
Boost Off/On-Manifold Adversarial Robustness for Deep
Learning with Latent Representation Mixup

Mengdie Huang
mdhuang1@stu.xidian.edu.cn

Xidian University
Xi’an, China

Yi Xie
xieyi@stu.xidian.edu.cn

Xidian University
Xi’an, China

Xiaofeng Chen∗
xfchen@xidian.edu.cn
Xidian University

Xi’an, China

Jin Li
lijin@gzhu.edu.cn

Guangzhou University
Guangzhou, China

Changyu Dong
changyu.dong@newcastle.ac.uk

Newcastle University
Newcastle, UK

Zheli Liu
liuzheli@nankai.edu.cn

Nankai University
Tianjin, China

Willy Susilo
wsusilo@uow.edu.au

University of Wollongong
Wollongong, Australia

ABSTRACT
Deep neural networks excel at solving intuitive tasks that are hard
to describe formally, such as classification, but are easily deceived by
maliciously crafted samples, leading to misclassification. Recently,
it has been observed that the attack-specific robustness of models
obtained through adversarial training does not generalize well to
novel or unseen attacks. While data augmentation through mixup
in the input space has been shown to improve the generalization
and robustness of models, there has been limited research progress
on mixup in the latent space. Furthermore, almost no research on
mixup has considered the robustness of models against emerging
on-manifold adversarial attacks. In this paper, we first design a
latent-space data augmentation strategy called dual-mode manifold
interpolation, which allows for interpolating disentangled repre-
sentations of source samples in two modes: convex mixing and
binary mask mixing, to synthesize semantic samples. We then pro-
pose a resilient training framework, 𝐿𝑎𝑡𝑒𝑛𝑡𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑖𝑥𝑢𝑝

(LarepMixup), that employs mixed examples and softlabel-based
cross-entropy loss to refine the boundary. Experimental investiga-
tions on diverse datasets (CIFAR-10, SVHN, ImageNet-Mixed10)
demonstrate that our approach delivers competitive performance
in training models that are robust to off/on-manifold adversarial
example attacks compared to leading mixup training techniques.

CCS CONCEPTS
• Security and privacy → Formal methods and theory of
security; • Computing methodologies→Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00
https://doi.org/10.1145/3579856.3595786

KEYWORDS
deep neural networks, adversarial attack, adversarial robustness,
representation learning

ACM Reference Format:
Mengdie Huang, Yi Xie, Xiaofeng Chen∗, Jin Li, Changyu Dong, Zheli Liu,
and Willy Susilo. 2023. Boost Off/On-Manifold Adversarial Robustness for
Deep Learning with Latent Representation Mixup. In ACM ASIA Conference
on Computer and Communications Security (ASIA CCS ’23), July 10–14, 2023,
Melbourne, VIC, Australia. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3579856.3595786

1 INTRODUCTION
Deep neural networks (DNNs) have achieved outstanding success in
complex machine learning tasks, including computer vision, speech
recognition, and natural language processing. However, recent stud-
ies have demonstrated that DNNs are susceptible to adversarial
examples, which are created using imperceptible perturbations to
cause misclassification by the classifier [5, 16, 38, 42]. Adversarial
attacks can be categorized into off-manifold and on-manifold at-
tacks based on the space where perturbations are generated [47].
The manifold is a geometric object representing the dataset’s under-
lying distribution, capturing its latent factors. Off-manifold attacks,
like FGSM [16], PGD [36], and AutoAttack[10], aim to manipulate
input features, while on-manifold attacks, such as OM-FGSM and
OM-PGD, target representations in the latent space. Adversarial
training (AT) [16] is a key proactive defense mechanism against
adversarial attacks that integrates defender-generated adversarial
examples into the original training set. AT defenses are divided
into off-manifold and on-manifold variants, aiming to construct re-
spective adversarial examples to enhance model robustness [35, 47].
However, AT relies on prior knowledge of attacks, limiting its gen-
eralization against novel or unseen attacks.

Motivated by solving this challenge, we focus on generalizing
model robustness to various potential adversarial attacks without
training with adversarial examples in advance. Previous efforts,
such as InputMixup [56], AdaMix [19], AdvMix [34], CutMix [54],

716

https://orcid.org/0000-0003-3705-7345
https://orcid.org/0000-0001-6884-2851
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0003-0385-8793
https://orcid.org/0000-0002-8625-0275
https://orcid.org/0000-0002-2984-2661
https://orcid.org/0000-0002-1562-5105
https://doi.org/10.1145/3579856.3595786
https://doi.org/10.1145/3579856.3595786
https://doi.org/10.1145/3579856.3595786
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3595786&domain=pdf&date_stamp=2023-07-10

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

and PuzzleMixup [29], have used mixed examples and mixed la-
bels to train neural networks for image classification, achieving
enhanced robustness. Mixup has also been applied to text classi-
fication for improving generalization [7, 18] and robustness [57].
Unlike adversarial training, mixup training does not assume the
defender’s knowledge about the attack method. However, most re-
search focuses on input-space mixup, synthesizing mixed examples
by combining source samples in the input space. Consequently,
the resulting sampels may lack realistic semantics, negatively im-
pacting the model’s ability to learn meaningful representations.
Additionally, such mixed samples might not effectively improve
robustness against adversarial attacks, as they may not capture
subtle differences between original samples exploited by attacks.

To synthesize mixed examples that satisfy the underlying feature
structure of a given dataset, we consider mixing latent representa-
tions and then mapping back to the high-dimensional input space.
Limited work exists on latent-space mixup training, besides Mani-
foldMixup [52] and PatchUp [14], which utilize mixed feature maps
from a classifier’s randomly selected hidden layer as extra training
signals. These methods consider off-manifold adversarial attacks
but neglect on-manifold adversarial attacks. More critically, the
hidden layer of a classifier struggles to capture the full complexity
of the underlying data manifold due to limited expressivity. Mixing
entangled features may not correspond to real input samples and
could disrupt boundary learning. Moreover, the necessary alter-
ations to hidden layers architecture make it difficult to apply these
methods to different models flexibly. To tackle these issues, we cre-
ate mixed examples using interpolation on a manifold captured by
an external generative model, which better represents the dataset.

We propose LarepMixup, a learning framework that uses mixed
examples to improve general robustness against off/on-manifold
adversarial attacks. First, we extract an approximately exact data
manifold coordinate system using a generative adversarial network,
allowing training and test samples to be projected onto less entan-
gled latent representations. Second, we adopt a mixing mode like
convex mixup or binary mask mixup to synthesize on-manifold
and off-manifold mixed samples by combining representations in
the low-dimensional manifold. Lastly, we fine-tune all layers of
the target classifier using an augmented dataset containing mixed
examples and original training examples with a softlabel-based
cross-entropy loss function. We evaluate the performance of Larep-
Mixup on various DNNs using CIFAR-10, SVHN, and ImageNet-
Mixed10. Results demonstrate our method effectively boosts ro-
bustness against multiple attacks, such as FGSM, PGD, AutoAttack,
DeepFool, CW, OM-FGSM, OM-PGD, Fog, Snow, Elastic, and JPEG.

Our contributions are summarized as follows.

• We design a flexible data augmentation strategy, dual-mode
manifold interpolation, for synthesizing mixed examples
using convex or binary mask mixing modes. We interpret
the rationality of mixed examples in improving robustness
in terms of their relative position to adversarial examples.
• Wepropose LarepMixup, the firstmixup-based training frame-
work addressing the threats from off/on-manifold adversar-
ial attacks simultaneously. It boosts the model robustness
against perturbations in the input and latent spaces without
relying on any prior knowledge of the adversary.

• We capture the approximate manifold of the data distribu-
tion 𝑝 (𝑥,𝑦 |𝑧) by learning the latent variable spaceZ of the
StyleGAN-ADA model. The on-manifold datasets created
by projecting high-dimensional inputs to disentangled low-
dimensional representations are open-sourced.
• Extensive evaluations on different DNNs and datasets show
that our method improves off/on-manifold robustness com-
pared to previous mixup training methods. Notably, we are
the first to focus on the performance of the mixup trainied
model regarding on-manifold attacks and perceptual attacks,
which are recommended for evaluating the generalized ro-
bustness of DNNs on unseen regular/adversarial examples.

2 RELATEDWORK
2.1 Off-manifold Adversarial Attack
Starting from the adversarial example first shown [50], most ex-
isting adversarial attack algorithms focus on input-space pertur-
bations, including optimization-based attacks (e.g., L-BFGS [50],
CW [5]), gradient-based attacks (e.g., FGSM [16], BIM [33], PGD
[36], MI-FGSM [12], DI-FGSM [53], JSMA [42], DeepFool [38]), and
generative model-based attacks (e.g., UAE [46], ATN [2]). Moreover,
AutoAttack [10], a strong and reliable attack has gained attention.
It’s an ensemble of diverse parameter-free attacks, including two
white-box PGD versions [10], white-box FAB [9], and black-box
[1]. As David et al. [47] showed that regular adversarial examples
using input-space perturbations leave the manifold orthogonally,
we categorize these attacks as off-manifold adversarial attacks here.

2.2 On-manifold Adversarial Attack
On-manifold adversarial examples were first proposed by David
et al. [47], which are crafted by adding perturbations to represen-
tations in the latent space. Ajil et al. [24] considered finding the
representation pairs that can map to similar pixel-level samples but
with different predicted labels. Recently, Lin et al. [35] designed On-
Manifold FGSM and On-Manifold PGD attacks. These works have
demonstrated that on-manifold adversarial attacks could easily fool
DNN classifiers trained by off-manifold adversarial training.

2.3 Input-space Mixup
Mixup training, first proposed by Zhang et al. [56], trains classifiers
using convex combinations of pixel-level examples (samples and la-
bels). However, mixed examples created in the input space through
linear combination (e.g., AdvMix [34], MI [41]) or binary mask
combination (e.g., CutMix [54], CutMix [54], PuzzleMixup [29])
are perceptually unnatural and can’t be considered samples drawn
from the underlying data distribution. Moreover, it is challenging
to effectively use input-space interpolation ratio information in the
feature space to modify the decision boundary.

2.4 Latent-space Mixup
To smooth the decision boundary of deep neural networks, Verma
et al. propose to combine features maps of different inputs in the
random selected hidden layer of a classifier via ManifoldMixup
[52] or PatchUp [14]. In their work, representations of the data
manifold are roughly described as features maps in the DNN. To this

717

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

end, we further study latent interpolation work in unsupervised
learning, including autoencoder-based [3, 4, 6] and GAN-based
[26–28] methods. Ultimately, to the best of our knowledge, mixup
training work focusing on on-manifold adversarial robustness has
not yet been presented in the fields of image classification, text
classification [7, 18, 57] and speech classification [13]. Thus, we
were motivated to solve this issue.

3 PRELIMINARIES AND THREAT MODEL
3.1 Object Manifold and Decision Boundary
3.1.1 ObjectManifold. According to themanifold hypothesis, high-
dimensional data in the real world lie on low-dimensional manifolds
embedded within the high-dimensional space [15, 22]. For example,
28 × 28 pixels samples in the MNIST dataset can be seen as data
points on a low-dimensional data manifold embedded in a 784-
dimentional feature space, which is supported by the underlying
distribution of the dataset. In this work, an object manifold refers
to a dataset consisting of samples belonging to the same class,
which is consistent with the explanation of object manifolds in
the human visual hierarchy [8]. The data points determined by
two features (𝑑1, 𝑑2) and three features (𝑑1, 𝑑2, 𝑑3) are illustrated
in Fig.1 (a) and Fig.1 (b), respectively. The dimension of the data
manifold depends on the degree of freedom that can be varied for
generating the dataset [44]. When the dataset can be generated by
changing the rotation angle, the corresponding object manifold will
be a 1-dimentional curve embedded in the feature space. Similarly,
when the dataset can be generated by changing the rotation angle
and scaling transformation, the corresponding object manifold will
be a 2-dimentional hypersurface embedded in the feature space.

