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Abstract—Blockchain technology has been applied to various
applications (e.g., smart buildings and smart cities) that typically
run in an environment of smart devices, known as Internet-of-
Things (IoT). To support these applications, different blockchain
architectures, data structures and consensus algorithms have
been proposed, tailored to IoT. One such proposal, appendable-
block blockchain, is a promising blockchain framework for use
in IoT environments. It provides a scalable data structure that
allows parallel insertions between independent nodes. However,
it has some limitations, in particular related to the possible
eclipse attack by malicious gateways and the lack of consensus
for transactions insertion. To solve these issues, we propose a
new consensus mechanism for appendable-block blockchains,
called context-based consensus. Using context-based consensus,
information can be inserted in parallel across devices (called
context) while ensuring that light-weight consensus is performed
to guarantee that a transaction is well-formed and it is placed in
the correct order. We implemented context-based consensus and
show that using multiple contexts reduces latency and increases
the throughput of transaction insertions when compared to
consensus without contexts or using single transaction consensus.

Index Terms—Consensus, Blockchain, IoT, appendable-block

I. INTRODUCTION

Blockchain technology is being adopted to facilitate decen-
tralization and ensure security in areas such as education [1],
healthcare [2], general Internet-of-Things (IoT) [3], real estate
registries [4] or supply chains [5]. The underlying infrastruc-
ture in these applications is the Internet of Things and different
blockchain architectures [6] [7] and data structures [8] [9]
have been proposed to deal with the challenges offered by
IoT, including security challenges such as limitations to the
hardware capacity, sensitivity of device information, or the
use of devices in botnets [10].

Appendable-block blockchain [11] is such a blockchain
proposal for IoT, proposed for permissioned and private IoT
environments. Appendable-block blockchains use an hierarchi-
cal architecture and a bespoke data structure (with separated
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insertion of blocks and transactions), which allows to insert
transactions in parallel across nodes. In appendable-block
blockchains, consensus is only performed when creating and
inserting a new block for a node [12]. Once the block is created
for a specific node, the node can attach transactions to the
block. There is no consensus to insert such transactions in
appendable-block blockchains. That is, nodes have to trust
its gateway - a full node that controls the access to other
nodes to the blockchain - to insert valid transactions in their
blocks. In addition, appendable-block blockchains assume that
devices connect to only one gateway at a time. Consequently,
appendable-block blockchains are susceptible to misuse and
attacks through malicious or tampered gateways. Such gate-
ways can compromise the insertion of information (e.g., insert
an invalid execution of a smart contract) and can eclipse
devices or hide devices information (not inserting that into
the blockchain).

To tackle these problems, we propose a new consensus
mechanism for appendable-block blockchains called context-
based consensus. This mechanism allows parallel insertion
aggregated in independent contexts. Each context can have
different nodes and can be defined by the consortium of
organizations that control the blockchain. Every transaction
inserted in the blockchain has to pass through a validation pro-
cedure and agreement between nodes, providing trust among
nodes. Additionally, by using a parallel approach (separated
in contexts), this context-based consensus can increase the
throughput of inserted transactions when compared to single
context insertion (traditional consensus). As a consequence of
parallelism, this consensus can help reduce the latency to insert
transactions in the blockchain.

We evaluate the performance of context-based consensus
through a prototype implementation. In the evaluation, we use
a smart building scenario, composed of 1,000 devices and
10 gateways and compare the performance for two different
scenarios, under various transaction pool configurations and
two distinct update approaches. The results show that using
multiple contexts can reduce latency and increase the through-
put of transaction insertions when compared to consensus for
single transaction insertion or consensus for single context,
achieving a total latency under 550ms and throughput above



100 transactions per second.

II. BACKGROUND - APPENDABLE-BLOCK BLOCKCHAINS

Due to hardware limitation (memory and processing power),
IoT devices are susceptible to attacks that expose sensitive
information [13], lead to catastrophic situations [14], or be
tampered with to be used as a botnet [15]. In order to solve
many IoT security issues, Christidis and Devetsikiotis [10]
proposed the adoption of blockchain in IoT.

