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Defenses to Membership Inference Attacks: A Survey
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Machine learning (ML) has gained widespread adoption in a variety of fields, including computer vision and

natural language processing. However, ML models are vulnerable to membership inference attacks (MIAs),

which can infer whether access data was used in training a target model, thus compromising the privacy of

training data. This has led researchers to focus on protecting the privacy of ML. To date, although there have

been extensive efforts to defend against MIAs, we still lack a comprehensive understanding of the progress

made in this area, which can often impede our ability to design the most effective defense strategies. In this

article, we aim to fill this critical knowledge gap by providing a systematic analysis of membership inference

defense. Specifically, we classify and summarize the existing membership inference defense schemes, focusing

on optimization phase and objective, basic intuition, and key technology, and we discuss possible research

directions of membership inference defense in the future.

CCS Concepts: • Security and privacy→ Privacy protections;

Additional Key Words and Phrases: Membership inference, privacy defense, privacy attack, Machine learning

ACM Reference format:

Li Hu, Anli Yan, Hongyang Yan, Jin Li, Teng Huang, Yingying Zhang, Changyu Dong, and Chunsheng Yang.

2023. Defenses to Membership Inference Attacks: A Survey. ACM Comput. Surv. 56, 4, Article 92 (Novem-

ber 2023), 34 pages.

https://doi.org/10.1145/3620667

1 INTRODUCTION

Recent advances in complex machine learning models and computing infrastructure, coupled with
the availability of massive data, have facilitated the application of machine learning in everyday
life. For example, in computer vision, machine learning has gained widespread adoption in face
recognition, object detection, image classification, and so on. The success of ML has recently pro-
pelled leading internet companies such as Google and Amazon to adopt machine learning as a

service (MLaaS), which provides training services for data owners to train ML models for different
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applications. These models are then either published as a prediction application programming

interface (API) and accessed in a black-box fashion or a set of parameters in a white-box fashion.
Despite its success being overshadowed by different study domains, ML models trained with sen-
sitive data remember the sensitive information of the data and may pose a privacy threat to the
data owner when they are published and used. Typically, the data used to train ML models often
contain sensitive user information such as clinical records, location traces, personal photos, and so
on. Prior work unveiled that ML models are vulnerable to various privacy inference attacks, e.g.,
model extraction attack, attribute inference attack, and membership inference attack [57].

In this investigation, we focus on membership inference attack (MIA). Through this attack,
the attacker can infer the member information about the training set of the target model, which
may cause serious privacy leakage issues. For example, if a machine learning model is trained on
data collected from patients with a disease, then the attacker can immediately know the health
status of the victim by knowing whether the victim’s data is part of the model training data. MIA
for machine learning is first proposed by Shokri et al. [64]. They can judge whether the access data
belongs to the training data of the model only according to the prediction vector output by the
model. Subsequent related works have also gradually expanded the work of MIA, which has been
successfully applied in many fields, such as biomedicine. Considering the privacy harm caused by
MIAs, a large number of studies have proposed different membership inference defenses (MIDs)

from different angles according to the reasons for the successful implementation of MIAs to resist
MIAs while maintaining the utility of the target ML model.

There are many surveys that summarize the works of membership inference attack [3, 25, 40,
42, 70, 76, 81]. Among them, Reference [25] is the first very comprehensive survey on membership
inference (MI). The authors classify the existing attack methods from various perspectives, discuss
the working principles of MIAs, and introduce the existing defense methods to mitigate MIAs. Fur-
thermore, it summarizes the open-source implementation of most existing evaluation metrics and
datasets, discusses the challenges of MI from both attack and defense aspects, and points out poten-
tial research opportunities for future research. Despite this work providing a very comprehensive
overview of MI, it does not focus on MID and does not conduct a comprehensive investigation into
MID. We hope to further expand the overview of MID works on this basis. In addition, considering
that most of the current defense works are carried out for the classification model in computer
vision, we will take the classification model as the main line to analyze. Our ultimate goal is to
systematically analyze the principles of various MID works so relevant workers can more clearly
grasp the progress of MID works and the direction that can be further studied. The main contribu-
tions of this article are:

— Based on the attacker’s knowledge, we conduct a comprehensive review of membership
inference attacks in computer vision domain classification tasks, explore the evolution of
such attacks in other domains, and gain a fresh perspective on the underlying principles of
membership inference attacks.

— We establish a comprehensive and systematic framework for defending against member-
ship inference attacks. Specifically, we first sort out the defense technology of membership
inference and then delve into the three key dimensions of membership inference defense:
pre-training, training, and inference phases of the target model. Through this analysis, we
examine the existing defense mechanisms for membership inference attacks in computer vi-
sion domain classification tasks. Furthermore, we classify the defense mechanisms used in
other fields and study the underlying principles of membership inference defense.

— Finally, we propose promising future research in the field of membership inference defense
and recognize that there is vast potential for further development in this area.
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Fig. 1. The main content structure of this article about MIA and MID.

In this article, we put together the state-of-the-art and most important works on membership
inference but focus on membership inference defenses. The main content structure of this article
is shown in the Figure 1, and the corresponding organization structure is as follows: Section 2 for-
mally defines the membership inference attack and combs the adversary knowledge possessed by
the attacker in detail. In Section 3, we sort out the existing membership inference attacks against
the visual domain classification model, briefly describe the work of other domain tasks, and fi-
nally summarize the principles of membership inference attacks. Section 4 classifies and describes
the membership inference defense technology, which can be roughly divided into: Regularization,
Transfer Learning, Information Perturbation, Generative Models-based. In Section 5, we review
the membership inference defense works of the existing visual domain classification model ac-
cording to the defense phase and describe it in detail in combination with the defense technology
described in Section 4. In Section 6, we classify the membership inference defense works in other
domain tasks. In Section 7, we outline the principles of membership inference defense. Finally, we
look forward to the future research direction of membership inference defense and summarize the
work of this article in Sections 8 and 9, respectively.

2 BACKGROUND

In this section, we first give the definition of membership inference attack based on ML models,
then give a brief overview of the information that attackers may have during the execution of
MIAs.

2.1 Definition of Membership Inference Attack

We formalize the definition of membership inference attack: Given a query instance x , x accesses
the target model ftarдet (θ ) trained on the training set Dtr ain

tarдet , the attacker can obtain the output

ftarдet (x ;θ ) of the target model and judge whether the instance x belongs to the training set

Dtr ain
tarдet . The definition points out that the membership inference attack focuses on the member

information of x in Dtr ain
tarдet rather than the content of x and the attacker wants to know whether

a specific x is in Dtr ain
tarдet rather than the whole Dtr ain

tarдet . These differences distinguish membership

inference attacks from other privacy attacks in Reference [57].
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Fig. 2. The workflow of the MIA.

Figure 2 describes the workflow of membership inference attack. From the perspective of the at-
tacker, the attacker accesses the prediction API provided by the machine learning service provider
to obtain the prediction result/output ftarдet (x ;θ ) corresponding to the query data x . Then, the at-
tacker combines with any public knowledge or background knowledge K about the target model
ftarдet (θ ) and builds an attack algorithm A. Then, the attack algorithm A can be used to launch
a membership inference attack in real time. According to the definition in Reference [95], we de-
scribe the membership inference attack as a binary classification task. The attacker’s goal is to
classify whether an instance x is used to train the victim model. Formally, we describe it as:

A : (x , ftarдet (θ ),K ) → {0, 1}, (1)

where 0 means x is not a member of ftarдet (θ )’s training dataset Dtr ain
tarдet and 1 otherwise.