3.1.2 Decision Boundary. In the two-class classification task, the
feature space learned by the classifier will be partitioned into two
subspaces by the decision boundary, one subspace for each class. For
the feature space embedded with 1-dimentional object manifolds,
the decision boundary of linear classifiers and non-linear classifiers
will be a straight line and a curve, respectively, as shown in Fig.1
(a). For the feature space in which at least one 2-dimentional object
manifold is embedded, the decision boundary of linear classifiers
and non-linear classifiers will be a hyperplane and a hypersurface,
respectively, as shown in Fig.1 (b). Similarly, when the problem
is extended to a multi-class classification task, assuming |Y| cate-
gories, the feature space will be partitioned into |Y| subspaces by
the decision boundary, one subspace for each class.

3.2 Threat Model
Our threat model focuses on untargeted adversarial attacks against
deep learning models. These attacks aim to deceive the model into
misclassifying input samples without targeting any specific class
or output. Potential attackers include white-box (with network ar-
chitecture and weight access), grey-box (knowing only network
architecture), and black-box (lacking architecture and weight infor-
mation) adversaries. This work mainly focuses on white-box and
gray-box attackers, since they are more powerful from the perspec-
tive of the adversary. In addition, we also consider a special attack,
AutoAttack, which is a collection of two versions of white-box PGD
attack, white-box FAB attack and black-box SquareAttack.

d2

d1

d2

d1

(a) 2D feature space
d1

d3

d2

d1

d3

d2dd22

(b) 3D feature space

Object Manifold of '3'Object Manifold of '3'
Object Manifold of '8'Object Manifold of '8'

Decision Line / HyperplaneDecision Line / Hyperplane
Decision Curve / HypersurfaceDecision Curve / Hypersurface

Figure 1: Interpreting object manifolds and decision bound-
aries in the binary classification task.

There are two attack surfaces in this threat model: the input
interface of DNN and the corresponding high-level representation
of the input, which are respectively formalized into the following
two types of attacks: off-manifold adversarial example attack and
on-manifold adversarial example attack.

3.2.1 Off-manifold Adversarial Attack. An adversarial example
𝑥𝑎𝑑𝑣 in an off-manifold adversarial attack is created by adding
imperceptible adversarial perturbation 𝛿 to the original image 𝑥 ∈
X B R𝐻×𝑊 ×𝐶 in the input space. Formally, the objective of untar-
geted attacks is

max
𝛿

𝐿(𝑓\ (𝑥 + 𝛿), 𝑦𝑡𝑟𝑢𝑒), (1)

where ∥𝛿 ∥𝑝 < 𝜖 . 𝑓\ denotes a classifier model w.r.t the network
parameters \ , 𝑦𝑡𝑟𝑢𝑒 denotes the ground truth label, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡 denotes
the target label adversary desired, and 𝜖 denotes the norm bound of
the perturbation in the 𝑝-norm bounded attacks, such as 𝐿0 [48], 𝐿2
[2, 5, 37, 38, 42, 50], and 𝐿∞ [5, 16, 32, 33, 37, 42] attacks. Most con-
ventional adversarial examples leave the original object manifolds
and can be generated by searching for adversarial perturbations in
the input space using various techniques.

3.2.2 On-manifold Adversarial Attack. Novel on-manifold adver-
sarial attacks aim at adding slight adversarial perturbation Z to the
𝑛-dimentional latent representation 𝑧 ∈ Z B R𝑛 corresponding to
the original image 𝑥 . Formally, the objective of untargeted attacks
is

max
Z

𝐿(𝑓\ (𝐺𝜑 (𝑧 + Z)), 𝑦𝑡𝑟𝑢𝑒), (2)

where ∥Z ∥𝑝 < [. 𝐺𝜑 denotes a generative model w.r.t the network
parameters𝜑 , that can map any latent representation inZ to its cor-
responding input-space sample inX, and [denotes the norm bound
of the adversarial perturbation Z in on-manifold attacks. Typical
attacks in this realm include [24, 35, 47]. On-manifold adversarial
examples are essentially generalization errors and can be computed
using an approximation of the data manifold corresponding to the
underlying data distribution of the given dataset.

718

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

d1

d3

d2

Zi

O
Object Manifold of '3'

Decision Hypersurface

Object Manifold of '8'

Zk

Zj

d1

d3

d2

ZiZZZi

O
Object Manifold of '3'

Decision Hypersurface

Object Manifold of '8'

ZkZZZ

jZjZZ

Zk

Zj
OOOO

(a) Convex Combination-based Manifold Interpolation.

d1

d3

d2

Zi

O
Object Manifold of '3'

Decision Hypersurface

Object Manifold of '8'

Zk

Zj

d1

d3

d2

ZiZZZi

O
Object Manifold of '3'

Decision Hypersurface

Object Manifold of '8'

OOOOOOOOO

ZZkkZZ

ZZjjZZ

Z

OOOO

Zk

Zj

(b) Binary Mask Combination-based Manifold Interpolation.

Figure 2: Interpreting the spatial relationship of interpola-
tion points and object manifolds.

4 MANIFOLD INTERPOLATION STRATEGY
In this section, we design a data augmentation strategy to synthesize
on-manifold and off-manifold mixed examples.

4.1 Dual-mode Manifold Interpolation
In this work, manifold interpolation refers to the approach of con-
structing new representation points by combining disentangled
representations on object manifolds embedded in the latent space.
To infer the manifold coordinate system consisting of degrees of
freedom as accurately as possible, a generative adversarial network
is utilized for projecting samples in the input space 𝑥 ∈ X to the
latent representation in the embedding space 𝑧 ∈ Z: 𝑥 = 𝐺 (𝑧)
and synthesizing high-dimensional mixed samples from the low-
dimensional mixed representation 𝑧𝑚𝑖𝑥 : 𝑥𝑚𝑖𝑥 = 𝐺 (𝑧𝑚𝑖𝑥). We pro-
pose two kinds of mixing modes: convex combination and binary
mask combination.

4.1.1 Convex Combination-based Manifold Interpolation. We first
design a convex combination-based manifold interpolation, which
targets continuously creating mixed representation points along

a certain direction in the latent feature space, as shown in Fig.2
(a). For 𝑧𝑖 , 𝑧 𝑗 , interpolations constructed by dual convex combina-
tion are located on the line segment between 𝑧𝑖 and 𝑧 𝑗 . For 𝑧𝑖 , 𝑧 𝑗 ,
𝑧𝑘 , interpolations constructed by ternary convex combination are
located on the plane enclosed by the 𝑧𝑖 , 𝑧 𝑗 , 𝑧𝑘 .

Dual Convex Combination. For latent representations 𝑧𝑖 , 𝑧 𝑗
corresponding to any two samples 𝑥𝑖 , 𝑥 𝑗 in the training set, the
mixed latent representation (𝑧𝑚𝑖𝑥 , 𝑦𝑚𝑖𝑥) is created as

𝑧𝑚𝑖𝑥 = 𝛼𝑧𝑖 + (1 − 𝛼)𝑧 𝑗 ,
𝑦𝑚𝑖𝑥 = 𝛼𝑦𝑖 + (1 − 𝛼)𝑦 𝑗 ,

(3)

where the coefficient scalar 𝛼 ∈ [0, 1] is randomly sampled from
the Beta(𝛽) distribution. We work out the mixed label using the
same coefficient, which follows the prior knowledge that linear
interpolations of feature vectors should lead to linear interpolations
of the associated labels.

Multivariate ConvexCombination. For latent representations
𝑧1, ... , 𝑧𝑘 corresponding to any 𝑘 samples 𝑥1, ... , 𝑥𝑘 in the training
set, the mixed latent representation (𝑧𝑚𝑖𝑥 , 𝑦𝑚𝑖𝑥) is created as

𝑧𝑚𝑖𝑥 = 𝛼1𝑧1 + ... + 𝛼𝑘𝑧𝑘 ,
𝑦𝑚𝑖𝑥 = 𝛼1𝑦1 + ... + 𝛼𝑘𝑦𝑘 ,

(4)

where the coefficient vector𝛼 ∈ 𝐴 B {𝑅𝑘 : 𝛼𝑖 ∈ [0, 1],
∑𝑘
𝑖=1 𝛼𝑖 = 1}

is sampled from the Dirichlet(𝛾) distribution with 𝑑𝑖𝑚(𝛾) = 𝑘 .

4.1.2 Binary Mask Combination-based Manifold Interpolation. We
further design binary mask combination-based manifold interpo-
lation, which targets recombining the components of source rep-
resentation vectors to synthesize the mixed samples, as shown
in Fig.2 (b). For 𝑧𝑖 , 𝑧 𝑗 , interpolations constructed by dual binary
mask combination are located on the vertices of the polyhedrons
formed by the components of 𝑧𝑖 , 𝑧 𝑗 . For 𝑧𝑖 , 𝑧 𝑗 , 𝑧𝑘 , interpolations
constructed by ternary binary mask combination are located on the
vertices of the polyhedrons formed by the components of 𝑧𝑖 , 𝑧 𝑗 , 𝑧𝑘 .

Dual Binary Mask Combination. For 𝑛-dimensional latent
representations 𝑧𝑖 , 𝑧 𝑗 corresponding to any two samples 𝑥𝑖 , 𝑥 𝑗 in
the training set, the mixed representation (𝑧𝑚𝑖𝑥 , 𝑦𝑚𝑖𝑥) is created as

𝑧𝑚𝑖𝑥 =𝑚 ⊙ 𝑧𝑖 + (1𝐵 −𝑚) ⊙ 𝑧 𝑗 ,
𝑦𝑚𝑖𝑥 = _𝑦𝑖 + (1 − _)𝑦 𝑗 ,

(5)

where the coefficient vector𝑚 ∈ 𝐵 B {0, 1}𝑛 is randomly sampled
from the 𝑛-fold Bernoulli(𝑝) distribution, the coefficient scalar _ =
𝑛𝑚𝑖=1
𝑛 is worked out according to the proportion of the number of

non-zero elements 𝑛𝑚𝑖=1 in the binary coefficient vector𝑚 to the
dimension 𝑛 of itself, 1𝐵 denotes a binary mask filled with ones,
and ⊙ denotes the element-wise multiplication.

Multivariate Binary Mask Combination. For 𝑛-dimensional
representations 𝑧1, ... , 𝑧𝑘 corresponding to 𝑘 samples 𝑥1, ... , 𝑥𝑘 in
the training set, the mixed representation (𝑧𝑚𝑖𝑥 , 𝑦𝑚𝑖𝑥) is created as

𝑧𝑚𝑖𝑥 =𝑚1 ⊙ 𝑧1 + ... +𝑚𝑘 ⊙ 𝑧𝑘 ,
𝑦𝑚𝑖𝑥 = _1𝑦1 + ... + _𝑘𝑦𝑘 ,

(6)

where the coefficient vectors𝑚𝑖 ∈ 𝐵 B {0, 1}𝑛 and
∑𝑘
𝑖=1𝑚𝑖 = 1𝐵 .