Many proposals presented different ways to use existing
blockchains in IoT, in particular using a hierarchical archi-
tecture [6] or using blockchain as a service [7]. How-
ever, for many applications that use IoT devices, latency
and throughput are important factors that should be con-
sidered when designing a solution [3]. Consequently, con-
sensus algorithms [16] [17] [12] were adapted to existing
blockchains and new data structures, such as appendable-block
blockchains [11] and directed acyclic graphs (DAG) [9], were
proposed to be used in IoT environments. In our work, we
intend to improve appendable-block blockchains to solve some
security issues and to provide a new consensus mechanism to
the transaction insertion in the appendable-block blockchains.

Appendable-block blockchain was proposed to be used in
IoT environments using a different data structure that allows
the insertion of transactions after a block was inserted in
the blockchain [8] [11]. It adopts a layered IoT architecture,
composed of devices, gateways and service providers. In
this architecture, devices produce data and send them to the
gateways who append these data to the blockchain. Devices
can be understood as light-nodes in the blockchain, i.e., they
do not store blockchain data. Gateways are responsible for
controlling the access and insertions in the blockchain. Service
Providers can be understood as middleware to access the
blockchain information from the gateways.

Similar to other blockchains, appendable-block blockchains
have transactions stored inside blocks. The difference is that
every node (device, gateway or service provider) has a unique
block assigned to it, i.e., identified by its public key. The block
for a node is created and attached to the blockchain when
the node submits the first transaction (it can be understood
as a genesis transaction). After having the block attached to
the blockchain, the node can insert new transactions into it,
resulting in a chain of transactions, e.g., each transaction is
linked to the previous one. More details in Fig. 1.

To handle block insertions, appendable-block blockchain
allows to use different consensus algorithms. For example,
it can use simplified witness-based insertion or Practical
Byzantine Fault Tolerance (PBFT) [12]. Every time that a
new device (a device that does not have its public key in
a block) tries to connect to a gateway, it starts a consensus
algorithm to insert a new block. After the block is inserted,
the gateway can update that block with transactions sent
by the device without committing the consensus algorithm,
leading to many issues such as: (i) the insertion of invalid
data; (ii) the inconsistency in the block’s data when a device
connects to multiple gateways at the same time; (iii) as devices
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Fig. 1: Appendable-block blockchain block insertion and trans-
action insertion (adapted from [12]).

are connected to only one gateway per time, devices can
be eclipsed by malicious gateways, i.e., the communication
and information produced by a device is intercepted by the
gateway. To solve these security issues, we present in Section
III a proposal for a context-based consensus algorithm.

III. CONTEXT-BASED CONSENSUS ALGORITHM

Currently, SpeedyChain [11] - first proposed appendable-
block blockchain - presented a solution that allows inserting
new transactions into already inserted blocks. The consensus
is only performed when creating and inserting new blocks, and
there is no consensus to insert transactions into blocks [12].
However, some issues were not properly addressed by the
current version of SpeedyChain. Firstly, current proposals of
appendable-block blockchains have a communication protocol
that allows a device to connect to only a single gateway.
As a consequence, transactions produced by devices can be
omitted by a malicious gateway. Secondly, the consensus is
performed only to insert new blocks, which means that invalid
transactions can be included. Finally, scalability can be a
problem as the usage of consensus in the current appendable
block blockchain would be performed individually for each
transaction, leading to latency issues as we will present in the
evaluation.

We propose a context-based consensus algorithm to address
the limitations of the current version of SpeedyChain. In
particular, to solve the first issue, we propose that every
device should connect to a minimum initial set of gateways.
When a device connects to multiple gateways, this eliminates a
malicious gateway from cheating as other gateways will detect
it, differently to what would happen if a device was connected
to a single gateway. A simplified version of the connection
protocol is presented in Fig. 2. The main steps are described
as follows:

1) Device a (represented Dev a in Fig. 2) sends a Hello
message with its own public key Dev a Pubkey, e.g.,



for encryption using the asymmetric cryptography, to
gateway A (Gw a);