According to the adversary knowledge about the target model and the main feature for execut-
ing the attack, the attacker’s strategy for executing the membership inference attack is different.
We describe it in the following sections.

2.2 Adversary Knowledge

Adversary knowledge refers to the information about the target model that an attacker can access,
as well as the knowledge that an attacker has about the query data. According to the different
adversary knowledge possessed by the attacker, the attacker’s ability is also different. To better
sort out the work of existing membership inference attacks, we introduce the adversary knowledge
of the attacker in detail according to the following categories: Data Knowledge, Model Knowledge,
Training Knowledge, and Output Knowledge. As shown in the Figure 3, depicting the adversary
knowledge from these four dimensions can systematically describe the adversary ability.

(1) Data Knowledge. The data knowledge is described in two parts: one is the knowledge of
the target model training datasetDtr ain

tarдet , and the other part is the knowledge of a query data

x from attacker. The knowledge about the target model training data that is accessible to the
attacker may be part of the training data or the distribution of the target model training data.
In most MIA works, it is assumed that the attacker can obtain the distribution knowledge

of Dtr ain
tarдet , i.e., the attacker can have a dataset D

′
that is identically distributed with Dtr ain

tarдet .

Whether the datasetD
′
intersects withDtr ain

tarдet determines the difficulty of the attack. If there

is an intersection, then it is assumed that the attacker has some data of Dtr ain
tarдet . Generally,

it is assumed that there is no intersection between D
′

and Dtr ain
tarдet . For the knowledge of

the query data possessed by the attacker, it needs to be analyzed from the perspective of
whether the attacker has used the label of the query data. Normally, we use the unlabeled
data to access the prediction API provided by the machine learning service provider and
obtain the corresponding output results. However, the attacker may also use the data with
label to access the target model just to obtain the member information of the query data.
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Fig. 3. The illustration of adversary knowledge.

(2) Model Knowledge. For attackers, the available model knowledge can also be divided into
two parts: one is the model structure knowledge of the target model, and the other is the
model parameter knowledge of the target model. The structural knowledge of the target
model includes the type of neural network, the number of layers, the type of activation
function, and so on. With this structural knowledge of the target model, attackers can train
a model that achieves similar performance to the target model by leveraging additional data.
Generally, the attacker can only access the target model through the API of the target model,
i.e., the attacker does not know the model parameter of the target model but can deduce the
model parameter knowledge through the model stealing attack. According to whether the
attacker knows the model parameters of the target model, we can divide the attacks into
black box MIAs and white box MIAs. The white box MIA assumes that the attacker knows
the structure and parameters of the target model, which means that the attacker can obtain
the output information of data at any layer of the target model.

(3) Training Knowledge. Training knowledge refers to the knowledge about training algo-
rithm, including the type of optimization algorithm, the number of training steps, the set-
ting of optimization algorithm, and so on. These training knowledges reveal how the target
model is trained. In most MIA settings, attackers can retrain models with same performance
to the target model if they know training knowledge and model structure knowledge.

(4) Output Knowledge. The output knowledge is the result of the attacker accessing the pre-
diction API provided by the machine learning service provider. For attackers, the available
output knowledge can be divided into full output knowledge, partial output knowledge, and
label-only knowledge. The full output knowledge means that the attacker can obtain the
complete confidence value vector corresponding to the access data, while the partial output
knowledge only displays the partial confidence value vector, such as the maximum three
confidence values. Label-only knowledge is an extreme case. The attacker can only know
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the predicted label corresponding to query data, which provides the attacker with the least
output information.
In most MIA works, it is usually assumed that the attacker possesses the distribution knowl-
edge of the target model training dataset, model structure, training knowledge, and output
knowledge of the target model. The difficulty of MIA execution can be divided according to
the amount of knowledge possessed by the attacker. In the next section, we divide and briefly
describe the existing related attack schemes from difficult-to-execute to easy-to-execute.

3 ATTACKS OF MEMBERSHIP INFERENCE

In this section, we classify and describe the MIA works in the field of image classification according
to the output knowledge obtained by the attacker after accessing the API. Then, we introduce
the MIA works in other fields, i.e., text and voice. Finally, we analyze the principles of existing
membership inference attacks.

3.1 Attack Approaches of Membership Inference

Hu et al. [25] described the existing MIA works according to whether the attack model is trained
during the attack process, which can be divided into neural network-based attacks and metric-
based attacks. To better understand the attacker’s capabilities, we classify and describe the MIA
works in the field of image classification according to the output knowledge obtained by the at-
tacker after accessing the API. Table 1 presents the papers analyzed in terms of output knowledge,
attack algorithm, model parameter knowledge, and the knowledge of attacker’s query data.

(1) Attacks with label knowledge in black-box scenarios

Label-based attack means that the attacker only gets the label, ŷ = ftarдet (x ;θ ), after accessing
the API of target model. This is most likely to happen in real-world scenarios, such as when the
model provides a face recognition service that will tell you directly who the person is, and an
attacker can easily access this information to perform MIAs.

The first label-based MIA is proposed by Yeom et al. [95], whose main idea is that if the target
model can correctly predict an input instance (x ,y), then the attacker infers the instance (x ,y) as
a member, otherwise, the attacker infers it as a non-member. The intuition of the attack is that the
target model can correctly predict its training dataset, but the generalization of the target model
may be poor on the test dataset, so it can use this difference to perform MIAs. This attack is gen-
erally regarded as a simple attack, and the subsequent relevant literatures [12, 39, 66] have taken
it as a baseline to compare the performance of their proposed attacks. In addition, referring to the
correctness of the model prediction, Choquette-Choo and Li [12, 41] designed a new measurement
method. For a given instance (x ,y), they tried to measure the distance from the model decision
boundarydistf (θ ) (x ,y), when ŷ � y, and letdistf (θ ) (x ,y) = 0. When ŷ = y, the method of adversar-
ial example generation should be used to find the adversarial example (x ′,y ′) with the smallest Eu-

clidean distance from the instance (x ,y), nowy ′ � y, and letdistf (θ ) (x ,y) =
√

(x − x ′)2 + (y − y ′)2.
When distf (θ ) (x ,y) > τ , we judge (x ,y) to be a member, where τ can be obtained by constructing
a shadow model that simulates the behavior of the target model.

Moreover, Choquette-Choo et al. [12] also designed a label-based MIA using neural network.
They used disturbed version samples (xi ,y) (i = 1, 2, . . . ,n) of instance (x ,y) to extract more sub-
tle member information. During the attack, (xi ,y) is first obtained by means of data augmentation.
Then, xi is input into the target model to obtain its corresponding prediction label ŷi . When its pre-
diction label is equal to its corresponding label (i.e., ŷi = y), the disturbed version data signal bi is
marked as 1 (i.e., bi = 1), otherwise, bi is marked as 0 (i.e., bi = 0) to obtain an n-dimensional
disturbed signal vector (b1,b2, . . . ,bn ). When we train the attack model, n-dimensional
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disturbance signal vector is used as the data feature for the attack model. When the corresponding
data (x ,y) of the disturbed signal vector is training data, the n-dimensional disturbed signal vector
(b1,b2, . . . ,bn ) is marked as 1 (i.e., member). When the corresponding data (x ,y) of the disturbed
signal vector is test data, the n-dimensional disturbed signal vector (b1,b2, . . . ,bn ) marked 0 (i.e.,
non-member). The generation of training data for the attack model still needs the assistance of
the shadow model. The main idea of this label-based MIA using a neural network is to extract
fine-grained information about classifier decision boundaries by combining multiple queries on
disturbed version data. By evaluating the robustness of the target model to disturbing data with
different inputs, the data with high robustness can be inferred as members.