𝑚1 is firstly sampled from the 𝑛-fold Bernoulli(𝑝) distribution, and
then 𝑞 non-zero elements in the vector 1𝐵 −𝑚1 are replaced with
binary values sampled from the 𝑞-fold Bernoulli distribution, to
obtain the vector𝑚2. Subsequent𝑚𝑖 is sampled in the same way.

719

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

G

xmixzmix Generate

Classify

...

FFF

ymix

m

Fconvex Fmask

G-1

G-1

xi

xj

zi

zj

...
...

Project

Project

yi

yj

Mixup
Function

Figure 3: Framework for Latent Representation Mixup (LarepMixup) Training. It consists of three main stages: low-dimensional
manifold embedding (left), latent representations mixup (middle), and softlabel-based training (right).

4.2 Interpretation of Mixed Examples in
Improving Off/On-manifold Robustness

4.2.1 Off-Manifold Adversarial Robustness. For source representa-
tions located on different object manifolds, that is to say, when the
source samples belong to different categories, the mixed sample
formed by the manifold interpolation strategy will leave all source
object manifolds and be closer to the decision boundary than at least
one of the source samples. Since conventional adversarial attacks
essentially generate off-manifold adversarial examples [35, 47], the
mixed samples augmented based on the proposed interpolation
strategy can cover some off-manifold adversarial samples in the
consistent feasible region. Thus, by learning from the off-manifold
mixed samples and corresponding mixed softlabels, the decision
boundary of the classifier will be encouraged to yield lower cham-
pion confidences for points lying in regions between the object
manifolds, presenting smoother. Particularly, the area covered by
interpolation points is not restricted to any specific attack, so the
robustness improvement can be generalized to some unseen attacks.

4.2.2 On-Manifold Adversarial Robustness. For source represen-
tations within the same object manifold, that is to say, when the
source samples belong to the same category, the mixed sample
formed by the manifold interpolation strategy will be close to or
lies within the source object manifold, which can be regarded as the
unseen samples meeting the underlying data distribution, such as
the on-manifold adversarial sampels [24, 35, 47]. Thus, by training
on on-manifold mixed examples, the classifier will be encouraged
to learn an approximate manifold that is closer to the underlying
manifold of the dataset, that is to say, the hidden layer of the classi-
fier will be encouraged to learn high-level representations that are
closer to the real latent variables that support the underlying data
distribution of the given datset. On-manifold adversarial robustness
is essentially the generalization of a DNN model to unseen samples
within a manifold, thus, fine-tuning with the on-manifold mixed
examples can be beneficial to boost the on-manifold robustness.

5 LAREPMIXUP TRAINING FRAMEWORK
A geometric illustration of the Latent Representation Mixup (Larep-
Mixup) training framework is shown in Fig.3. Raw samples (𝑥𝑖 , 𝑥 𝑗)
are projected into latent representations (𝑧𝑖 , 𝑧 𝑗) at first. Then, source
representations and labels are separately combined in the interpo-
lation module using a mixup function with optional mixing modes.
Finally, the target model 𝐹 is fine-tuned using softlabel-based cross-
entropy loss on mixed labels 𝑦𝑚𝑖𝑥 and samples 𝑥𝑚𝑖𝑥 , which are
synthesized from mixed representation 𝑧𝑚𝑖𝑥 .

5.1 Low-dimensional Manifold Embedding
In our work, the StyleGAN2-ADA network [26] is adopted to project
images into the latent space, which excels at learning disentangled
variance factors to represent the latent space of complex training
datasets [27]. We use 1000 iterations of gradient descent to find the
disentangled latent code 𝑧, which is mapped from the randomly sam-
pled code 𝑧𝑟𝑎𝑛 through themapping network 𝐹𝑚𝑎𝑝 in the StyleGAN.
The low-dimensional manifold embedding method in LarepMixup
is summarized in the Algorithm 1. The loss term for optimizing the
representation is defined as the combination of the image quality
term and regularization term 𝐿𝑡𝑜𝑡𝑎𝑙 (𝐺 (𝑧), 𝑥) = 𝐿𝑖𝑚𝑎𝑔𝑒 + 𝑅𝑛𝑜𝑖𝑠𝑒 ,
following the definition in the original work, where 𝐿𝑖𝑚𝑎𝑔𝑒 signi-
fies the LPIPIS distance between 𝑥 and 𝐺 (𝑧), and 𝑅𝑛𝑜𝑖𝑠𝑒 indicates
the sum of squares of the noise map resolution autocorrelation
coefficients. In LarepMixup, on-manifold datatset is denoted as
𝐷𝑀 = {𝐺 (𝑧𝑖), 𝑦𝑖))}𝑁𝑖=1, where 𝑁 is the number of samples selected
from training set 𝐷𝑡𝑟𝑎 , 𝑧𝑖 = 𝐺−1 (𝑥𝑖) is the result of projecting
𝑥𝑖 ∈ 𝐷𝑡𝑟𝑎 into the latent space via synthesis network𝐺 , and 𝑦𝑖 is
the ground truth label corresponding to 𝑥𝑖 .

5.2 Latent Representations Mixup
We implemented dual mixup and the ternary mixup interfaces, each
of which supports both convex and binary mask mixing modes. To
enhance off/on-manifold adversarial robustness concurrently, we
mix source samples from different and identical classes.

720

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

Algorithm 1 Low-dimensional Manifold Embedding

Input: examples (𝑥,𝑦) ∈ 𝐷𝑡𝑟𝑎 , iteration number𝑇 of the optimiza-
tion, dynamic learning rate [.

Output: 𝑛-dim representations (𝑧,𝑦) ∈ 𝑍𝑡𝑟𝑎 , on-manifold exam-
ples (𝐺 (𝑧), 𝑦) ∈ 𝐷𝑀 .

1: pretrain 𝐺 on 𝐷𝑡𝑟𝑎

2: for 𝑖 = 1 to 𝑁 do
3: 𝑡 ← 0
4: sample 𝑧𝑟𝑎𝑛,𝑖 ∼ Normal(0, 1)
5: 𝑧𝑖,𝑡 ← 𝐹𝑚𝑎𝑝 (𝑧𝑟𝑎𝑛,𝑖)
6: while 𝑡 < 𝑇 do
7: generate 𝐺 (𝑧𝑖,𝑡)
8: 𝑧𝑖,𝑡+1 ← 𝑧𝑖,𝑡 − [(∇𝑧 (𝑖,𝑡)𝐿𝑡𝑜𝑡𝑎𝑙 (𝐺 (𝑧𝑖,𝑡), 𝑥𝑖))
9: 𝑡 ← 𝑡 + 1
10: end while
11: 𝑧𝑖 ← 𝑧𝑖,𝑡+1
12: add (𝑧𝑖 , 𝑦𝑖) to 𝑍𝑡𝑟𝑎
13: add (𝐺 (𝑧𝑖), 𝑦𝑖) to 𝐷𝑀

14: 𝑖 ← 𝑖 + 1
15: end for

Algorithm 2 Dual Latent Representations Mixup

Input: batch of 𝑛-dim representations (𝑍𝑜𝑟𝑖 , 𝑌𝑜𝑟𝑖), mixing mode
𝑒 , index shuffle function 𝐹𝑠ℎ𝑢 , mixing coefficient transform
function 𝐹𝑡𝑟𝑎 .

Output: batch of mixed examples (𝑋𝑚𝑖𝑥 , 𝑌𝑚𝑖𝑥).
1: (𝑍𝑠ℎ𝑢 , 𝑌𝑠ℎ𝑢) ← 𝐹𝑠ℎ𝑢 (𝑍𝑜𝑟𝑖 , 𝑌𝑜𝑟𝑖)
2: if 𝑒 = 𝐶𝑜𝑛𝑣𝑒𝑥𝑀𝑖𝑥𝑢𝑝 then
3: sample 𝛼 ∼ Beta(𝛽)
4: 𝑍𝑚𝑖𝑥 ← 𝛼𝑍𝑜𝑟𝑖 + (1 − 𝛼)𝑌𝑜𝑟𝑖
5: 𝑌𝑚𝑖𝑥 ← 𝛼𝑌𝑜𝑟𝑖 + (1 − 𝛼)𝑌𝑠ℎ𝑢
6: end if
7: if 𝑒 = 𝑀𝑎𝑠𝑘𝑀𝑖𝑥𝑢𝑝 then
8: sample 𝑝 ∼ Uniform(0, 1)
9: sample𝑚 ∼ 𝑛-fold Bernoulli(𝑝)
10: 𝑍𝑚𝑖𝑥 ←𝑚 ⊙ 𝑍𝑜𝑟𝑖 + (1𝐵 −𝑚) ⊙ 𝑍𝑠ℎ𝑢
11: _ ← 𝐹𝑡𝑟𝑎 (𝑚)
12: 𝑌𝑚𝑖𝑥 ← _𝑌𝑜𝑟𝑖 + (1 − _)𝑌𝑠ℎ𝑢
13: end if
14: 𝑋𝑚𝑖𝑥 ← 𝐺 (𝑍𝑚𝑖𝑥)
15: output (𝑋𝑚𝑖𝑥 , 𝑌𝑚𝑖𝑥)

5.2.1 Dual Latent Representations Mixup. Algorithm 2 presents
the dual representations mixup method. For a batch of representa-
tions with the batch size of 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , it combines with its shuffled
version, enabling a mixing space of 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒2. The mixing mode
is specified by the enumerated parameter 𝑒 .

5.2.2 Ternary Latent Representations Mixup. Ternary latent repre-
sentations mixup method is given in the Algorithm 3. A batch of
representations will be combined with the objects obtained by shuf-
fling itself twice, so the mixing space can reach 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒3. Relative
to dual mixup, three-sample interpolation spans a broader area, like
the triangle in Fig.2 (a). Moreover, 𝑘-source latent representation
mixup expands the mixing space to a larger volume of 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒𝑘 .