2) Gw a verifies if Dev a PubKey is in a block header of
the blockchain, i.e., a block for that device was inserted
previously in the blockchain:

a) In the case that the Dev a PubKey is not in a block
header and the device is allowed to access the network,
Gw a starts a consensus to include a new block for Dev
a containing its PubKey;
i) Other gateways (Gw b and Gw c in Fig. 2) verify

the proposed new block, they vote (signed voting)
and send the result back to the gateway that started
the consensus;

3) After the consensus (if the block is considered valid),
the block containing Dev a PubKey is inserted in the
blockchain. Then, if Dev a PubKey is in the blockchain,
Gw a and Dev a can establish an encrypted channel using
symmetric cryptography;

4) After a device connects to a gateway, they can exchange
information. Our proposal allows a device to send the
same transaction to multiple gateways. These multiple
connections with gateways can help to avoid a device
from being eclipsed by a tampered gateway. Allowing
the connection to multiple gateways is an improvement
to appendable-block blockchain, as discussed previously.
Also, it is important to note that devices’ transactions
have a timestamp and a digital signature.

5) Any update from a device is a transaction in the block-
chain.

Fig. 2: Device connection simplified protocol.

As mentioned previously, every device can connect and send
its update (a new transaction) to multiple gateways at the same
time. For instance, Dev a is connected to three gateways (Gw
a, Gw b and Gw c), as depicted in Figure 2.

As presented previously, appendable-block blockchains al-
low nodes to insert transactions into their own blocks at the
same time, independently from each other. However, there are

two remaining issues. One of them is that the current version of
SpeedyChain does not present consensus at transaction level,
i.e., a gateway - to which a device is connected - inserts the
transaction in the device’s block ledger and sends it to the other
gateways. In this case, different gateways can insert the same
transaction in the blockchain (duplicating the same transac-
tion), or in the worst case, propose an invalid transaction, e.g.,
wrong result of smart contract execution. The other issue is
that using one consensus procedure for each inserted transac-
tion, without changing the way how transactions are inserted
in the current version of appendable-block blockchains, can
lead to scalability problems. A solution to these problems is
to separate devices into different contexts. Consensus will be
executed inside each context, and then propagated to gateways
from different contexts. Thus, a new field called context should
be added to the Block Header (presented previously in Fig.
1. This will allow to define that a device will participate in
a specific context. The definition of which context a device
will be part of is made by gateways during the device’s block
insertion. The rules to define this can be based on the type
of information handled (gas sensor, lightning sensor, etc.) or
other definitions that an organization/consortium will agree
upon previously. In our proposal, we assume that the definition
of contexts is based on existing predefined rules.

Context-based consensus consists of different contexts,
where each context contains a number of devices. Consensus
is performed in a context independently from other contexts.
Consequently, each context can have different consensus or
different parameters to be considered to append new informa-
tion in the blockchain. Gateways can participate in consensus
of different contexts, allowing them to participate in different
consensus mechanisms (see Fig. 3). For example, Context Blue
(CB) is composed of a set of gateways {GW A, GW B, GW
C, GW D, GW E}, Context Yellow (CY) = {GW E, GW F,
GW G, GW H, GW I, GW J}, and Context Red (CR) = {GW
E, GW F, GH K, GW L, GW M, GW N}. In this example,
the consensus algorithm used in CB can be different from the
consensus algorithm used in CY and CR.

Fig. 3: Gateways in three different contexts.



After a consensus is performed inside a context, a gateway
can share/propagate the new consented set of transactions to
the gateways from the other contexts. For example, after a
consensus in CR, GW F can share new information from CR
with gateways in CY. This can be performed in two different
approaches:

• (i) using the existing approach by sending the transactions
with signed votes to a list of known gateways that do
not participate in the context in which the consensus was
performed, e.g., GW D in Fig. 3 can share a set of valid
transactions from CB with gateways to known gateways
from CR. Every gateway that receives a transaction from
known devices can share that with other gateways;

• (ii) using a new approach by sending transactions from a
context or specific devices when they are requested by a
gateway (on demand), e.g., if Gw I wants to ensure that
it has an updated view from a device from CB.

Approach (i) is similar to what is adopted in dBFT [18]
and any other consensus algorithm that has a limited group
of nodes performing consensus. This approach maintains an
updated view (but not synchronous) of all transactions from
every node. One issue that this approach can have is related
to scenarios of a large amount of contexts and, consequently,
many messages are exchanged between gateways to update all
gateways’ ledgers. However, the number of messages will be
far less than performing the consensus by all gateways in the
blockchain.