Recently, Zhang et al. [104] pointed out that label-based MIAs rely on the different robustness
of members and non-members in the target model. Its main goal is to find the disturbance that can
distinguish members and non-members, which is independent of the task of finding the minimum
disturbance. If different adversarial disturbance directions are used, then the gap between members
and non-members may be different. Therefore, they proposed a new scheme to adjust the adver-
sarial disturbance direction through label smoothing to enhance the existing label-based MIAs. In
fact, we can see that although label-based MIAs acquire little knowledge after accessing the API
of the target model, they require the attacker to have labeled query data to launch the attack.

(2) Attacks with partial output knowledge in black-box scenarios

MIAs with partial output knowledge in the black-box scenario is the classical MIA proposed by
Shokri et al. [64]. The attacker can access the target model and obtain the first k larger values of
the predicted confidence Px (Top k ) (Px = ftarдet (x ;θ )) of the model output. Here, the attacker
can execute MIAs with partial output knowledge without the label of query data.

In Reference [64], Shokri et al. trained an attack model to distinguish between member and
non-member by using Px (Top 3) as the input of the attack model. To construct the attack model,
multiple shadow models are trained to imitate the behavior of the target model. The main idea is
that the more shadow models, the more training knowledge is provided for the attack model, and
the more accurate the attack model is. What needs to be noted is the dataset (including the training
dataset and the test dataset) of the shadow model and the training dataset of the target model
should be subject to the same distribution without intersection. Dataset between shadow models
can intersect. Subsequently, Salem et al. [59] made improvements on this basis. They relaxed the
requirements on the structure of the shadow model, i.e., the data of the training shadow model
and the number of shadow models. They only need to train one shadow model whose structure is
arbitrary, and the training data of the shadow model does not need to obey the same distribution as
the training data of the target model. Under this assumption, the primary objective of their attack
is to utilize the shadow model for capturing the membership states of the data in the training
dataset, rather than replicating the behavior of the target model.

Meanwhile, Salem et al. [59] also designed a method to determine whether the access data is
a member by using the maximum value of the model output confidence. The experiment shows
that the maximum confidence value can achieve very high attack performance. The main idea is
that if the maximum predicted confidence of instance x is greater than the preset threshold τ , the
attacker deduces instance x as a member; otherwise, the attacker infers that x is a non-member.
The intuition of the attack is that the target model is trained by minimizing the predicted loss
of the training data, which means that the maximum predicted confidence should be close to 1
for the training data. The selection method about threshold τ is to generate a sample of random
points in the feature space of the target data points and input it to the target model to obtain the
corresponding output prediction vector. The random point can be considered as a non-member
point, and the first t bit of the maximum value in the prediction vector can be a good threshold. In
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their work, they chose to use a single threshold for all class labels. Subsequently, Song et al. [66]
refined this attack by setting different thresholds for the different class labels.

In addition, the attack based on prediction differential distance was initially proposed in Refer-
ence [29]. Experiments show that this attack method can achieve better attack performance and
defeat the most advanced defense system. The main idea is to move the instance (x ,y) from the
member dataset to the non-member dataset. If the difference distance calculated after the data in
the two sets are input into the target model becomes smaller, then the instance (x ,y) is presumed
to be a member data, otherwise, the attacker infers it as a non-member data. The intuition of the at-
tack is that for two disjoint sets, moving data from one side to the other affects the spatial distance
between the two sets.

(3) Attacks with full output knowledge in black-box scenarios

Once the attacker obtains the full predicted confidence values Px (Px = ftarдet (x ;θ )), they can
use some statistical information from the target model to execute MIAs, such as the average loss
of model training data, prediction entropy, and prediction difference distance. In this way, MIAs
can be successfully executed without relying on the attack model. At the same time, attackers can
also use unlabeled query data to execute attacks, but Song et al. [66] showed that labeled query
data can achieve stronger attack effects.

Yeom et al. [95] proposed that the attacker could judge whether the query data belonged to a
member by calculating the predicted loss value of the access data and showed that the attack only
needed less computing resources and background knowledge to achieve the same performance as
the neural network-based attack proposed by Shokri et al. [64]. The main idea is that if the pre-
dicted loss of instance (x ,y) is less than the average loss of all training samples, then the attacker
infers that (x ,y) is a member, otherwise, the attacker infers that (x ,y) is a non-member. The in-
tuition of attack is that the target model trains by minimizing the predicted loss of its training
sample, so the predicted loss of the training sample should be smaller than the input loss not used
in the training process.

The difference in prediction entropy distribution between training data and test data was ini-
tially presented in Reference [64] to explain the existence of member privacy risks. The main idea
is that if the predicted entropy of instance (x ,y) is less than the preset threshold, the attacker clas-
sifies (x ,y) as a member, otherwise, the attacker infers it as a non-member. The intuition of this
attack is that the prediction entropy distribution between training data and test data is very differ-
ent, and the prediction entropy of the target model for its test data is usually larger than training
data. Subsequently, literature [59] proved the effectiveness of using prediction entropy to carry out
MIA. On this basis, Song et al. [66] proposed a scheme based on entropy with different thresholds
for different class label. Besides, they also proposed a modified prediction entropy attack. They
believed that prediction entropy does not contain any information about real labels, which may
lead to the misclassification of members and non-members.

In addition, Carlini et al. [4] pointed out that directly setting the threshold based on loss attack
implicitly assumes that the loss of all samples is a priori loss of equal proportions. The inclusion
or exclusion of a sample has a similar effect on the model as any other sample. The only confident
assessment that can be made of this attack is that the sample of high losses is non-members, but
the judgment of members is invalid. Therefore, they proposed to perform membership inference
attack as a likelihood ratio test. By calculating per-example hardness scores and estimating like-
lihood to predict whether a sample is a member of the training set. Subsequently, this work was
improved by Wen et al. [85], who used adversarial tools to directly optimize query samples to
obtain discriminative and diverse queries, which were used to achieve more precise membership
inference than this method. Based on the hypothesis testing framework designed by Ye et al. [94], a
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model of indistinguishability game was proposed, and the interpretation of the attack success rate
of different game is provided. In Reference [45], Liu et al. were the first to exploit the member in-
formation of the target model throughout the training process to improve the attack performance.
They showed that the sample loss evaluated on the target model during different training periods
can be used to distinguish members from non-members, and their attack performance achieves a
high true positive rate at a low false positive rate.

(4) Attacks in the white-box scenarios

In the white-box MIAs, the attacker can obtain all knowledge except the training data of the tar-
get model and can completely contact the target model. In other words, for instance x , the attacker
can not only obtain all the information corresponding to its prediction confidence Px , but also can
see the intermediate calculation process of the input target model. In general, white-box member-
ship inference attacks are stronger than black-box membership inference attacks. Because in the
former context, the attacker knows more information about the target model. However, Sablay-
rolles et al. [58] showed that the white-box inference attack can not provide more information
than the black-box setting. By assuming the distribution of parameters, the author deduced the
optimal strategy of membership inference. It is proved that the best attack only depends on the
loss function, so the black-box attack is as good as the white-box attack.