Algorithm 3 Ternary Latent Representations Mixup

Input: batch of 𝑛-dim representations (𝑍𝑜𝑟𝑖 , 𝑌𝑜𝑟𝑖), mixing mode 𝑒 ,
index shuffle function 𝐹𝑠ℎ𝑢 , nonzero element counting function
𝐹𝑛𝑜𝑛𝑧𝑒𝑟𝑜 , function 𝐹𝑟𝑒𝑝 (𝑎, 𝑏) to replace nonzero elements in 𝑎

with 𝑏.
Output: batch of mixed examples (𝑋𝑚𝑖𝑥 , 𝑌𝑚𝑖𝑥).
1: (𝑍𝑠ℎ𝑢1, 𝑌𝑠ℎ𝑢1) ← 𝐹𝑠ℎ𝑢 (𝑍𝑜𝑟𝑖 , 𝑌𝑜𝑟𝑖)
2: (𝑍𝑠ℎ𝑢2, 𝑌𝑠ℎ𝑢2) ← 𝐹𝑠ℎ𝑢 (𝑍𝑜𝑟𝑖 , 𝑌𝑜𝑟𝑖)
3: if 𝑒 = 𝐶𝑜𝑛𝑣𝑒𝑥𝑀𝑖𝑥𝑢𝑝 then
4: sample 𝛼 = (𝛼1, 𝛼2, 𝛼3) ∼ Dirichlet(𝛾)
5: 𝑍𝑚𝑖𝑥 ← 𝛼1𝑍𝑜𝑟𝑖 + 𝛼2𝑍𝑠ℎ𝑢1 + 𝛼3𝑍𝑠ℎ𝑢2
6: 𝑌𝑚𝑖𝑥 ← 𝛼1𝑌𝑜𝑟𝑖 + 𝛼2, 𝑌𝑠ℎ𝑢1 + 𝛼3𝑌𝑠ℎ𝑢2
7: end if
8: if 𝑒 = 𝑀𝑎𝑠𝑘𝑀𝑖𝑥𝑢𝑝 then
9: 𝑛1 ← 𝑛

10: sample 𝑝1 ∼ Uniform(0, 1)
11: sample𝑚1 ∼ 𝑛1-fold Bernoulli(𝑝1)
12: 𝑛𝑢𝑚𝑛𝑜𝑛𝑧𝑒𝑟𝑜 ← 𝐹𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (1𝐵 −𝑚1)
13: 𝑛2 ← 𝑛𝑢𝑚𝑛𝑜𝑛𝑧𝑒𝑟𝑜

14: sample 𝑝2 ∼ Uniform(0, 1)
15: sample 𝑡𝑒𝑚𝑝 ∼ 𝑛2-fold Bernoulli(𝑝2)
16: 𝑚2 ← 𝐹𝑟𝑒𝑝 (1𝐵 −𝑚1, 𝑡𝑒𝑚𝑝)
17: 𝑚3 ← 1𝐵 −𝑚1 −𝑚2
18: 𝑧𝑚𝑖𝑥 ←𝑚1 ⊙ 𝑍𝑜𝑟𝑖 +𝑚2 ⊙ 𝑍𝑠ℎ𝑢1 +𝑚3 ⊙ 𝑍𝑠ℎ𝑢2
19: _1, _2, _3 ← 𝐹𝑡𝑟𝑎 (𝑚1,𝑚2,𝑚3)
20: 𝑦𝑚𝑖𝑥 ← _1𝑌𝑜𝑟𝑖 + _2𝑌𝑠ℎ𝑢1 + _3𝑌𝑠ℎ𝑢2
21: end if
22: 𝑋𝑚𝑖𝑥 ← 𝐺 (𝑍𝑚𝑖𝑥)
23: output (𝑋𝑚𝑖𝑥 , 𝑌𝑚𝑖𝑥)

5.3 Softlabel-based Training
The vanilla classifier, trained on normal samples, is designed to be
fine-tuned on an augmented dataset containing mixed examples
(𝑥𝑚𝑖𝑥 , 𝑦𝑚𝑖𝑥) ∈ 𝐷𝑚𝑖𝑥 and original examples (𝑥𝑜𝑟𝑖 , 𝑦𝑜𝑟𝑖) ∈ 𝐷𝑡𝑟𝑎 to
learn a robust decision boundary while avoiding overfitting to the
mixed examples and knowledge loss on the original examples. For
the augmented example 𝑥𝑚𝑖𝑥 with the soft mixed label 𝑦𝑚𝑖𝑥 (label
vectors having two or three non-zero elements summing to 1), cross-
entropy loss based on the one-hot label is inapplicable. Instead, we
separately calculate the cross-entropy loss for mixed examples on
multiple target labels and combine them with the same coefficient
𝛼 used for the sample mixing. The objective of the softlabel-based
training is formalized as

min
\
E(𝑥,𝑦)∼𝐷𝑡𝑟𝑎∪𝐷𝑚𝑖𝑥

𝐿𝑠𝑜 𝑓 𝑡 (𝑓\ (𝑥), 𝑦) . (7)

LarepMixup, proposed from the perspective of implicit regu-
larization based on data augmentation, is broadly applicable to
common deep neural networks as it does not depend on any mod-
ification of the network structure. While we use images to illus-
trate our framework, by replacing the StyleGAN-based manifold
embedding method designed for images in 5.1 with a suitable rep-
resentation learning algorithm for other input instances, such as
the Bert-based representation encoding method for text features,
our approach can be readily extended to other input domains.

721

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

6 EXPERIMENTS
We first present our constructed on-manifold CIFAR-10 and the
perception of mixed samples. Then, we analyze the effect of vary-
ing perturbation budgets on robustness improvements. Following
this, we compare our method with state-of-the-art defense meth-
ods, including mixup training with the same defensive capability
assumptions as ours, and adversarial training with stronger defen-
sive capability assumptions than ours, using CIFAR-10 and SVHN
datasets. Next, we evaluate the robustness to unseen attacks simu-
lated by perceptual attacks. Finally, we demonstrate the adaptability
of the proposed method on higher-dimensional datasets based on
ImageNet, and analyze the impact of different mixing modes on
improving model robustness. Source code and on-manifold dataset
are available: https://github.com/2022Submit/LarepMixup.

6.1 Experimental Setup
6.1.1 Testbed. We developed the project using PyTorch 1.8.1 [43]
and CUDA V11.1.74. Experiments were conducted on an NVIDIA
GV102 GPU. Off-manifold attacks were implemented with the Ad-
versarial Robustness Toolbox [40], while on-manifold attacks were
achieved by aggregating styleGAN and advertorch [11].

6.1.2 Dataset. Standard color-channel datasets, CIFAR-10 [30],
SVHN [39] and ImageNet-Mixed10 [35] are used in our experiments.
CIFAR-10 consists of 3×32×32 samples of 10 categories {𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒 ,
𝑎𝑢𝑡𝑜𝑚𝑜𝑏𝑖𝑙𝑒 , 𝑏𝑖𝑟𝑑 , 𝑐𝑎𝑡 , 𝑑𝑒𝑒𝑟 , 𝑑𝑜𝑔, 𝑓 𝑟𝑜𝑔, ℎ𝑜𝑟𝑠𝑒 , 𝑠ℎ𝑖𝑝 , 𝑡𝑟𝑢𝑐𝑘}, each of
which has 50, 000 training samples and 10, 000 test samples. SVHN
consists of 3×32×32 samples of 10 categories { ‘1’ , ‘2’ , ‘3’ , ‘4’ ,
‘5’ , ‘6’ , ‘7’ , ‘8’ , ‘9’ , ‘0’ }, including 73, 257 training samples and
26, 032 testing samples. ImageNet-Mixed10 consists of 3×256×256
samples of 10 categories {𝑑𝑜𝑔, 𝑏𝑖𝑟𝑑 , 𝑖𝑛𝑠𝑒𝑐𝑡 ,𝑚𝑜𝑛𝑘𝑒𝑦, 𝑓 𝑒𝑙𝑖𝑛𝑒 , 𝑡𝑟𝑢𝑐𝑘 ,
𝑓 𝑟𝑢𝑖𝑡 , ℎ𝑜𝑟𝑠𝑒 , 𝑓 𝑢𝑛𝑔𝑢𝑠 , 𝑏𝑜𝑎𝑡} picked from the ImageNet dataset [31],
including 77, 237 training samples and 3, 000 testing samples.

6.1.3 Classifier Architectures. To analyze the universality of our
method on different classifier architectures, we used a series of
base models implemented in the Torchvision library[43], including
convolutional block-based networks (Alexnet [31] and VGG [45]),
residual block-based network (ResNet [20] and DenseNet [23]), and
inception block-based network (GoogLeNet [49]). To maintain fair-
ness when comparing various DNNs on the same dataset or different
datasets on a single model, we did not modify any base architecture
and used uniform parameters during dataset preprocessing. Addi-
tionally, we conducted experiments on the PreActResNet18/34/50
[21] and WideResNet28-10 [55] adopted in the compared mixup
training schemes. More training details of the initial model are
given in the Appendix.

6.2 Perception Analysis
Realistic perception is an essential requirement for augmented ex-
amples generated bymixupmethods because unnatural semantic in-
formation in mixed examples can mislead the classifier and weaken
the generalization of the model[29, 54]. Experimental results show
that the manifold learned by LarepMixup is almost identical to the
underlying data manifold of the CIFAR-10 dataset, and the mixed
examples synthesized by LarepMixup have meaningful semantics.

x in Dtrain G(z) x in Dtest G(z)

(a) CIFAR-10 dataset projection.
G(z)

(b) On-manifold CIFAR-10 sampling.

xi xj convex mix mask mix

(c) Dual LarepMixup.
xj xk convex mix mask mixxi

(d) Ternary LarepMixup.

Figure 4: On-manifold dataset and mixed samples.

6.2.1 On-manifold Dataset. We train a StyleGAN2-ADA network
with a 512-dimensional latent space on CIFAR-10. We then optimize
a 512-dimensional latent representation vector for each training and
testing sample to build a manifold representation set for CIFAR-10.
Similarly, we also build respective on-manifold representation sets
for SVHN and ImageNet-Mixed10 respectively. Taking CIFRA-10 as
an example, it can be seen from Fig.4 (a) that when the testing sam-
ples are projected into the latent space learned on the training set,
the reconstructed samples from latent representations are almost
the same as the original test samples. This indicates that the data
distribution supported by our learned manifold is close to the true
data distribution. Moreover, we generate unknown on-manifold
samples by randomly sampling representations in the manifold
embedding space, as shown in Fig.4 (b). The natural semantics of
synthesized samples also proves that the manifold we constructed
approximates the underlying data manifold.

6.2.2 Mixed Examples. The perception of convex mixed samples
and binary mask mixed samples are shown in Fig.4 (c) and (d),
respectively. For convex mixup, the synthesized examples show
more smooth mixed characteristics between source samples, like
luma, color, and contour, since the combination coefficient 𝛼 can
take a value from the continuous range, [0, 1]. Each specific feature
in the convex mixed image that corresponds to a dimension of
the latent representation will show the merged value of the scaled
features of the source samples with a high probability. For binary
mask mixup, the synthesized examples show fewer transitions
between source features, because the combination coefficient𝑚 is
discrete and can only be taken from the binary set {0, 1}𝑛 . Each
specific feature in the binary mask mixed image preserves either
the feature of one source sample or the other.

722

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

(a) CIFAR-10

(b) SVHN

Figure 5: Accuracy of various LarepMixup trained models under different attack budgets. PGD budget 𝜖 and OM-PGD budget [
are set sequentially as {0.02, 0.05, 0.1, 0.2, 0.3}.

Clean =0.02 =0.05 =0.1 =0.2 =0.3

(a) PGD on CIFAR-10
Clean =0.02 =0.05 =0.2 =0.3=0.1

(b) OM-PGD on CIFAR-10

Clean =0.02 =0.05 =0.1 =0.2 =0.3

(c) PGD on SVHN
Clean =0.02 =0.05 =0.2 =0.3=0.1

(d) OM-PGD on SVHN

Figure 6: Visualization of PGD and OM-PGD examples.

6.3 Evaluations on Different Attack Budgets
To verify the effectiveness of LarepMixup in improving off/on-
manifold adversarial robustness of the model under different ad-
versary attack strengths, we evaluate the top-1 accuracy of the
classifier on PGD and OM-PGD adversarial examples with different
budgets of 𝐿∞-bounded perturbations. For PGD attack, the single-
step budget is 0.02; for OM-PGD attack, it’s 0.005.

Fig.6 shows the perception of PGD and OM-PGD adversarial
examples under varying perturbation strengths. In Fig.6 (a) and
(c), off-manifold samples (PGD) display granular noise, , which
is caused by the adversarial perturbation directly superimposed
on the pixels. In Fig.6 (b) and (d), on-manifold samples (OM-PGD)
exhibit smooth noise due to perturbations on low-dimensional
latent representations, affecting high-level features like direction
and style. As the perturbation budget increases, semantic changes
become more drastic. However, as emphasized in [47], care needs

to be taken that when implementing on-manifold attacks, label
invariance should be considered. Careful control of perturbation
budget is needed to avoid changing the original class manifold,
which would create invalid on-manifold adversarial samples, as
shown in the last two columns of Fig.6 (d).