Approach (ii) can be adopted as a mechanism to avoid
many update messages and, also, it can be used as a mecha-
nism to update gateways that do not participate in the same
context when requested. As the gateways do not participate
in the consensus for that context, the information about
transactions may not be used by that gateway. Additionally,
this approach can be used to reduce the amount of data that is
stored in each gateway. These data can be required if a gateway
needs to use them for some processing, decision making, or
they are requested by a Service Provider. This approach does
not affect the replication of block headers, but can compromise
the reliability and the number of copies of transactions.

Each context can have different configurations or different
consensus algorithms. Each round can be defined by a set of
transactions, that can be designed in different configurations:

• (a) one transaction (from that context) per time;
• (b) a set of transactions (from that context) generated

during the time required to perform the previous context
without a limit of transactions;

• (c) fixed maximum number of transactions per consensus.
Configuration a presents the same configuration used by

the current version of appendable-block blockchain to insert
transactions, i.e., one transaction per time. This configuration
can have a reduced latency to process the transaction for a
device in a scenario that gateways are not overloaded. It is
a simple approach, and each gateway can start a round of
consensus. However, it can lead to a high number of consensus
performed in a scenario with a high number of devices or a

high rate of updates from devices from a context. In the end,
the latency can be increased by the bottleneck in gateways.

Configuration b presents the same configuration available
in many blockchain, i.e., a limited set of transactions for
each consensus. This configuration can reduce the number
of consensus performed in the same context and, as a con-
sequence, reduce the number of messages. However, it can
lead to more time spent to verify all transactions and, as
a consequence, more time can be required to perform the
consensus. The gateway that starts the consensus (also known
as leader) has to use all transactions produced in the context.
However, this approach can increase the number of messages
exchanged before the consensus (every gateway will have to
send proposed insertions to the leader when requested). A
problem with this approach is that overloading the gateways
with many new transactions can lead to a time-consuming
consensus.

Configuration c presents an alternative configuration,
which may help to avoid high latency (or starvation) of trans-
actions in overloaded situations. However, this configuration
can increase the latency to insert a single transaction, but the
number of messages exchanged will be reduced. The gateway
that starts the consensus (also known as leader) has to use a
limited set of transactions from the context. A problem that
can happen is when too many transactions are produced in a
small amount of time, i.e., this approach can have a problem
to handle an overloaded situation.

A context-based approach can reduce the number of mes-
sages exchanged to perform consensus for the transactions.
However, some issues can happen when using this approach.
For example, gateways that participate in many contexts can
have issues regarding the high number of consensus messages,
e.g., GW E (in Fig. 3) participates in all contexts. A maximum
amount of contexts for each gateway should be defined. Also,
scenarios in which a small number of gateways participate
in the consensus for a particular context is susceptible to
Sybil and 1% attacks, similarly to shard approaches [19] or
consensus with limited gateways [18].

Lunardi et al. [12] discussed the usage of PBFT in
appendable-block blockchains to insert new blocks. That ap-
proach can still be used to insert new blocks, i.e., having
different consensus to block insertion similarly to the ones
used for transaction insertion. In the next subsections, we
present the algorithms for each different configuration.

A. Configuration a

New data that are produced by a node from a specific
context (Cj) will be processed by a gateway (Gwi) from that
context, and it will be sent for a consensus. The prepareCon-
sensus(Tm) and commitConsensus(Tm) functions used can be
different for each scenario. Although, we assume, in this work,
that operations are the same as used in PBFT [20], i.e., every
node receives a copy of the transaction in the prepare phase,
and sends the vote to every other gateway (in the same context
Cj) approving or not the new transaction on commit phase.