In Reference [51], Nasr et al. implemented a white-box MIA, which uses the gradient calculated
by the middle layer of the model, the output of the middle layer, the confidence of the model output,
and the label of its corresponding output to distinguish training samples from non-training sam-
ples. This work showed that the inference scheme obtains higher attack accuracy than black-box
MIA. However, in this scheme, it is assumed that the attacker knows part of the data of the training
dataset, which is different from the general assumption of MIAs. Leino et al. [39] considered
relaxing this assumption to achieve an effective white-box attack without accessing the training
data of the target model. Recently, on the basis of label-based MIAs, Grosso et al. [17] performed
white-box access to the target model and judged the member attributes by calculating the amount
of perturbation required to change the predicted results of the access data. In addition, Cohen et al.
[14] introduced a new white-box MIA, which can be applied to any ML model. The core idea is
that training samples have a direct impact on the loss of test samples. To quantify this effect, they
used influence function to determine how the data points in the training set affect the prediction
of the target model for a given test sample. This measure quantifies the impact of the small weight
rise of a specific training point on the loss of a test point in the empirical error of the target model.
Given a sample point, they can infer whether the sample belongs to the training set by calculating
its self-influence function score and querying the prediction label output from the target model.

3.2 Membership Inference Attacks on Different Domains

Artificial intelligence is a branch of computer science. It attempts to understand the essence of
intelligence and produce a new intelligent machine that can respond in a similar way to human
intelligence. Since the birth of artificial intelligence, its theory and technology have become more
and more mature, and its application fields have also expanded. However, the privacy security of
artificial intelligence has also been put forward in various fields, such as membership inference
attacks. Starting from the initial visual image classification task, a growing number of works have
studied membership inference attacks in other application fields. Recently, Hu et al. [25] classified
the work of MIAs in various fields, such as vision, natural language processing, audio, graph, and
recommendation systems. This article mainly analyzes the defense works of membership inference.
Therefore, we only give a brief overview of the attack works in other fields.

In the field of computer vision, at present, many MIAs focus on image classification models.
Relevant works also analyze the membership inference risk of Pruning Neural Networks, Model
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Table 1. Summary of Papers on MIA in the Field of Image Classification, Including Information of

their Assumptions about Output Knowledge (with Label Knowledge/with Partial Output

Knowledge/with Full Output Knowledge), Attack Algorithm (Neural Network based/Metric based),

Model Parameter Knowledge (Black-box/White-box) and Whether Query Data has Labels
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[64] 2017 • • • • • • •
[95] 2018 • • • • •
[59] 2018 • • • • •
[51] 2019 • • • •
[58] 2019 • • • •
[39] 2020 • • •
[41] 2020 • • • •
[12] 2021 • • • • •
[29] 2021 • • • •
[66] 2021 • • • •
[4] 2021 • • • •
[94] 2021 • • • •
[104] 2022 • • • •
[17] 2022 • • • •
[14] 2022 • • • •
[45] 2022 • • • •
[85] 2022 • • • •

Including Information of their Assumptions about Output Knowledge (with Label Knowledge/with Partial

Output Knowledge/with Full Output Knowledge), Attack Algorithm (Neural Network based/Metric based),

Model Parameter Knowledge (Black-box/White-box) and Whether Query Data has Labels

Explanations, Algorithmic Fairness, Adversarial Examples, Deep Transfer Learning, Causal Learn-
ing, and other models. In addition, according to different scenarios, attacks against federated learn-
ing scenarios have emerged one after another. With the attack on the classification model, the sub-
sequent related works also gradually attack the generation model and image segmentation model.

With the gradual development of MIA in the field of computer vision, relevant works have also
carried out MIA risk analysis for natural language processing domain, graph domain, audio do-
main, and recommender system domain. The MIA work of natural language processing domain
mainly focuses on the tasks of text classification, text generation, word embedding, and masked
language. It can be seen that as long as the model has access and output, there may be MIA pri-
vacy risk. With the hot development of graph neural network, relevant researches are prompted to
the exploration of its privacy and security issues. In graph domain, the researches on MIA mainly
focus on knowledge graphs, node classification, and graph classification tasks. In graph domain,
the researches on MIA mainly focus on the speech recognition task. In recent years, recommender
systems have achieved good performance and become one of the most widely used web applica-
tions. However, recommender systems are often trained on highly sensitive user data, so potential
data leakage of recommender systems may lead to serious privacy concerns. Zhang et al. [100]
quantified the privacy disclosure of recommendation systems from the perspective of MIAs.
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With the rapid development of artificial intelligence in various fields, when it comes to the model
of privacy data training, there are naturally privacy and security issues. Research on members’
privacy risks has also appeared in various fields. Since the attack works have appeared one after
another, the defense works against the attacks are inevitable. We will describe the defense works
in various fields in detail in Section 4 and Section 5.

3.3 Mechanisms of Successful Execution of MIAs

Why deep learning models are susceptible to MIAs is the basis for implementing MIAs and defend-
ing against MIAs. We can summarize the reasons for the successful of MIAs as follows: overfit-
ting of the target model, the unique impact of the training set, and other properties of the target
model.

(1) Overfitting of the target model. At present, most works on MIA are based on target model
overfitting. When the target model is in the overfitting state, its performance in the train-
ing set and test set is different. By means of this difference, the attacker accesses the target
model and determines whether the query data is a member. Yeom et al. [95] theoretically
analyzed the connection between overfitting and MIAs. The experiment shows that overfit-
ting is a sufficient but unnecessary condition for the successful of MIAs. In a nutshell, there
are other reasons besides overfitting causes that make the target model vulnerable to MIAs.
Experiments in Reference [64] show that overfitting models have significant differences in
the probability distribution of the output of member data and non-member data. Further-
more, Different types of machine learning models and different datasets also show different
vulnerabilities to MIAs. Leino et al. [39] showed a new view on how overfitting leads to
information leakage of membership. They believe that the training data memorized by the
overfitting classification model is not only reflected in the output behavior of the model, but
also in the inner layer of the model.

(2) The unique impact of the training set. In Reference [46], Long et al. showed that the
non-overfitting model is also vulnerable to MIAs. In the generalized model, the information
leakage from member is caused by the unique impact of specific instances in the training
set on the learning model. This unique impact affects the output of the model about single
or multiple inputs, provides useful information for predicting models from other instances,
and brings noise with unique features. The model regularization method that restrains over-
fitting can reduce the noise introduced by training examples, but their unique impact cannot
be completely eliminated, especially those essential for the prediction power of the model.
Noise addition techniques based on the concept of differential privacy can reduce the impact
of each training instance, but at the same time it will reduce the prediction accuracy of the
model. When the training set is not representative, that is, the distribution of the training set
is different from the test set, the model developed by the training set cannot fit the dataset
well for prediction, so the training set of the model can be easily distinguished from the test
set and the MIA can be successful.

(3) Other properties of the target model. Tan et al. [68] showed that the generalization per-
formance of the model can be improved by increasing the trained model parameters or the
number of epochs trained. However, it is at the cost of reducing privacy, which means that
the success of MIAs is not only caused by the overfitting of the model, but also related to
other attributes of the model. In addition, some literatures [16, 76] explored the robustness
of different types of classical ML models with respect to MIAs and the impact of hyperpa-
rameters on attack effectiveness. The experiment shows that most classical machine learning
models are not vulnerable to MIAs, but tree-based models are vulnerable to MIAs. Therefore,
it is necessary to consider the difference of MIA privacy risk in different models. And some
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literatures [72, 107] explored the impact of model fairness on MIA privacy risk and showed
that the privacy risk from MIA is different under different fairness.

4 DEFENSE TECHNOLOGIES OF MEMBERSHIP INFERENCE

To better understand membership inference defense works, before sorting out the existing defense
works, we first describe the relevant defense technologies. The existing defense technologies can
be summarized into the following categories: Regularization, Transfer Learning, Information Per-
turbation, and Generative Models-based.