It can be seen from Fig.5 that LarepMixup training notably en-
hances robustness against different off/on-manifold adversarial
attack strengths on the CIFAR-10 and SVHN datasets. For PGD on
CIFAR-10 with 𝜖 set to 0.02, 0.05, 0.1, 0.2, 0.3, the average accuracy
of the seven models improves by 14.54%, 28.36%, 32.32%, 14.57%,
6.78%, respectively. For OM-PGD on CIFAR-10 with [set to 0.02,
0.05, 0.1, 0.2, 0.3, the average accuracy of the seven models im-
proves by 10.18%, 19.93%, 11.64%, 3.60%, 2.26%, respectively. Under
the same settings, for PGD on SVHN, the average classification
accuracy of the seven models improves by 12.51%, 24.67%, 29.27%,
18.13%, 12.38%, respectively. For OM-PGD on SVHN, the average
classification accuracy of the seven models improves by 10.27%,
17.93%, 12.21%, 4.53%, 3.05%, respectively.

An remarkable observation is that when the budget [is too
large, e.g., exceeds 0.1, the improvement in robust accuracy for on-
manifold attacks diminishes. In conjunction with Fig.6, we deduce
that this occurs because an excessive attack budget generates some
invalid OM-PGD attack samples. Consequently, in our following
experiments, we employed on-manifold adversarial examples with
a 0.1 budget, under which invalid OM-FGSM and OM-PGD samples
are seldom observed in CIFAR-10 and SVHN datasets.

Table 1: Adversary and defender setups in compared Work
Method Attack Surfaces Attack Algorithm Augmentation
PGD-AT[36] Off-manifold Known Input Space
PGD-DMAT[35] Off/On-manifold Known Input/Latent Space
InputMixup[56] Off-manifold Unknown Input Space
CutMix[54] Off-manifold Unknown Input Space
PuzzleMixup[29] Off-manifold Unknown Input Space
ManifoldMixup[52] Off-manifold Unknown Latent Space
PatchUp[14] Off-manifold Unknown Latent Space
LarepMixup(Ours) Off/On-manifold Unknown Latent Space

723

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 2: Accuracy (%) of CIFAR-10 classification models on off/on-manifold adversarial examples
PreActResNet18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 87.37±0.00 32.07±0.00 28.93±0.00 7.59±0.00 10.36±0.00 2.60±0.00 51.02±0.00 21.68±0.00
InputMixup[56] 84.48±1.45 63.58±3.36 68.12±3.46 56.63±10.20 37.97±2.58 41.11±2.10 58.53±0.43 44.11±1.34 % %

CutMix[54] 82.14±3.00 65.51±1.03 69.67±1.34 64.41±3.55 36.79±2.60 39.74±3.10 57.59±0.31 43.50±1.71 % %

PuzzleMixup[29] 83.11±1.64 65.73±2.46 70.35±2.60 64.03±6.06 38.86±1.53 41.83±1.74 57.80±0.77 43.68±2.19 % %

ManifoldMixup[52] 71.10±4.17 49.26±1.34 52.49±1.91 44.08±1.60 25.33±2.76 27.19±2.53 50.16±1.66 38.64±0.80 % !

PatchUp[14] 72.02±4.10 51.35±2.13 55.91±2.29 44.61±2.56 28.81±3.35 30.94±3.13 52.22±2.32 41.33±1.24 % !

Ours-Convex 84.02±1.77 68.86±2.88 72.65±3.59 66.98±5.93 39.03±2.16 42.03±2.31 60.02±0.91 46.72±1.52 % %

Ours-Mask 84.60±1.27 66.56±1.50 71.22±1.93 63.69±4.61 39.27±2.97 42.54±2.74 58.36±0.60 44.80±0.73 % %
PreActResNet34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network
Vanilla 83.57±0.00 31.37±0.00 25.71±0.00 5.27±0.00 12.27±0.00 1.89±0.00 49.23±0.00 17.05±0.00
InputMixup[56] 68.42±7.38 62.19±4.22 63.84±4.98 63.79±4.99 26.36±4.07 29.77±4.16 54.68±3.84 47.18±2.29 % %

CutMix[54] 71.21±6.16 62.45±2.71 64.61±3.50 64.30±3.16 28.88±2.07 32.12±2.38 55.65±2.56 46.40±0.99 % %

PuzzleMixup[29] 67.06±7.62 60.89±4.99 62.55±5.76 62.66±5.84 25.89±2.98 28.96±3.37 54.04±3.87 46.31±2.05 % %

ManifoldMixup[52] 73.69±1.78 49.65±1.94 52.24±2.08 43.75±2.04 31.09±3.13 32.81±3.18 52.99±0.24 39.47±1.34 % !

PatchUp[14] 72.71±2.96 49.53±1.44 52.76±2.80 42.31±1.80 32.35±3.66 34.10±3.45 53.03±2.37 39.38±1.63 % !

Ours-Convex 78.44±1.60 67.81±1.04 71.12±1.08 70.60±1.30 33.98±1.04 37.42±1.03 58.96±0.67 47.99±1.16 % %

Ours-Mask 77.13±3.17 66.16±1.58 68.90±1.62 68.40±2.16 32.95±2.26 36.38±2.23 58.31±0.96 47.30±1.06 % %

Table 3: Accuracy (%) of SVHN classification models on off/on-manifold adversarial examples
PreActResNet18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 95.97±0.00 57.29±0.00 34.57±0.00 29.21±0.00 22.51±0.00 21.54±0.00 41.04±0.00 6.78±0.00
InputMixup[56] 94.39±0.79 68.77±2.03 58.81±2.34 51.25±2.22 60.50±3.33 64.42±2.16 44.58±0.86 18.48±1.04 % %

CutMix[54] 94.19±1.07 68.78±2.01 59.52±3.28 52.50±3.64 57.45±3.26 63.62±1.52 44.31±1.02 17.87±0.91 % %

PuzzleMixup[29] 94.54±0.66 67.55±1.79 58.79±3.34 51.65±3.48 55.87±2.22 63.42±1.51 43.63±0.62 16.00±1.15 % %

ManifoldMixup[52] 89.15±4.22 67.21±1.85 60.32±1.94 53.60±3.21 52.95±3.15 60.57±1.97 43.32±1.52 22.19±2.01 % !

PatchUp[14] 89.87±1.78 66.44±0.78 58.96±1.90 52.36±2.82 54.68±2.69 61.54±1.68 43.40±0.91 21.51±1.05 % !

Ours-Convex 94.38±0.61 70.62±1.35 63.35±0.67 56.66±1.22 58.14±0.75 64.45±0.54 45.24±0.44 19.59±0.57 % %

Ours-Mask 94.42±0.93 70.22±1.30 60.02±1.72 53.34±2.02 57.98±2.44 64.36±1.08 45.26±0.54 19.90±0.71 % %
PreActResNet34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 95.75±0.00 57.11±0.00 35.57±0.00 29.80±0.00 19.94±0.00 25.62±0.00 36.62±0.00 5.01±0.00
InputMixup[56] 93.41±1.85 66.14±0.85 60.42±6.52 52.82±7.44 49.76±3.32 62.47±1.10 39.97±0.97 17.07±0.85 % %

CutMix[54] 93.36±2.74 65.71±0.56 60.09±7.25 53.39±8.66 49.26±2.00 61.83±1.35 39.81±1.09 16.25±0.88 % %

PuzzleMixup[29] 92.53±4.79 65.12±0.82 61.06±7.05 54.17±8.54 48.65±3.22 61.63±2.37 39.24±1.89 15.89±2.15 % %

ManifoldMixup[52] 81.27±2.68 61.63±2.07 63.61±3.10 59.19±1.94 44.88±4.40 56.29±3.92 36.11±1.07 21.68±1.26 % !

PatchUp[14] 68.39±9.86 51.94±4.91 55.01±6.31 52.17±5.91 36.07±2.41 47.47±5.47 31.81±2.20 22.19±2.72 % !

Ours-Convex 94.94±0.31 68.37±0.76 61.75±3.65 53.55±4.05 52.21±1.67 64.61±1.27 41.13±0.41 16.88±0.38 % %

Ours-Mask 93.63±1.13 67.69±0.52 63.21±5.39 55.74±5.69 52.10±2.75 64.27±1.30 40.70±0.60 17.01±0.47 % %

6.4 Comparison with Mixup Training Methods
We tested the performance of our proposed method in improving
general robustness compared to state-of-the-art mixup training
methods. For each attack, we ran each robust training method six
times with the same settings and averaged the results. The initial
learning rate, epochs, and batch size were 0.01, 256, and 40. All
mixup training methods based on beta distribution sampling had
parameters (1.0, 1.0) of the beta distribution. Experiments were
conducted on PreActResNet models, with CIFAR-10 results in Ta-
ble 2 and SVHN results in Table 3. The experimental results on
PreActResNet-50 are shown in Appendix B. We bolded the best
prediction accuracy and underlined the runner-up for each column.

To evaluate off-manifold adversarial robustness, we conduct
defense tests against five out-of-manifold adversarial attacks, in-
cluding FGSM, PGD, AutoAttack, DeepFool, and CW. Among these,
FGSM and DeepFool are single-step attacks, PGD is a multi-step
attack, and AutoAttack is an enhanced version of PGD attacks,

which has been detailed in related work. For CIFAR-10, budgets
of DeepFool, FGSM, PGD, OM-FGSM, and OM-PGD are 0.02, 0.05,
0.05, 0.05, 0.05, respectively. For SVHN, all budgets are set to 0.1.
Refer to Table 5 in Appendix for more details on parameters, such
as norm type, step size, number of iterations, and confidence. As
seen in Table 2, our method achieves excellent defense results in
most cases on the CIFAR-10 dataset. Both Convex-LarepMixup and
ManifoldMixup use the linear interpolation strategy, while Mask-
LarepMixup and PatchUp employ a binary mask mixing strategy.
On the SVHN dataset, we observe from Table 3 that LarepMixup
and Manifold Mixup have their own areas of expertise. Manifold
Mixup is competitive in PGD-related attacks, while our algorithm
has a stable advantage in FGSM, DeepFool, CW, and OM-FGSM.

724

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

(a) CIFAR-10

(b) SVHN

Figure 7: Accuracy (%) of robust trained PreActResNets on various attacks.

6.5 Comparison with Adversarial Training
Methods

To further compare the difference between the improved robustness
based on the proposed method and the improved robustness based
on adversarial training, we compared LarepMixup with two pow-
erful adversarial training methods, PGD-AT [36] and PGD-DMAT
[35], on the CIFAR-10 and SVHN datasets. In PGD-AT, the defender
generates the same number of white-box PGD examples as the
original training samples for training. In PGD-DMAT, the defender
generates PGD and OM-PGD adversarial examples each with half
the number of original training samples for training. Attack budgets
of adversarial example used for adversarial training are all set to
0.05. We used three kinds of the PreActeResNet models.

From Fig.7 (a) we can see that for most of the adversarial attacks
on CIFAR-10, whether it is convex mixing or binary mask mixing,
LarepMixup has achieved a slightly higher robustness improvement
that AT. And it is also worth noting that our method has higher
accuracy on clean samples, which is very close to the original clean
accuracy. Fig.7 (b) shows taht our method still maintains good clean
accuracy in SVHN, especially compared to the DMAT work. For
off-manifold attacks, robustness from PGD-AT is greater, but when
faced with adversarial attacks on the manifold, LarepMixup regains
its advantage. Overall, LapreMixup achieves comparable robust
performance to adversarial training without actively generating
adversarial examples for training.