Algorithm 1 Perform transaction consensus - Config. a
Require: Infom and Di
1: validInfo← verifyInfo(Infom)
2: if validInfo is true then
3: Tm ← createTransaction(B, Infom, NPK i)
4: for all Gwi in Dj do
5: prepareConsensus(Tm)
6: end for
7: for all Gwi in Dj do
8: responseList← commitConsensus(Tm)
9: end for

10: if |positive(responseList)| > minResponses then
11: addTransaction(Tm))
12: end if
13: end if

B. Configuration b

A gateway Gwi will receive new data produced by a node
from a specific context Cj. After processing that data, Gwi will
send it to a transactions list (or pool) and then process it in
the next consensus.

Algorithm 2 Send transactions pool - Config. b and c
Require: Infom and device NPK i
1: validInfo← verifyInfo(Infom)
2: if validInfo is true then
3: sendTransactionPool(Infom, BHb)
4: end if

Differently from Configuration a, we assume, in Config-
uration b, that operations prepare and commit use a set of
transactions that will be voted as valid or not. It is important to
note that variable z (line 1 in Alg. 3), which represents the limit
of transactions, is set to zero (no limit is used in Configuration
b). Also, we assume that a leader is elected for each consensus
round. Similarly to Configuration a, we based the prepare and
commit phases in what is adopted by PBFT [20]. Thus, every
node receives a copy of the set of transactions in the prepare
phase. After that, on the commit phase, every node sends the
vote (approving or not each transaction in the set) to all other
gateways (in the same context Cj). As a result, there is a list
of votes (from all gateways) for each transaction.

C. Configuration c

Similar to Configuration b, all data produced by a device
from a specific context Cj will be processed by Gwi from that
context. Also, a list will be processed in the consensus (Alg. 2).
We assume, in Configuration c, that operations prepare and
commit use a set of transactions with a predefined limit (z
in line 1 in Alg. 3) that will be voted as valid or not. Also,
we assume that a leader is elected for each consensus round.
Also, every time that a consensus is finished a new one will
be started but with a maximum amount of transactions per
time, i.e., the consensus is based on the time for each round
but with a limited amount of z transactions.

IV. EVALUATION

In order to evaluate context-based consensus algorithms
in appendable-block blockchain, we performed testing with

Algorithm 3 Perform transaction consensus - Config. b and c
Require: transactionPool and C j
1: setTm ← getTransactions(transactionPool, z)
2: validInfo← verifyInfo(Infom)
3: if validInfo is true then
4: Tm ← createTransaction(B, Infom, NPK i)
5: for all Gwi in Dj do
6: prepareConsensus(setTm)
7: end for
8: for all Gwi in Dj do
9: responseListperT ← commitConsensus(setTm)

10: end for
11: for all T k in responseListperT do
12: if |valid(responseList)| > minResponses then
13: addTransaction(T k))
14: end if
15: end for
16: end if

a different number of contexts, different configurations and
different approaches for updating the nodes. Also, we used
the Core Emulator [21] to create a container-based network
to emulate network equipment, gateways and devices. For all
executed tests, a network with ten (10) gateways and 1,000
devices was adopted in order to emulate a smart building.

We present the description scenarios used in the evaluation
in Table I, the configurations used in the context-based con-
sensus in Table II and the approaches used to propagate the
transactions after consensus in Table III. The emulation was
performed in a Virtual Machine (VM) with 6-core processor,
16GB of memory and 64MB of graphics memory running
Ubuntu 18.04 operating system using a Virtual Box hypervisor
over a Macbook Pro with 2.3 GHz 8-Core Intel Core i9
processor, 32GB DDR4 memory.

TABLE I: Evaluated scenarios.

Scenario Description

1 1,000,000 transactions sent by 1,000 devices, varying from
1 to 10 contexts, where all gateways participate in all contexts

2
1,000,000 transactions sent by 1,000 devices, varying from
1 to 10 contexts, each context having exactly 5 gateways
(gateways can participate in more than one context)

TABLE II: Evaluated configurations.

Configuration Description
A All contexts using PBFT for a single transaction

B All contexts using PBFT with no limit of transactions
per consensus

C All contexts using PBFT with limited number of
transactions (100, 1000, and 10000) per consensus

TABLE III: Evaluated approaches.