4.1 Regularization

Regularization technology is the general term for a series of technologies to improve the model
performance, which reduces the degree of overfitting to improve the generalization ability of the
model. Many papers [39, 59, 64, 95] pointed out that overfitting of the target ML model is a ma-
jor factor in the success of MIAs, hence regularization technology can certainly defend against
MIAs [37, 50, 59, 82].

There are many regularization techniques, which can be divided into two categories: one is in
the process of training, such as L2-norm regularization, early-stopping, dropout, and adversarial
training, and the other is in the process of data processing, such as data augmentation, model
stacking, label smoothing, and so on. However, regularization technologies are often difficult to
achieve. The regularization method changes the internal parameters of the target model, which
also affects the output distribution of the target model. To not damage the usability of the model,
a reasonable regularization setting is required. Note that data augmentation usually refers to the
random generation of new training features, such as rotation, clipping, deformation, color trans-
formation, mix-up, and so on. However, data augmentation can also be achieved by adding noise.
In this article, we classify this method into noise perturbation method.

4.2 Transfer Learning

Transfer learning [84] is a learning process that uses the similarities between different fields, tasks,
or distributions to apply the knowledge learned in the old field to the new field. It can alleviate
the problem that there are few or no labels for tasks in new fields. In this process, the old field
and the new field are not required to be subject to independent and identically distributed

(i.i.d.). To protect data privacy, relevant works [20, 53, 80, 98] combined knowledge transfer and
differential privacy. For membership inference attacks, knowledge transfer can be used to protect
member privacy of target data.

Recent studies [13, 27, 28, 32, 62, 69, 106] showed that knowledge transfer can be used to train
the model with member privacy. By reducing the access to the target data and replacing the target
data with similar but different data, it prevents attackers from inferring the privacy of target data
members and provides a better tradeoff between members’ privacy and classification accuracy.
According to the types of transfer learning, we introduce the existing transfer learning defense
schemes from the perspectives of model transfer and feature transfer.

Knowledge Distillation. Knowledge distillation (KD) [22] uses the output of large teacher
model to train smaller student model. It allows smaller student model to have similar accuracy to
their teacher model [15]. With the idea of knowledge distillation, some papers [13, 32, 62, 69, 106]
proposed different defense schemes, and experiments show that the idea of knowledge distillation
can achieve a better tradeoff between model privacy and utility.

Domain Adaptation. Domain adaptation (DA) [84] is a representative approach in transfer
learning. This method can transfer knowledge from the source domain to different but related
target domains and promote the implementation of tasks in the target domain by extracting the
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shared representation of the source domain dataset and the target domain dataset. The shared
representation has the basic common features of the two datasets. For example, the knowledge
extracted from the cat and dog image dataset (source domain) collected on Instagram is used to
improve the classification task of cat and dog images (target domain) intercepted in animated
movies. On the basis of domain adaptation, Huang et al. [27, 28] proposed related defense methods
and effectively reduced the privacy risk of MIAs.

4.3 Information Perturbation

Information perturbation is prevalently leveraged to resist membership inference attacks, which
protects sensitive information by adding customized noise. Existing works based on information
perturbation are broadly categorized into three classes: differential privacy, output perturbation,
and data perturbation.

Differential Privacy. Differential privacy [18] (DP) expresses the deterministic output as a
probability by adding noise perturbations to the real data, and such randomization perturbations
process does not cause serious damage to model utility. Specifically, given two adjacent datasets
D and D ′ that differ by only one piece of data, the results of a mechanism with differential privacy
for D and D ′ should ideally be indistinguishable and the utility of the randomization mechanism
should not be severely compromised. Differential privacy is defined as follows:

Definition 1 (Differential Privacy). A random mechanism M preserves (ϵ , δ ) differential privacy
with domain D and range R. For any two neighboring datasets d,d ′ ∈ D and any output S ⊆ R, we
have:

Pr[M (d ) ∈ S] ≤ eϵ Pr
[M (d ′) ∈ S] + δ , (2)

whereM (d ) andM (d ′) represent the output of algorithmM on datasets d,d ′, respectively. Pr[·]
is the output probability of the algorithmM. ϵ is the privacy budget, which is used to control the
level of privacy protection. The smaller the ϵ is, the stronger the privacy protection capability is.
δ is another privacy budget, as introduced by Dwork et al. [19], representing the probability that
the tolerable privacy budget exceeds ϵ . If δ equals 0, then we callM satisfies ϵ-differential privacy.

Many papers [9, 10, 12, 29, 30, 33, 39, 49, 50, 52, 56, 73–75, 88, 103, 105] analyzed the defense
capability of differential privacy against MIAs. Differential privacy provides theoretical guaran-
tees for protecting member privacy for individual samples. It can be used as a defense mechanism
against MIAs on different task models, regardless of whether the adversary is in a black-box or
white-box setting. Although the privacy protection capability of differential privacy has wide ap-
plicability and effectiveness, its drawback is that it is difficult to achieve the tradeoff between the
model utility and privacy. This problem has been mentioned in many papers [33, 39, 56].

Output Perturbation. A membership inference attack is one that can be successfully imple-
mented using only the model’s output. It is common to believe that the attack can be successfully
defended by directly influencing the model output. Randomly altering the model output could,
however, inevitably reduce the model’s usefulness. Therefore, it is necessary to reasonably per-
turb the model output to protect the privacy of members as much as possible without affecting
the utility of the model. In [34, 90], the authors successfully weakened the performance of MIAs
by perturbing the confidence scores. This method is simple to implement and does not require
retraining the target model. However, to not affect the utility of the target model, we need to use
a suitable method to find the appropriate noise, and this method is invalid for attackers who only
access the output label.

Data Perturbation. In the work of defending against membership inference, its purpose is to
protect the member information of target model training data. The more direct way is to hide
the member information of the training data by adding perturbations to the data. Unfortunately,
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the flaw of this method is that it has an uncontrollable impact on the utility of data. To reduce
the loss of model utility as much as possible, it is necessary to set the noise function carefully. In
addition, we can make specific modifications to the training data for key features of the target
model, making it difficult for an attacker to distinguish the distribution of prediction vectors for
member and non-member data.

4.4 Generative Models-based

The goal of the generative model is to generate a batch of data. Assuming that the true distri-
bution of these data is pdata (x ), the generative model wants to learn a distribution pmodel (x ) to
estimate pdata (x ). From this model, we can sample or generate new data identical to the distribu-
tion pdata (x ). The existing generation models can be divided into the following three types: vari-

ational autoencoder (VAE) based on the idea of variation, generative adversarial network

(GAN) based on the perspective of the adversarial game, and energy-based model (EBM).
With the rapid development of generative models, the samples generated by these models basi-

cally follow the same distribution as the original training data and achieve good diversity. In view
of the development advantages of the generation model, relevant works [7, 10, 26, 54, 73] gener-
ated replaceable data for the training data of the target model with the generation ability of the
generation model to reduce the leakage of member information of the training data of the target
model. Extensive experimental results show that an alternative dataset can help decouple the di-
rect relationship between the original training data and the output of the target model. Meanwhile,
the overall characteristics can still be retained to train the effective model.

5 DEFENSES OF MEMBERSHIP INFERENCE AT DIFFERENT PHASE

To better understand the root causes of the effectiveness of various defense schemes in the field of
image classification, we decided to break down each phase of the target model to further analyze
the critical role of existing defense works. Note that all defense works also correspond to the
defense technologies classified in Section 4. In this section, we analyze defense works from three
stages: the pre-training phase of the target model, the training phase of the target model, and the
inference phase of the target model. Moreover, we combine defense technology and phase analysis
of defense works to better understand the principles of MID works.