6.6 Evaluations on Perceptual Attack Examples
As adversarial attack methods evolve, it’s vital to test the robustness
of a model against unknown types of potential attacks. Perceptual
attacks have been identified as a means to evaluate model robust-
ness against new or unseen attacks [25, 35]. These attacks primarily
use global color shifts and image filtering on normal images to cre-
ate perturbed images. We consider four perceptual attacks: Fog,
Snow, Elastic, and JPEG. For each perceptual attack, we conduct
LarepMixup training thrice with the same settings and average the
results. The initial learning rate, epochs number, batch size, and
beta distribution parameters are 0.01, 40, 256, (1.0, 1.0), respectively.

Clean

Fog

Snow

Elastic

JPEG

Figure 8: Percaptual attack examples.

We conduct experiments on seven models using the CIFAR-10 and
SVHN datasets. Taking the AlexNet as an example, the perception
of four types of perceptual attack examples on CIFAR-10 are shown
in Fig.8. According to Fig.9 (a), the accuracy of the classifiers on
CIFAR-10 perceptual attacks has been greatly improved with Larep-
Mixup, with the average accuracy of seven classifiers on Fog, Snow,
Elastic, and JPEG samples increased by 28.17%, 5.19%, 31.79%, and
29.53%, respectively. At the same time, the accuracy of the seven
classifiers on the clean test set dropped slightly, with an average re-
duction of 2.11%. Additionally, Fig.9 (b) shows the improvement of
the robustness of the classifiers on SVHN perceptual attacks, with
the average accuracy of seven classifiers on Fog, Snow, Elastic, and
JPEG samples increased by 17.89%, 14.42%, 35.87%, and 47.10%, re-
spectively. Since natural samples are constructed by superimposing
perturbations on feature vectors in input space, it is reasonable to
regard them as unseen attack samples outside the manifold. It can
be seen that the model trained by LarepMixup achieves generalized
robustness to unseen off-manifold attacks.

6.7 Evaluations on Different Mixing Modes
To evaluate the efficacy of LarepMixup in improving adversarial
robustness across different mixing modes, we alternate between
dual/ternary convex mixing and dual/ternary mask mixing. Further-
more, we conduct experiments using the ImageNet-Mixed10 dataset
to verify the proposed method’s applicability to high-dimensional

725

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

(a) CIFAR-10

(b) SVHN

Figure 9: Accuracy (%) of various LarepMixup trained models on perceptual attacks.

(a) Two source data points 𝑃1, 𝑃2 and 60mixed data points.

(b) Three source data points 𝑃1, 𝑃2, 𝑃3 and 4000mixed data points

Figure 10: Effect of sampling distribution on the position of
interpolation points.

datasets. For each adversarial attack, we conduct proposed training
three times under the same settings and take the average as the final
result. The initial learning rate, epoch number, and batch size are
0.01, 40, and 32, respectively. The adversarial perturbation budget
is 0.02. In our work, the parameters 𝛽 of the Beta(𝛽) distribution
and 𝛾 of the Dirichlet(𝛾) distribution are hyperparameters, set by
default to (1.0, 1.0) and (1.0, 1.0, 1.0), respectively. The positional
relationship between source data points and mixed data points
constructed using different coefficients is illustrated in Fig.10.

Experimental results evaluated in different modes are shown
in Table 4. For off-manifold adversarial attacks, the robustness im-
provement from LarepMixup is not much different in convexmixing
and mask mixing. But for on-manifold adversarial attacks, the ad-
vantages of convex mixing are obvious. In terms of the number of
mixed source samples, {𝐷𝑢𝑎𝑙,𝑇𝑒𝑟𝑛𝑎𝑟𝑦}, there is little difference in
accuracy improvement between them. In general, for FGSM, PGD,
AutoAttack, DeepFool, CW, OM-FGSM, and OM-PGD attacks, the
accuracy rate of the four mixing modes increased by 2.90%, 3.15%,
3.67%, 75.67%, 83.71%, 16.62%, 22.27%, respectively.

Table 4: Robust accuracy (%) of PreActResNet18 under differ-
ent mixing modes (ImageNet-Mixed10)

Method Vanilla Dual-LarepMixup Ternary-LarepMixup
Convex Mask Convex Mask

Clean 90.47 90.57±0.55 90.89±0.35 90.67±0.21 90.24±1.25
FGSM 13.93 17.09±0.29 16.21±0.14 16.71±0.34 17.29±0.94
PGD 2.00 5.38±0.81 4.68±0.45 4.73±0.69 5.81±1.32
AutoAttack 0.00 3.74±0.19 3.68±0.29 3.60±0.18 3.66±0.04
DeepFool 8.87 85.38±0.19 83.98±0.42 84.89±0.18 83.93±1.00
CW 0.10 84.61±0.30 83.16±0.52 84.19±0.47 83.28±0.62
OM-FGSM 26.90 59.91±1.30 28.61±5.58 57.36±1.89 28.21±0.98
OM-PGD 20.43 58.76±1.30 27.99±5.92 56.59±1.87 27.47±1.44

7 CONCLUSION
In this paper, we investigate the off/on-manifold robustness of
DNNs. The main idea of our work is to mix latent representations
lying on the low-dimensional manifold of the training set to syn-
thesize mixed samples that capture latent variation factors in the
dataset, and use them as augmented examples to train a model that
can stably recognize data points adjacent to the decision boundary.
Extensive evaluations show that even without any adversary infor-
mation, our method can significantly alleviate the sensitivity of the
model to multiple attacks in the input space and latent space. This
paper concentrates on image classification, deferring other applica-
tions, such as employing LarepMixup for robust text classification
with BERT-based text representations, to potential future work.

ACKNOWLEDGMENTS
This work was supported by the National Nature Science Founda-
tion of China under Grant 61960206014 and Grant 62032012.

REFERENCES
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias

Hein. 2020. Square Attack: a query-efficient black-box adversarial attack via
random search. In European Conference on Computer Vision (ECCV 2020). 486–501.

[2] Shumeet Baluja and Ian Fischer. 2017. Adversarial Transformation Networks:
Learning to Generate Adversarial Examples. arXiv preprint arXiv:1703.09387
(2017).

[3] Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri,
R Devon Hjelm, Yoshua Bengio, and Christopher Pal. 2019. On Adversarial Mixup

726

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

Resynthesis. In 33rd Annual Conference on Neural Information Processing Systems
(NIPS 2019).

[4] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. 2019. Understand-
ing and Improving Interpolation in Autoencoders via an Adversarial Regularizer.
In 7th International Conference on Learning Representations (ICLR 2019).

[5] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of
Neural Networks. In 38th IEEE Symposium on Security and Privacy (SP 2017).

[6] Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dj Dvijotham, and Pushmeet
Kohli. 2020. Adversarially Robust Representations with Smooth Encoders. In 8th
International Conference on Learning Representations (ICLR 2020).

[7] Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. MixText: Linguistically-Informed
Interpolation of Hidden Space for Semi-Supervised Text Classification. In 58th
Annual Meeting of the Association for Computational Linguistics. 2147–2157.

[8] Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. 2020. Sep-
arability and geometry of object manifolds in deep neural networks. Nature
Communications 11, 1 (2020), 1–13.

[9] Francesco Croce and Matthias Hein. 2020. Minimally distorted adversarial ex-
amples with a fast adaptive boundary attack. In 37th International Conference on
Machine Learning (ICML 2020). 2196–2205.

[10] Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial ro-
bustness with an ensemble of diverse parameter-free attacks. In 37th International
Conference on Machine Learning (ICML 2020). 2206–2216.

[11] GavinWeiguang Ding, LuyuWang, and Xiaomeng Jin. 2019. AdverTorch v0. 1: An
adversarial robustness toolbox based on pytorch. arXiv preprint arXiv:1902.07623
(2019).

[12] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting Adversarial Attacks With Momentum. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2018). 9185–9193.

[13] Qingkai Fang, Rong Ye, Lei Li, Yang Feng, and Mingxuan Wang. 2022. STEMM:
Self-learning with Speech-text Manifold Mixup for Speech Translation. In Annual
Meeting of the Association for Computational Linguistics. 7050–7062.

[14] Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma,
and Sarath Chandar. 2022. PatchUp: A Feature-Space Block-Level Regularization
Technique for Convolutional Neural Networks. AAAI Conference on Artificial
Intelligence (AAAI 2022) (2022).

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations (ICLR 2015).

[17] Sadaf Gulshad, Jan Hendrik Metzen, and Arnold Smeulders. 2020. Adversarial and
Natural Perturbations for General Robustness. arXiv preprint arXiv:2010.01401
(2020).

[18] Hongyu Guo. 2020. Nonlinear mixup: Out-of-manifold data augmentation for
text classification. In AAAI Conference on Artificial Intelligence (AAAI 2020).

[19] Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019. MixUp as Locally Linear
Out-of-Manifold Regularization. In 33rd AAAI Conference on Artificial Intelligence
(AAAI 2019). 3714–3722.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2016). 770–778.

[21] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings
in deep residual networks. In European Conference on Computer Vision (ECCV
2016). Springer, 630–645.

[22] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the Dimension-
ality of Data with Neural Networks. science 313, 5786 (2006), 504–507.

[23] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2017). 4700–4708.

[24] Ajil Jalal, Andrew Ilyas, Constantinos Daskalakis, and Alexandros G Dimakis.
2017. The Robust Manifold Defense: Adversarial Training using Generative
Models. arXiv preprint arXiv:1712.09196 (2017).

[25] Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt.
2019. Testing robustness against unforeseen adversaries. arXiv preprint
arXiv:1908.08016 (2019).

[26] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. 2020. Training Generative Adversarial Networks with Limited Data.
In 34th Annual Conference on Neural Information Processing Systems (NIPS 2020).

[27] Tero Karras, Samuli Laine, and TimoAila. 2019. A Style-Based Generator Architec-
ture for Generative Adversarial Networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2019). 4401–4410.

[28] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020).
8107–8116.

[29] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. 2020. Puzzle Mix: Exploiting
Saliency and Local Statistics for Optimal Mixup. In 37th International Conference
on Machine Learning (ICML 2020). 5275–5285.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning Multiple Layers of
Features from Tiny Images. (2009).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet Classifi-
cation with Deep Convolutional Neural Networks. Commun. ACM (2017).

[32] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial Machine
Learning at Scale. In 5th International Conference on Learning Representations
(ICLR 2017).

[33] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. 2017. Adversarial examples
in the physical world. In 5th International Conference on Learning Representations
(ICLR 2017).

[34] Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. 2020. Adversarial Vertex Mixup:
Toward Better Adversarially Robust Generalization. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2020). 272–281.

[35] Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, and Soheil Feizi.
2020. Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks. In 34th Annual Conference on Neural Information Processing
Systems (NIPS 2020).

[36] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In 6th International Conference on Learning Representations (ICLR 2018).

[37] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. 2017. Universal Adversarial Perturbations. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2017). 1765–1773.

[38] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2016).
2574–2582.

[39] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading Digits in Natural Images with Unsupervised Feature
Learning. (2011).

[40] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish
Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen,
Heiko Ludwig, et al. 2018. Adversarial Robustness Toolbox v1. 0.0. arXiv preprint
arXiv:1807.01069 (2018).