Approach Description

I After the consensus, transactions are sent to all gateways
that do not participate in the context

II After the consensus, transactions are not sent to gateways
that do not participate in the context

In Scenario 1, we intend to show how multiple contexts can
perform when all gateways participate in all contexts. This is



to show the most demanding scenario due to high processing
and communication demand. In Scenario 2, we intend to show
the impact of limiting the number of contexts that a gateway
can participate in on latency and throughput. Unlike Scenario
1, in this scenario it is not possible for a gateway to participate
in all contexts as there are only five gateways in every context.
Hence, it is possible to have some gateways that participate in
multiple contexts.

Also, we evaluated the 3 configurations proposed in Sec-
tion III and presented in Table II. These different configura-
tions were evaluated to show how the number of transactions in
each consensus affects the throughput and latency in context-
based consensus. Finally, as presented in Table III, we used 2
different transaction update approaches: inserting transactions
in all gateways that do not participate in the consensus, or not
inserting them while they are not requested. These approaches
were evaluated only for Scenario 2. Thus, we used only the
approach I code for Scenario 1 since all gateways belong to all
contexts, i.e., they do not need any additional updates. Conse-
quently, we executed 150 different tests, as a result of different
combinations of scenarios, transaction limit configurations in
each context, different transaction propagation approaches and
a different number of contexts used in each test.

A. Results

We used two metrics to evaluate context-based consensus
for transactions in appendable-block blockchains, i.e. latency
and throughput.

1) Latency results: latency was calculated based on the
time spent from creating a transaction to inserting it in the
blockchain. Consequently, the latency captures the whole time
spent in different processes such as the time it takes to
propagate the transaction to gateways, the time the transaction
spends in the transaction pool, and the time spent in the
consensus. It is important to note that the evaluation was
performed in a local network, where the communication times
are reduced.

We can observe in Table IV the average (with the 95% con-
fidence interval) transactions latency (in milliseconds) in all
scenarios, approaches and configurations. Hence, lower latency
results are better. Due to space limitation, we present only the
results for 1, 2, 4 and 8 contexts. The first row indicates the
scenario (1 or 2), the configuration (A, B and C, where C can
take 100, 1,000 and 10,000 transactions) and update approach
(I or II). For each scenario/configuration/approach, we collect
results from 1 to 10 contexts (for one context, all devices
in that context; for two contexts, half of the devices in each
context; and so on).

We can observe that when using only one context (in all
scenarios/configurations/approaches), the average latency is
always higher than 10,000ms (10 seconds), indicating that
using only a single context, i.e., only one consensus for all
transactions, is not sufficient to insert a transaction before a
new one is produced by the same device (every 10 seconds).
Additionally, considering two or more contexts, for almost all
cases configurations/approaches, scenario 1 presented worse

results than evaluation over scenario 2. For scenario 1, the
lowest transaction latency was 706.5±1.3ms using two con-
texts with Configuration C (with limit of 1,000 transactions).
This value is more than 463% of the best result (152.5±0.3ms)
in scenario 2 (four contexts with Configuration c with limit
of 1,000 transactions and update approach II). Consequently,
the results show that the number of gateways in each context
can impact the latency.

TABLE IV: Latency (in milliseconds) to insert transaction.

Scen.Conf.Appr. Number of Contexts
1 2 4 8

1.A.I 284867.0±336.1 150477.9±577.2 48413.7±407.1 189562.5±731.9
1.B.I 168544.0±245.3 881.1±1.3 906.9±2.5 14328.5±32.1
1.C-100.I 287921.4±544.4 2402.2±5.4 1152.5±3.8 4106.3±8.3
1.C-1000.I 210587.2±359.4 706.5±1.3 734.2±2.2 5160.3±27.2
1.C-10000.I 122431.8±353.8 895.8±2.1 762±1.8 1661±3.9
2.A.I 402376.2±1294.3 43833.7±194.5 31170.9±217.8 5714.2±49.0
2.B.I 70143.3±226.3 256.7±0.6 2507.3±4.6 4455.8±18.1
2.C-100.I 189105.4±345.6 937.1±2.5 1186.9±2.8 1619.8±15
2.C-1000.I 145247.4±262.9 416.7±0.9 216.6±0.6 303.4±2.2
2.C-10000.I 42636.7±117.4 305.8±0.7 168.0±0.4 363.2±1.2
2.A.II 214997±804.3 1407.9±4.4 686.9±4.4 897.3±5.6
2.B.II 118258.2±484.4 670.0±2.0 924.6±2.3 1095.4±6.2
2.C-100.II 30212.2±170.7 309.3±0.8 306.1±2.8 261.7±0.7
2.C-1000.II 46555.1±275.6 173.3±0.6 152.5±0.3 430.2±1.5
2.C-10000.II 56736.4±89.3 169.5±0.4 164.6±0.4 302±0.8