5.1 Defenses at Pre-training Phase of Target Model

The defense works at the pre-training phase is to process the training data feature and label, i.e.,
(x ,y), to defend against MIA. We describe the defense works carried out in this stage from three as-
pects: preprocessing feature, preprocessing label, and preprocessing feature and label. More details
of the summary are listed in Table 2.

5.1.1 Preprocessing Feature. The defense work on preprocessing feature mainly realizes the
protection of member information by perturbing or replacing data features. It is worth noting that
after processing feature, the coupled label does not change. Existing related works can be divided
into four categories according to the technologies used: (1) data deformation with regularization
technology; (2) to perturb the characteristics of feature with the help of transfer learning technol-
ogy; (3) to add noise to the data; (4) or use the generative ability of GAN to generate a surrogate
dataset for the training set of the target model.

(1) With the help of Regularization

To obtain a distribution that is indistinguishable from the test data, Yin et al. [96] combined data
of a certain class with data of other classes in proportion and maintained the label of this class to
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Table 2. Summary of Papers on MID during the Pre-training Phase of Target Model

Phase Optimization Object Defense Technology Defense Method Year Ref.

Pre-training

Preprocessing feature

Regularization Data Augmentation
2020 [37]

2021 [36, 96]

Transfer Learning Domain Adaptation 2021 [27, 28]

Information Perturbation Data Perturbation 2018 [101]

Generative

Models-based

GAN

2018 [73]

2021 [54]

2022 [26]

EBM 2021 [7]

AE/VAE+DP 2018 [10]

Preprocessing label

Regularization
Label Smoothing

2020 [37]

2021 [36]

Model Stacking 2018 [59]

Transfer Learning Knowledge Distillation
2021 [13, 69, 106]

2022 [32]

Preprocessing feature and label

Regularization
Data Augmentation

- Mix-up

2020 [40]

2021 [11]

Transfer Learning Knowledge Distillation
2019 [62]

2022 [47]

Information Perturbation Data Perturbation 2019 [79]

Generative

Models-based

GAN 2021 [83]

VAE+DP 2022 [91]

form a new dataset. In this way, the feature of target data can be perturbed, and then the defense
against MIAs can be achieved. In addition, in References [36, 37], Kaya et al. analyzed a variety of
data augmentation methods and showed that the appropriate use of data augmentation methods
that randomly generate new training features can increase the accuracy of the model and reduce
the privacy risk of members.

(2) With the help of Transfer Learning

One of the cores of using transfer learning to defend against MIAs is domain adaptation. On
the basis of domain adaptation, Huang et al. [28] proposed DAMIA, leveraging domain adaptation
as a defense to counter MIAs. There are two optimization objectives in the domain adaptive train-
ing process. One is to minimize the classification loss of the target domain. The classification loss
ensures fine classification performance by updating the weights of the feature extractor and classi-
fier. The other is to ensure that the characteristics of the source domain and the target domain are
similar. Three-domain adaptation approaches can be used, namely, Discrepancy-based approach,
Adversarial-based approach, and Retractive-based approach. With Discrepancy-based approach,
DAMIA’s optimization formula is as follows:

Loss = LossC (XL,y) + λD2
MMD (XS ,XT ) , (3)

where LossC (XL,y) denotes classification loss on the available labeled data, XL , and the ground
truth labels, y, and D2

MMD (XS ,XT ) denotes the distance between the source data, XS , and the
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target data, XT . The hyperparameter λ determines how strongly we would like to confuse the
domains. Domain adaptation requires a dataset of the source domain and a dataset of the target
domain. To protect the privacy of the target domain, we need to find a source domain dataset that
is different from but related to the target domain. Note that, before training, the label of the target
domain data needs to be removed to synchronize with the training process of domain adaptation.
Therefore, shared representations do not cause privacy leakage of images collected from animated
movies.

Considering the difficulty of source domain data collection, Huang et al. [27] subsequently pro-
posed NoiseDA, which uses the noise-adding mechanism to construct a feature based on the target
domain feature to replace the source domain feature. This carefully crafted feature is different from
the target feature, so NoiseDA can be effectively applied to defend against MIAs. The intuition of
the domain-based adaptation defense scheme is that the two datasets involved are mixed and con-
founded. In this way, MIAs can be successfully resisted, and the generated shared representation
can also well solve the task corresponding to the sensitive dataset, since the shared representation
contains features from the sensitive dataset. Moreover, this defense overhead is trivial, because no
additional phases/algorithms are involved once the model is released.

(3) With the help of Information Perturbation

Perturbing data features is a more direct defense method, but the performance loss caused by
perturbation needs to be strictly controlled. To protect the member information of the target model
training data, a fuzzy function was introduced in Reference [101] and applied to the training data.
The fuzzy function adds random noise to the training data and enhances the dataset with updated
samples. This results in sensitive information about the attributes of a single sample or the statis-
tical attributes of a group of samples being hidden. Meanwhile, by designing a fuzzy function, the
training model of a fuzzy dataset can still achieve high accuracy.

(4) With the help of Generative Models-based

The core of generative model-based technology is to use the synthetic data of generative model
as the training dataset of target model. Similar to other defense techniques, this approach aims
to safeguard privacy without compromising utility. In terms of privacy assurance, the original
training data is replaced by the generated data of generative model, which avoids the attacker’s
contact with the original data from the data source. In terms of utility assurance, the existing
generative model is used to generate high-quality synthetic data, that is, to ensure diversity and
fidelity of the synthetic data.

In Reference [26], Hu et al. proposed a defense scheme DMIG from the source of privacy leak-
age. This scheme first uses the data generated by a GAN to replace the training data of the target
model and then utilizes the synthetic data to train a surrogate model that can substitute for the
target model. The surrogate model can protect the target model training data from membership
inference attacks. To ensure the utility of the data generated by GAN trained with a small dataset,
this article adopts different GAN models and special training techniques for different types of
data. By evaluating the defense performance of the existing attack schemes on different datasets
and comparing with other MID works, it shows that DMIG provides a significantly better trade-
off between member privacy and classification accuracy. In addition, Paul et al. [54] generated a
substitute dataset with the help of GAN, which allows medical data sources (such as hospitals)
to provide a replacement dataset, i.e., synthesized from original images to external agents (mod-
elers). It obtains better defense performance combined with other defense methods. Furthermore,
the authors also proposed a new metric, the P1 score, to measure the tradeoff between utility
and privacy. Aiming at the security of complex real-world data, Triastcyn et al. [73] used GAN to
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generate privacy-protected artificial data samples and introduced a new framework for statistically
estimating the potential privacy loss of published data. Experiments show that this method can
generate high-quality label data and can be used to successfully train and verify the supervision
model. Finally, it is proved that this method significantly reduces the vulnerability of such models
to model inversion attacks.

With the generating power of EBM, Chen et al. [7] proposed a joint energy-based model

(JEM). It uses the implicit generation ability of the model to sample the data that are independent
and identically distributed with the training data. This scheme uses newly generated data and re-
training or fine-tuning skills to obtain updated models that can suppress the attacker’s membership
advantage to a negligible level and maintain acceptable accuracy of the classifier. To improve learn-
ing efficiency and generate data with a privacy guarantee and high practicability, Chen et al. [10]
proposed a differentially private autoencoder-based generative model (DP-AuGM) and a
differentially private variational autoencoder-based generative model (DP-VaeGM). Ex-
periments show that DP-AuGM can effectively defend against model inversion, membership infer-
ence, and GAN-based attacks, and DP-VaeGM is also robust to membership inference attacks. The
above works are to defend against MIAs by generating data with no additional processing of its
coupled label. It can be seen that defense based on this method needs to carefully adjust the details
in the training process to ensure the utility.