[41] Tianyu Pang, Kun Xu, and Jun Zhu. 2020. Mixup Inference: Better Exploiting
Mixup to Defend Adversarial Attacks. In 8th International Conference on Learning
Representations (ICLR 2020).

[42] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The Limitations of Deep Learning in Adversarial
Settings. In IEEE European symposium on security and privacy (EuroS&P 2016).

[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An Imperative Style, High-performance Deep Learning Library. 33rd
Annual Conference on Neural Information Processing Systems (NIPS 2019) 32 (2019).

[44] H Sebastian Seung and Daniel D Lee. 2000. The manifold ways of perception.
science 290, 5500 (2000), 2268–2269.

[45] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[46] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. 2018. Constructing
Unrestricted Adversarial Examples with Generative Models. In 32nd Annual
Conference on Neural Information Processing Systems (NIPS 2018). 8322–8333.

[47] David Stutz, Matthias Hein, and Bernt Schiele. 2019. Disentangling Adversarial
Robustness and Generalization. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2019). 6976–6987.

[48] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One Pixel
Attack for Fooling Deep Neural Networks. IEEE Transactions on Evolutionary
Computation 23, 5 (2019), 828–841.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2015). 1–9.

[50] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations (ICLR 2014).

[51] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,
and Ludwig Schmidt. 2020. Measuring robustness to natural distribution shifts
in image classification. arXiv preprint arXiv:2007.00644 (2020).

[52] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas,
David Lopez-Paz, and Yoshua Bengio. 2019. Manifold Mixup: Better Representa-
tions by Interpolating Hidden States. In 36th International Conference on Machine
Learning (ICML 2019). 6438–6447.

[53] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren,
and Alan L Yuille. 2019. Improving Transferability of Adversarial Examples
With Input Diversity. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR 2019). 2730–2739.

[54] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. CutMix: Regularization Strategy to Train Strong Classifiers
With Localizable Features. In IEEE/CVF International Conference on Computer

727

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Vision (ICCV 2019). 6023–6032.
[55] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv

preprint arXiv:1605.07146 (2016).
[56] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. 2018.

mixup: Beyond Empirical Risk Minimization. In 6th International Conference on
Learning Representations (ICLR 2018).

[57] Jiahao Zhao, PenghuiWei, andWenjiMao. 2021. Robust Neural Text Classification
and Entailment via Mixup Regularized Adversarial Training. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1778–1782.

A EXPERIMENT SETUP DETAILS
A.1 Parameters in Attacks
A.1.1 Parameters in Adversarial Attacks. We use two categories of
adversarial attack methods: off-manifold and on-manifold, detailed
in Table 5. We normalize input sample ranges across datasets to
the [−1, 1] interval, which is passed as a clip parameter to attack
interfaces. Table 5 presents parameters for experiments in this work
that don’t focus on evaluating the impact of perturbation strength.
𝜖 and [represent norm bounds for off-manifold and on-manifold
perturbations, respectively, in 𝑝-norm bounded attacks. 𝜖𝑠 and [𝑠
indicate single-step upper bounds for 𝜖 and [. 𝑛𝑖 refers to the maxi-
mum iteration rounds. We use the default confidence of 0. For the
CW attack based on optimization, there is no configuration parame-
ter about the perturbation threshold, but the confidence parameter
𝑘 needs to be configured. All CW attacks used in this work adopt
the default confidence of 0. The reason for choosing these attack
parameters in the evaluation experiments is that the perceptibility
of adversarial perturbations under these attack configurations can
be relatively well balanced with the attack success rate of the vanilla
model.

A.1.2 Parameters in Perceptual Attacks. The perceptual attackmeth-
ods we use can be divided into three categories: weather conditions
(Fog, Snow), elastic transformation, and digital compression (JPEG),
as shown in the Table 6. The reason for using perceptual attacks is
to evaluate the generalization ability of the robust model to unseen
attacks, which is adopted in [17, 25, 35, 51]. Our parameter configu-
ration mainly refers to the perceptual attack parameters used in the
DMAT [35]. All these attacks use 200 Gradient Descent iterations.

A.2 Parameters in Defense
A.2.1 Parameters in Standard Training. The models we employ
primarily take two forms: one originates from the Torchvision li-
brary without any structural modifications, which includes AlexNet,
ResNet18/34/50, DenseNet169, VGG19, and GoogleNet; the other
is independently implemented, including PreActResNet18/34/50.
Furthermore, preprocessing across all datasets is consistent. The
input range of samples for all datasets is normalized to the [−1, 1]
interval using a normalization function with mean and standard
deviation of 0.5. During standard training, the initial learning rate,
0.01, is reduced to one-tenth of the original every 10 epochs.

A.2.2 Parameters in Mixup Training. We evaluate mixup training
methods, including input-space mixup (InputMixup, CutMix, Puz-
zleMixup) that directly mix input samples, and latent-space mixup
(ManifoldMixup, PatchUp, LarepMixup) that mix latent samples.
The maximum number of epochs is set to 40 for all mixup training
methods. The initial learning rate is 0.01, reduced by a factor of

Table 5: Parameters in adversarial attacks

Dataset Perturbation
Space Name Norm Configuration

𝜖 ([) 𝜖𝑠 ([𝑠) 𝑛𝑖 𝑘

CIFAR-10
Off-Manifold

FGSM 𝐿∞ 0.05 - - -
PGD 𝐿∞ 0.05 0.1 100 -

AutoAttack 𝐿∞ 0.05 0.1 - -
DeepFool 𝐿2 0.02 - 100 -

CW 𝐿2 - - - 0

On-Manifold OM-FGSM 𝐿∞ 0.05 - - -
OM-PGD 𝐿∞ 0.05 0.01 40 -

SVHN
Off-Manifold

FGSM 𝐿∞ 0.1 0.1 - -
PGD 𝐿∞ 0.1 0.1 100 -

AutoAttack 𝐿∞ 0.1 0.1 - -
DeepFool 𝐿2 0.1 - 100 -

CW 𝐿2 - - - 0

On-Manifold OM-FGSM 𝐿∞ 0.1 - - -
OM-PGD 𝐿∞ 0.1 0.01 40 -

ImageNet-Mixed10
Off-Manifold

FGSM 𝐿∞ 0.02 0.1 - -
PGD 𝐿∞ 0.02 0.1 100 -

AutoAttack 𝐿∞ 0.02 0.1 - -
DeepFool 𝐿2 0.02 - 100 -

CW 𝐿2 - - - 0

On-Manifold OM-FGSM 𝐿∞ 0.02 - - -
OM-PGD 𝐿∞ 0.02 0.01 40 -

Table 6: Parameters in perceptual attacks

Dataset Perturbation
Space Name Norm Configuration

𝜖 (in pixel) 𝜖𝑠 𝑛𝑖

CIFAR-10 Off-Manifold

Fog

𝐿∞

eps=128 0.002 200
Snow eps=0.0625 0.002 200
Elastic eps=0.5 0.035 200
JPEG eps=32 2.25 200

SVHN Off-Manifold

Fog

𝐿∞

eps=128 0.002 200
Snow eps=0.0625 0.002 200
Elastic eps=0.5 0.035 200
JPEG eps=32 2.25 200

10 every 10 epochs. All augmented datasets used for mixup train-
ing consisted of mixed examples and an equal number of clean
training examples. The number of mixed examples is consistent
with the length of the training set. Dual-convex mixing mode is
adopted in all experiments except for experiments evaluating eval-
uating the effect of mixing modes on the robustness performance.
For InputMixup, ManifoldMixup, PuzzleMixup, and CutMix, the
sampling distribution is set to Beta(1.0,1.0). For PatchUp, the sam-
pling distribution is set to bernoulli distribution. The parameters of
LarepMixup training are shown in Table 7. Since we choose to use
a 512-dimensional vector to describe the latent representation, 512
Bernoulli trials are performed to determine whether the mask value
of each dimension of the latent representation is 1 or 0 for binary
mask mixing mode. The probability that the mask value of each
dimension takes a value of 1 in each Bernoulli trial follows a uni-
form distribution. It is worth mentioning that the Bernoulli3(512, 𝑝)
distribution used for ternary mask mixing refers to conducting
Bernoulli(512, 𝑝) sampling of three source samples successively.

A.2.3 Parameters in Adversarial Training. In adversarial training
that is also based on data augmentation, we ensure fairness in per-
formance comparison by setting the same number of epochs, batch
size, learning rate, and augmented examples as mixup training. The
augmented examples used in adversarial training consist of adver-
sarial examples and an equal number of clean training examples.

728

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Mengdie Huang, Yi Xie, Xiaofeng Chen∗ , Jin Li, Changyu Dong, Zheli Liu, and Willy Susilo

Table 7: Parameters in LarepMixup training

Dataset Defense
Epochs BatchSize Initial Lr Mixed Examples LarepMixup Mode Sampling Distribution

CIFAR-10 40 256 0.01 50,000 Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, 𝑝), 𝑝∼U(0,1)

SVHN 40 256 0.01 73,257 Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, 𝑝), 𝑝∼U(0,1)

ImageNet-Mixed10 40 32 0.01 77,237
Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, 𝑝), 𝑝∼U(0,1)
Ternary Convex Dirichlet(1.0, 1.0, 1.0)
Ternary Mask Bernoulli3(512, 𝑝), 𝑝∼U(0,1)

Table 8: Comparison with mixup training methods on PreActResNet50
CIFAR-10

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 84.74±0.00 35.27±0.00 26.89±0.00 5.43±0.00 12.03±0.00 1.13±0.00 50.26±0.00 19.13±0.00
InputMixup[56] 74.93±2.22 65.28±1.42 67.42±1.67 67.57±2.04 31.35±2.59 34.39±2.40 58.92±1.28 49.81±1.23 % %

CutMix[54] 75.27±3.01 64.68±2.18 66.98±2.46 66.97±2.30 30.70±2.77 33.84±2.78 58.40±1.00 48.61±1.24 % %

PuzzleMixup[29] 67.35±5.41 59.96±2.92 61.18±3.36 61.41±2.79 26.84±2.06 29.58±2.03 55.72±1.91 48.46±1.39 % %

ManifoldMixup[52] 76.17±3.03 54.54±2.59 56.76±2.88 47.64±6.91 29.97±4.24 32.81±4.04 55.26±0.93 40.93±2.34 % !

PatchUp[14] 74.26±2.86 54.32±1.67 56.16±1.73 46.87±6.63 28.96±2.96 31.40±2.82 55.63±1.17 42.30±2.87 % !

Ours-Convex 76.54±2.08 66.99±1.87 69.73±1.92 69.69±1.49 31.75±2.06 35.06±1.91 59.73±1.00 50.04±0.52 % %

Ours-Mask 76.10±4.38 66.04±1.89 68.29±2.20 67.76±2.28 34.21±3.45 37.32±3.67 59.22±1.04 49.82±1.10 % %
SVHN

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network
Vanilla 95.76±0.00 60.02±0.00 35.61±0.00 29.94±0.00 23.72±0.00 27.09±0.00 40.01±0.00 6.73±0.00
InputMixup[56] 94.45±0.29 66.80±1.09 58.42±2.83 50.07±3.26 49.19±1.79 60.38±1.30 42.04±0.37 17.17±0.58 % %

CutMix[54] 94.48±0.31 65.83±1.79 57.87±1.85 49.99±1.21 45.26±1.06 58.98±0.44 41.73±0.46 15.37±0.75 % %

PuzzleMixup[29] 94.13±1.63 66.82±0.82 61.97±4.94 54.42±5.66 47.50±1.59 61.34±0.72 41.46±0.96 15.63±0.98 % %

ManifoldMixup[52] 77.84±9.38 61.22±5.05 63.16±4.59 60.21±3.74 44.15±7.24 54.42±6.05 36.84±3.29 22.97±1.79 % !