In order to help to better understand the differences between
transaction limit configurations and update approaches, we
present the results separated in scenarios in Fig. 4 using
logarithm values. We can observe that best results for two or
more contexts are achieved by Configuration c with 1,000 and
10,000 transactions, represented respectively by yellow (with
diamond) and green (with square) lines. In special for both
evaluations over scenario 2, the average latency was under 1
second for two or more contexts using Configuration c with
1,000 and 10,000 transactions. Additionally, approach II had
better general results than approach I. Also, it is important to
note that approach II using Configuration c (100, 1,000 and
10,000) achieved an average latency lower than 550ms for 2
or more contexts. Thus, we can assume that a context with
less gateways (scenario 2), with a configuration with a limit
between 100 and 10,000 transactions, and updating by request
can have a reduced latency.

2) Throughput results: in this evaluation, we considered
as throughput the rate of insertion of transactions per second
(tps) in the blockchain. As expected, when considering only
one context, the throughput was considerably lower than with
multiple contexts. Similar to what happened to latency, best re-
sults were obtained when less gateways per context were used
(scenario 2). As a comparison, the best result was obtained
when using three contexts, in scenario 2, with Configuration c
with limit of 100 transactions and approach II (not updating),
having a consensus throughput of 154.8±1.4tps.

It is important to note that throughput is affected by many
factors. The number of transactions is an important aspect, for
one transaction in each consensus (Configuration a) means
a consensus procedure that will be performed for just one
transaction. Although, a high number of transactions in each
consensus means more time to verify and perform consensus.



10.0

100.0

1000.0

10000.0

100000.0

1000000.0

1 2 3 4 5 6 7 8 9 10

La
te

nc
y 

 (m
s)

Number of contexts

1.A.I 1.B.I 1.C-100.I 1.C-1000.I 1.C-10000.I

(a) Scenario 1

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

1 2 3 4 5 6 7 8 9 10

La
te

nc
y 

 (m
s)

Number of contexts

2.A.I 2.B.I 2.C-100.I 2.C-1000.I 2.C-10000.I

(b) Scenario 2, approach I

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

1 2 3 4 5 6 7 8 9 10

La
te

nc
y 

 (m
s)

Number of contexts

2.A.II 2.B.II 2.C-100.II 2.C-1000.II 2.C-10000.II

(c) Scenario 2, approach II

Fig. 4: Average latency for each transaction in context-based consensus.

Additionally, increased load on gateways during parallel exe-
cution of consensus and more messages exchanged (during the
consensus or receiving updates from different contexts) can
affect the performance. Furthermore, it is important to note
that a higher rate of transactions would affect the throughput.
However, in all evaluation instances we used the same number
of devices, gateways and transactions in order to have the same
parameters for all 150 different performed tests.

TABLE V: Transactions throughput (transactions per second)
using context-based consensus.

Scen.Conf.Appr. Number of Contexts
1 2 4 8

1.A.I 30.264905±0.4 79.4±0.4 84.6±0.5 80.4±0.6
1.B.I 30.4805145±2.0 92.2±1.5 91.7±0.9 79.9±1.2
1.C-100.I 37.2878515±1.5 85.4±1.4 93±0.8 71.5±2.3
1.C-1000.I 29.6682895±2.1 92.4±1.3 89.7±1.1 81.4±0.9
1.C-10000.I 29.8±0.4 60.6±0.7 99.4±2.0 78.6±3.2
2.A.I 19.3±0.2 85.2±0.7 105.9±1.3 127.7±1.5
2.B.I 6.4±0.6 123.9±1.2 102.7±0.8 40.6±0.6
2.C-100.I 26±1.0 112.1±1.7 121.4±2.5 133.3±2.4
2.C-1000.I 8.1±0.7 122.6±1.1 108.6±0.8 99.5±0.6
2.C-10000.I 6.2±0.5 126.1±1.6 113.1±0.8 97±0.7
2.A.II 36.4±0.2 75.7±0.4 87.3±0.4 78.8±0.3
2.B.II 13.5±1.2 91.2±2.0 96.2±2.0 54.8±1.0
2.C-100.II 41.5±1.2 133.2±1.1 125.8±0.9 108±0.6
2.C-1000.II 30.7±0.9 134.9±1.1 124.7±0.9 114.9±0.8
2.C-10000.II 11.1±1.4 145.3±1.6 123.1±0.8 99±0.6