5.1.2 Preprocessing Label. The work of preprocessing labels mainly realizes the protection of
member information by perturbing and replacing the label vector. It is worth noting that after
processing the label, the coupled data feature is unchanged. Existing related works can be divided
into two categories: (1) to soften the label vector of data with the help of regularization technology;
(2) to extract data features onto soft labels with the help of transfer learning technology.

(1) With the help of Regularization

Label smoothing [67] is another regularization method that flattens one-hot labels. During deep
neural network training, we usually use one-hot labels to calculate the cross-entropy loss. However,
this way has the problem of prompting the model optimization process to only consider the loss of
correct label positions of training samples, while ignoring the loss of incorrect label positions. This
training approach leads to a model that performs very well on the training set but poorly on the test
set. Label smoothing adds noise to the one-hot label, as depicted in Equation (4), thereby providing
a degree of error tolerance ε to label y to mitigate the extremeness of the training optimization
objective. Kaya et al. [37] applied this technology to defend membership inference attacks, and the
experimental results show that label smoothing has a certain defense effect.

Pi =

⎧⎪⎪⎨
⎪⎪
⎩

1, if (i = y)

0, if (i � y)
⇒ Pi =

⎧⎪⎪⎨
⎪⎪
⎩

(1 − ε ), if (i = y)

ε
K−1 , if (i � y)

. (4)

From another perspective, model stacking is an ensemble learning framework that organizes
multiple weak classifiers in a hierarchical structure. Specifically, the first layer is generally com-
posed of multiple base classifiers, whose input is the original dataset, and then the output of the
first layer classifier is used as the input of the second layer classifier. Note that the output of the
classifier in the last layer is taken as the output of the final model. For the basic model of the first
layer, it is better to use a strong model. The number of models should not be too small to ensure
that the model has higher performance. In contrast, the base model of the last layer can use a
simple classifier, which prevents the model from overfitting. In Reference [59], Salem et al. used
a two-layer model stacking architecture to protect the member privacy of the target model and
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showed through experiments that model stacking can effectively defend against MIAs. However,
this method is time-consuming, because multiple base models need to be trained to obtain the
final target model. The main idea of this defense method is to train multiple base models with
disjoint original data so the final target model integrates the advantages of multiple base models.
It is equivalent to training different parts of the target model, which help to reduce the overfitting
of the target model.

(2) With the help of Transfer Learning

Knowledge distillation, another special case of transfer learning, is used as the technical support
for preprocessing label. Zheng et al. [106] proposed two algorithms, namely, complementary

knowledge distillation (CKD) and pseudo complementary knowledge distillation (PCKD).
In CKD, the reference data for knowledge distillation are all from private training data, but their
soft labels are generated by different teacher model. Note that the reference data at this time must
be non-training data of the teacher model. However, it is time-consuming and expensive for CKD
to train a set of teacher models. If the time cost is reduced by selecting a small k , then it leads to the
loss of the utility of the teacher model. To alleviate this issue, Zheng et al. [106] further proposed
PCKD. PCKD reduces the amount of training data of each teacher model and uses the average
value of model output as the soft label of reference data. Although PCKD and CKD have different
ways of generating soft labels for reference data, the soft target knowledge of transmitted data
comes from their complementary sets. In order to avoid that each teacher model cannot obtain
good utility due to too small training set, PCKD also adopts pre-training technique. Therefore,
PCKD relaxes the limitation of complementary sets and can train models with better usability.

Subsequently, Tang et al. [69] put forward a framework similar to CDK, SELENA. SELENA has
two main components. The first component is called Split-AI. Split-AI first divides the training
data into random subsets, and the union of each subset is the entire dataset. Then, Split-AI trains
a model on each subset. In the prediction phase, Split-AI always selects a model that the query
data is its non-member data to predict. The authors demonstrate that the Split-AI architecture can
defend against a large number of member inference attacks, but is difficult to defend against label-
only attacks. Therefore, the author designed the second component Self-Distillation in SELENA
to prevent stronger label-only attacks. First, the Self-Distillation component queries Split-AI with
training samples to obtain the coupled prediction vector. Then, these prediction vectors are used
as the soft label of the training set to train a protected model. In the inference stage, the protected
model only needs to perform a calculation on the sample of each query, so its overhead is much
lower than the Split-AI component. In addition, the protected model can not only protect the
classical single query MIAs, but also prevent the adaptive MIAs.

At the same time, Jarin et al. [32] proposed a new MIA defense, MIAShield. The key point of the
working principle of MIAShield is to weaken the strong member signal from the target sample by
excluding the target sample in advance during prediction without affecting the utility of the model.
For this purpose, the authors used the oracle model based on the confidence of the members and
the learning of the members to evaluate and exclude a set of members first. In practical application,
MIAShield divides training data into disjoint subsets and trains a model set using each subset. The
discontinuity of subsets ensures that a target sample belongs to only one subset, isolating the
samples and facilitating the realization of preemptive exclusion targets. Experiments show that
MIAShield effectively alleviates MIAs (close to random guess). Compared with the state-of-the-art
defense, it achieves a better tradeoff between privacy and utility and maintains the flexibility to
adaptive opponents.

5.1.3 Preprocessing Feature and Label. In the work of feature and label preprocessing, it is nec-
essary to adjust the label vector corresponding to the data feature after processing to achieve the

ACM Computing Surveys, Vol. 56, No. 4, Article 92. Publication date: November 2023.



Defenses to Membership Inference Attacks: A Survey 92:19

performance of defending against MIAs. The existing related work can be divided into four cat-
egories: (1) to update the label vector according to the processed data after processing the data
features, i.e., it depends on regularization technology; (2) to use an auxiliary dataset combined
with transfer learning technology to extract the knowledge learned by the model into soft labels;
(3) to perturb important features of training data and update coupled labels, it relies on perturba-
tion technology; (4) to generate surrogate data by using GAN, and to update the labels of surrogate
data according to its peculiarities.

(1) With the help of Regularization

In Reference [40], Li et al. first showed the simple numerical relationship between the gener-
alization gap (the difference between training accuracy and test accuracy) and the vulnerability
of the classifier to MIAs and suggested that the defense against MIAs can be realized by deliber-
ately reducing the training accuracy to match the accuracy of the test. The author achieves this by
regularizing the training loss function and introducing a new regularizer. The new regularization
function is a permutation invariant function (set function) that will force the classifier to train to
match the output experience distribution corresponding to the training data and the validation
data. To measure the difference between the two empirical distributions, the authors used max-

imum mean difference (MMD). However, using MMD alone tends to reduce the accuracy of
training and testing. To solve this problem, the author combined MMD with mix-up technology.
Experiments show that the proposed method can not only achieve the effect of resisting MIAs,
but also ensure that the test accuracy is not affected. Moreover, it can be trained on large neural
networks, and there is no extra calculation cost in inference stage.

Then, Chen et al. [11] proposed Enhanced Mixup Training (EMT), an improved defense
scheme. Because mix-up technology retains the linear relationship of samples, it is still susceptible
to the influence of MIAs. Therefore, the author improved it by recursively mixing the training data
in the training process. Specifically, the EMT benefits from recursive hybrid training, which uses
the designed enhanced hybrid items to mix training data in the training process. Compared with
the existing defense, EMT fundamentally improves the accuracy and generalization of the target
model, thus effectively reducing the risk of MIAs. In theory, EMT corresponds to a specific type of
data-adaptive regularization, which leads to better generalization.

