <O forall b € (e~!,1).

&' (1) =6b° —9b> —9b* +-6b> + 126> —5b — 1
=(b—1)(66° —3b* — 126> —6b> +6b+1)
<0
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Let h(b) = 6b° — 3b* — 12b> — 6b* +6b + 1, then

I (b) =30b* — 12b° — 366> — 12b+6
1" (b) =120b> — 36> —72b— 12 = 12(5b+1)(2b+1)(b—1)

It is easy to see that #”(b) < 0 for all b € (e~ !, 1), then /' (b) de-
creases monotonically when b € (¢71,1).

As H'(1) <0, then //(b) < 0 for all b € (e~!,1). Then h(b) de-
creases monotonically b € (e~ !,1). As h(e™!) < 0, k(1) > 0 and
h(0.594173) = 0, then we can get h(b) >0 and g'(1) < 0 for b €
(e71,0.594173), h(b) < 0 and g/(1) > O for b € (0.594173,1). [

Lemma 13. g(b) <0and g(1) <Oforallbe (e7!,1).

Proof.

g(b) =b'2 = b0 —p% — B8+ b° 4 2b° — b
=b(b—1(b+ 12 B>+ 1)(H° —b* 1)
=—b(b—1)2(b+ 1B+ 1)(1+b* =)

As1+b%—b° >0forallbe (e7!,1), g(b) <Oforallbe (e7!,1).
g(1) =% —2b° — 3b* +-4b> + 36> —2b— 1

=(b—12(b+1)>(p*—2b—1)
=—(b—1)%(b+1)*(1—b*+2b)

As1—b?+2b>0forallbe (e7',1),g(1) <Owhenb € (e7!,1).
O
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