Fig. 5 shows the impact of the number of contexts, con-
figurations and update approaches on the throughput. We
can observe that increasing the number of contexts can im-
prove throughput. This shows that parallelism of insertion
using different contexts can help to improve appendable-
block blockchains performance. Additionally, between 2 and
6 contexts in scenario 2 (for both approach I and II) and using
configuration C (100, 1,000 and 10,000 transactions limit) the
throughput is above 100 transactions per second.

V. DISCUSSION AND THREATS TO VALIDITY

The evaluation presented in Section IV showed that the
context-based approach can present improvements both over
a single context (or non-existence of contexts) and to a single
transaction insertion in the blockchain. Also, our evaluation
shows that context-based consensus can guarantee lower la-
tency and higher throughput. However, there are some threats

to validity of our evaluation since the evaluation tests were
performed in a controlled environment.

The first internal threat is the instrumentation used to
perform the tests. Mainly, the hardware used to perform
the evaluation can have an impact on the presented results
as different hardware and network configurations lead to
different results. However, the difference between scenarios,
configurations and approaches is expected to be reproduced
in any adopted hardware. We intend to consider different
hardware in future work. The second internal threat is related
to the selection of values used to set the scenarios. A different
number of gateways and devices, as well, different rate of
transactions per second can influence the obtained results.
Moreover, smart contracts transaction on appendable-block
blockchains (as proposed by Nunes et al. [22]) can lead
to different execution results. In future work, we intend to
evaluate different set of scenarios, e.g., larger scenarios with
higher transaction rate with smart contracts executions.

Also, context-based consensus can present some security
issues, particularly due to the limited number of gateways
controlling the consensus in each context. This issue is similar
to the issues in the adoption of shards in blockchains [19].
Different from many shard approaches, all block headers are
kept by all nodes in context-based consensus for appendable-
block blockchains. This can reduce the impact of an attack,
but further investigations will be discussed in future work.

VI. FINAL CONSIDERATIONS AND FUTURE WORK

In this paper we propose and present context-based con-
sensus, which supports consensus at the transaction level as
well as allowing devices to connect to multiple gateways. By
doing so, the context-based consensus can solve two existing
issues in appendable-block blockchains, namely the eclipse
attack performed by a single malicious gateway and the lack
of transactions consensus.

To evaluate the performance of context-based consensus,
we implemented a prototype. The evaluation shows that per-
formance is good, achieving a total latency under 550ms
and throughput above 100 transactions per second. These
results are influenced by the number of gateways in each
context, the number of transactions per consensus, and the
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Fig. 5: Average transactions consensus throughput (transactions per second inserted in the blockchain).

way appendable-block blockchain in each gateway is updated
with transactions from other contexts. The best results (latency
under 550ms, achieving average results lower as 152.5m) were
obtained using multiple contexts with a limited number of
gateways and a limited number of transactions per consensus
round. Throughput of over 100 transactions per second relied
on PBFT as consensus algorithm. We also showed that using
multiple contexts to insert transactions leads to lower latency
than a single or no context. The consensus of a single
transaction per time (as in the previous versions of appendable-
block blockchains) tends to result in prohibitively high latency.

As future work, we intend to scale our context-based con-
sensus by increasing the number of gateways and devices, so
that it can be used in different IoT environments. Further dis-
cussion should be performed considering different consensus
algorithms as well, detailed analysis and impact of different
attacks, such as Sybil and 1% attacks.
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