PatchUp[14] 78.36±1.65 58.62±3.41 60.46±3.63 57.70±3.59 43.14±3.84 54.24±2.05 36.25±1.74 21.95±1.75 % !

Ours-Convex 93.53±1.96 69.02±0.70 66.33±5.88 59.78±7.54 49.39±2.03 61.59±1.07 42.27±0.87 17.57±1.23 % %

Ours-Mask 94.16±1.73 68.15±0.46 60.39±2.93 52.62±3.15 53.83±2.38 63.21±1.32 41.45±3.86 19.34±3.09 % %

Table 9: Comparison with adversarial training methods on CIFAR-10
PreActResNet18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 87.37±0.00 32.07±0.00 28.93±0.00 7.59±0.00 10.36±0.00 2.60±0.00 51.02±0.00 21.68±0.00
PGD-AT[36] 77.80±6.39 67.54±3.70 71.44±4.62 68.98±4.38 35.18±6.43 37.83±6.41 56.82±1.86 45.01±2.77 ! %

PGD-DMAT[35] 82.37±1.07 67.00±2.48 70.88±2.97 66.56±4.55 37.66±2.38 40.85±2.20 59.24±1.35 46.89±1.48 ! %

Ours-Convex 84.02±1.77 68.86±2.88 72.65±3.59 66.98±5.93 39.03±2.16 42.03±2.31 60.02±0.91 46.72±1.52 % %

Ours-Mask 84.60±1.27 66.56±1.50 71.22±1.93 63.69±4.61 39.27±2.97 42.54±2.74 58.36±0.60 44.80±0.73 % %
PreActResNet34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 83.57±0.00 31.37±0.00 25.71±0.00 5.27±0.00 12.27±0.00 1.89±0.00 49.23±0.00 17.05±0.00
PGD-AT[36] 72.93±5.95 64.54±2.67 67.08±3.72 66.72±3.46 30.32±3.74 33.53±3.87 56.08±2.50 45.97±0.49 ! %

PGD-DMAT[35] 74.46±1.88 66.11±1.03 68.54±0.88 68.58±0.60 29.44±2.53 33.03±2.40 57.61±0.79 47.96±0.62 ! %

Ours-Convex 78.44±1.60 67.81±1.04 71.12±1.08 70.60±1.30 33.98±1.04 37.42±1.03 58.96±0.67 47.99±1.16 % %

Ours-Mask 77.13±3.17 66.16±1.58 68.90±1.62 68.40±2.16 32.95±2.26 36.38±2.23 58.31±0.96 47.30±1.06 % %
PreActResNet50

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network
Vanilla 84.74±0.00 35.27±0.00 26.89±0.00 5.43±0.00 12.03±0.00 1.13±0.00 50.26±0.00 19.13±0.00
PGD-AT[36] 74.64±3.30 65.53±2.02 67.92±2.26 67.89±1.92 30.69±1.83 33.88±1.54 58.21±0.92 48.65±0.90 ! %

PGD-DMAT[35] 70.92±2.79 64.33±1.77 66.18±2.08 66.42±2.03 29.66±2.17 32.59±2.08 57.20±1.50 49.47±1.13 ! %

Ours-Convex 76.54±2.08 66.99±1.87 69.73±1.92 69.69±1.49 31.75±2.06 35.06±1.91 59.73±1.00 50.04±0.52 % %

Ours-Mask 76.10±4.38 66.04±1.89 68.29±2.20 67.76±2.28 34.21±3.45 37.32±3.67 59.22±1.04 49.82±1.10 % %

we generate on-manifold adversarial examples and off-manifold
adversarial examples each with half the number of original training
samples to ensure that the total number of augmented examples is
consistent no matter in mixup training or adversarial training.

B ADDITION EXPERIMENTAL RESULTS
B.1 Evaluation on Higher Capacity Models
To observe the applicability of the model on higher capacity classi-
fication models, we trained a CIFAR-10 classification model with
higher initial accuracy by changing the basic model structure and
adjusting the training strategy. On this modified ResNet18 model

729

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 10: Comparison with adversarial training methods on SVHN
PreActResNet18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 95.97±0.00 57.29±0.00 34.57±0.00 29.21±0.00 22.51±0.00 21.54±0.00 41.04±0.00 6.78±0.00
PGD-AT[36] 94.77±0.32 78.26±2.07 85.50±2.34 82.69±3.18 61.32±2.23 70.65±1.39 44.36±0.40 17.80±1.07 ! %

PGD-DMAT[35] 92.48±0.68 70.65±2.78 71.16±4.92 66.99±5.53 56.15±2.72 64.23±1.74 44.98±1.23 22.46±2.15 ! %

Ours-Convex 94.38±0.61 70.62±1.35 63.35±0.67 56.66±1.22 58.14±0.75 64.45±0.54 45.24±0.44 19.59±0.57 % %

Ours-Mask 94.42±0.93 70.22±1.30 60.02±1.72 53.34±2.02 57.98±2.44 64.36±1.08 45.26±0.54 19.90±0.71 % %
PreActResNet34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network

Vanilla 95.75±0.00 57.11±0.00 35.57±0.00 29.80±0.00 19.94±0.00 25.62±0.00 36.62±0.00 5.01±0.00
PGD-AT[36] 94.88±0.19 77.09±1.76 84.07±2.26 79.42±2.91 59.45±2.33 71.77±1.29 40.21±0.32 15.85±0.63 ! %

PGD-DMAT[35] 91.38±1.67 66.96±0.85 67.83±2.71 62.43±3.57 47.85±2.40 62.01±1.56 39.78±0.76 19.59±0.85 ! %

Ours-Convex 94.94±0.31 68.37±0.76 61.75±3.65 53.55±4.05 52.21±1.67 64.61±1.27 41.13±0.41 16.88±0.38 % %

Ours-Mask 93.63±1.13 67.69±0.52 63.21±5.39 55.74±5.69 52.10±2.75 64.27±1.30 40.70±0.60 17.01±0.47 % %
PreActResNet50

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD Known Attacker Modify Network
Vanilla 95.76±0.00 60.02±0.00 35.61±0.00 29.94±0.00 23.72±0.00 27.09±0.00 40.01±0.00 6.73±0.00
PGD-AT[36] 94.56±0.61 74.12±3.43 80.42±6.22 76.34±7.32 53.06±2.98 68.57±2.51 41.54±0.43 16.15±0.35 ! %

PGD-DMAT[35] 79.76±12.46 60.75±6.39 62.53±4.83 59.28±3.56 41.42±6.48 53.89±8.10 36.90±4.29 20.97±3.31 ! %

Ours-Convex 93.53±1.96 69.02±0.70 66.33±5.88 59.78±7.54 49.39±2.03 61.59±1.07 42.27±0.87 17.57±1.23 % %

Ours-Mask 94.16±1.73 68.15±0.46 60.39±2.93 52.62±3.15 53.83±2.38 63.21±1.32 41.45±3.86 19.34±3.09 % %

with 96.41% clean accuracy on CIFAR-10, we further evaluate the
performance of our robust training algorithm, LarepMixup, on PGD
adversarial examples with different perturbation budgets. The ex-
perimental results are shown in the Table 11 and Table 12, which
demonstrate that the accuracy of the initial vanilla model does not
substantially affect the effectiveness of our algorithm. Even on the
modified ResNet18 model with higher accuracy, an improvement
of robust accuracy under different attack budgets is observed.

Table 11: Accuracy(%) of enhanced ResNet18 on white-box
adversarial examples

Input 𝜖 𝜖𝑠 𝑛𝑖 Vanilla Ours Improve

Clean - - - 96.41 96.29 -0.12
PGD 0.031 0.0078 7 21.53 26.36 4.83
PGD 0.031 0.0078 10 15.58 20.23 4.65
PGD 0.031 0.0078 20 10.10 13.52 3.42
PGD 0.051 0.0078 20 2.62 4.95 2.33
PGD 0.1 0.0078 20 0.29 0.89 0.60
PGD 0.2 0.0078 20 0.11 0.48 0.37

Table 12: Accuracy(%) of enhanced ResNet18 on grey-box
adversarial examples

Input 𝜖 𝜖𝑠 𝑛𝑖 Vanilla Ours Improve

Clean - - - 96.41 96.29 -0.12
PGD 0.031 0.0078 7 21.53 36.29 14.76
PGD 0.031 0.0078 10 15.58 31.05 15.47
PGD 0.031 0.0078 20 10.10 25.91 15.81
PGD 0.051 0.0078 20 2.62 9.54 6.92
PGD 0.1 0.0078 20 0.29 2.12 1.83
PGD 0.2 0.0078 20 0.11 1.24 1.13

B.2 Time Cost of Our Work
In our scheme, the training of the styleGAN model is separated
from the training of the robust classifier. Once a styleGAN model
has been trained well on a given dataset, thereafter it will only be

Figure 11: Time cost for LarepMixup training.

used as a mapping function from low-dimensional representation to
high-dimensional input to participating in the LarepMixup training
of any target network. Taking the CIFAR-10 dataset as an example,
we trained the StyleGAN model for 280 epochs on the CIFAR-10
training set, each epoch took about 218 seconds. We spent a total of
16.9 hours training a styleGAN model, realizing the final effect that
a latent variable randomly sampled in the hidden space of styleGAN
can be mapped to a sample with real semantics in the input space.
Then, we constructed the on-manifold CIFAR-10 datasets consisting
of latent representations 𝑧 and corresponding labels 𝑦. From the
perspective of training a robust network, the above process can be
regarded as a preprocessing process. After constructing the latent
representation dataset of CIFAR-10, we then use it for building
various robust networks on CIFAR-10. Taking the WideResNet28-
10 as an example, the time cost of LarepMixup training is shown
in Fig.11. The time cost of LarepMixup training was almost 700
seconds per epoch. We trained the robust WideResNet28-10 model
for 40 epochs, a total using almost 7.7 hours.

730

	Abstract
	1 Introduction
	2 Related Work
	2.1 Off-manifold Adversarial Attack
	2.2 On-manifold Adversarial Attack
	2.3 Input-space Mixup
	2.4 Latent-space Mixup

	3 Preliminaries and Threat Model
	3.1 Object Manifold and Decision Boundary
	3.2 Threat Model

	4 Manifold Interpolation Strategy
	4.1 Dual-mode Manifold Interpolation
	4.2 Interpretation of Mixed Examples in Improving Off/On-manifold Robustness

	5 LarepMixup Training Framework
	5.1 Low-dimensional Manifold Embedding
	5.2 Latent Representations Mixup
	5.3 Softlabel-based Training

	6 Experiments
	6.1 Experimental Setup
	6.2 Perception Analysis
	6.3 Evaluations on Different Attack Budgets
	6.4 Comparison with Mixup Training Methods
	6.5 Comparison with Adversarial Training Methods
	6.6 Evaluations on Perceptual Attack Examples
	6.7 Evaluations on Different Mixing Modes

	7 Conclusion
	Acknowledgments
	References
	A Experiment Setup Details
	A.1 Parameters in Attacks
	A.2 Parameters in Defense

	B Addition Experimental Results
	B.1 Evaluation on Higher Capacity Models
	B.2 Time Cost of Our Work