(2) With the help of Transfer Learning

In Reference [62], Shejwalkar and Houmansadr proposed a defense technology, called Distilla-

tion for Membership Privacy (DMP). DMP requires a private training dataset and an unlabeled
reference dataset. DMP first trains an unprotected teacher model f (θup) and uses it to label data
instances in the unlabeled reference dataset. Then, DMP selects data instances with low prediction
entropy in the labeled reference dataset to train the protected model f (θp) that is used to provide
the service, and its optimization objective is as follows:

θp = argmin
θp

1

|Xref |
∑

(x, ŷ)∈(Xref,f (Xref,θup ))

LKL (x, ŷ), (5)

LK L (x, ŷ) =
c−1∑
i=0

ŷi log

(
ŷi

f (xi ;θp)

)
. (6)

The intuition in choosing the protected model training dataset is that the samples are easily
classified and not significantly influenced by the members of the private training dataset. DMP
avoids direct access to private training datasets with the help of protected models, thus signifi-
cantly reducing the leakage of member information. Experimental results show that DMP achieves
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a state-of-the-art balance between member privacy and classification model accuracy. In addition,
Mazzone et al. [47] showed that not all knowledge distillation algorithms can effectively defend
against MIA. In the knowledge distillation algorithm without adjusting temperature parameters
and Kullback-Leibler optimization, the author combined confidence score masking to achieve the
tradeoff between privacy and utility flexibly in various datasets for both black-box and white-box
MIAs. However, Jagielski et al. [31] showed that the membership of the training data of the unpro-
tected model could still be inferred through the access to the protected model, so it can be seen
that the defense performance of DMP may still need to be improved.

(3) With the help of Information Perturbation

To resist MIAs against MLaaS, Wang et al. [79] proposed a framework, MIASec, that can ensure
the indistinguishability of training data. The core idea of MIASec is to reduce the dynamic range
of important features in training data. Specifically, MIASec reduces the difference between the
model results of the training data and the test data by modifying the important eigenvalues in the
training data, thus effectively protecting the training data while maintaining the stability of the
model accuracy. A large number of experiments using real data on the machine learning model
trained by offline neural networks and online MLaaS show that MIASec can effectively defend
against membership inference attacks.

(4) With the help of Generative Models-based

In Reference [91], Yang et al. designed a Privacy-Preserving Generative Framework (PPGF)

against MIAs, which generates synthetic data through VAE to meet differential privacy require-
ments. Note that they are working directly with the raw data rather than adding noise to the
model output or tampering with the training process of the target model. Specifically, first, the
source data is mapped to the latent space through the VAE model to obtain the latent code. Then
the latent code is processed with noise to meet the measurement of privacy. Finally, the synthetic
data is reconstructed by VAE’s decoder. Moreover, during training, they used latent codes and a
couple of labels to train a classification model to label synthetic data. Experimental results show
that the machine learning model trained with the newly generated synthetic data can effectively
resist MIAs and maintain high utility. In addition, Webster et al. [83] used GANs to generate the
surrogate data of target model training data and used the target model for annotation to construct
a new dataset to train the surrogate model.

5.2 Defenses at Training Phase of Target Model

During the training process of the target model, the loss function or model parameters can be ad-
justed to defend against MIAs. In general, regularization techniques can be applied to improve the
generalization ability of the target model. In addition, differential privacy (DP) technique can
also be used to perturb member signals by adding noise to the gradient during training. Accord-
ing to the optimization objective and the defense technology employed, this article categorizes
and describes the defense works performed during the model training phase. More details of the
summary are listed in Table 3.

5.2.1 Adjust the Loss Function of the Model. In the defense work of adjusting the model loss
function, regularization can be implemented by introducing the idea of adversarial training, adding
a common regularization term, or the optimization objective can be redesigned according to the
defense goals. Among them, L2-norm is one of the most commonly used regularization methods.
Some papers [12, 64, 97] used L2-norm standard regularization to penalize large model parameters,
adding λ

∑
j ω

2
j to the loss function of the model, where ωj is the parameter of the model. The
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Table 3. Summary of Papers on MID during the Training Phase of Target Model

Phase Optimization Object Defense Technology Defense Method Year Ref.

Training

Loss Function Regularization

Adversarial Training
2018 [50]

2021 [24]

L2-Regularization

2017 [64]

2020 [37, 97]

2021 [12]

Optimization Training
2021 [6]

2022 [89]

Model Parameter Regularization
Dropout 2020 [37]

Pruning 2021 [82]

Gradient of the

Loss Function
Information Perturbation

DPSD

2016 [1]

2018 [10, 56, 88]

2019 [33, 75]

2020 [30, 99]

2021 [55]

SGLD 2020 [86]

regularization effect can be adjusted by changing the value of λ. The larger λ is, the more obvious
the regularization effect during training.

In Reference [50], Nasr et al. studied the min-max privacy game between optimization of target
model and MIAs, namely, adversarial regularization (AR), which is equivalent to adding a new
regularization term to the training process. Specifically, while training the target model, they also
optimize the attack model. When updating the target model, we aim to minimize the prediction
loss and MIA performance of the model. When updating the attack model of MIA, the goal is to
maximize the attack performance of MIA, which is formalized as follows:

min
f

(LD ( f ) + λ max
h

Gf ,D,D′ (h)︸�������������︷︷�������������︸
optimal inference

)

︸������������������������������������︷︷������������������������������������︸
optimal privacy-preserving classification

, (7)

where L is the loss function of target model f on dataset D, andG is the gain function. The internal
maximization is to find the strongest attack model h for given target model f on member dataset
D and non-member dataset D ′. The external minimization is to find the strongest defensive target
model f for given h, hoping to find the balance point of min-max game. The parameter λ con-
trols the importance of optimizing classification accuracy and membership privacy. Experimental
results show that AR can make the target model effectively defend against MIAs with negligible
damage in classification performance. Since the mechanism can effectively prevent the model from
overfitting, the prediction distribution of the model can not be distinguished between the training
data and the non-training data to effectively defend against MIAs.

In addition, Hu et al. [24] pointed out that AR is an adversarial training algorithm, which is
essentially the same as training the generator of GAN. Many variants of GAN can generate higher-
quality samples and provide more stable training than GAN. However, it has not been investigated
whether the ideas of these variants of GAN can improve the effectiveness of AR. To this end,
an enhanced adversarial regularization (EAR) based on Least Square GANs (LSGANs) is
proposed. The experimental results show that EAR is superior to AR, which provides stronger
defense capability while maintaining the same prediction accuracy as the classifier to be protected.

Recently, Chen et al. [6] proposed a defense scheme called RelaxLoss, which has an easier-to-
learn objective based on a training framework. In RelaxLoss, a repeated training strategy is run
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to balance privacy and utility. It consists of two steps: (1) If the model is poorly trained, i.e., the
current loss is greater than the target average α , then we run a normal gradient descent step; (2)
Otherwise, gradient ascent or posterior planarization step is used. In this process, instead of pur-
suing to minimize the training loss of the target model to zero, the authors relax the average loss
of the target to a threshold no lower than α . As long as the average loss of the current batch is
less than α , the gradient rising step is adopted. However, when the target loss is relaxed, it may
lead to incorrect prediction. To solve this problem, the author encouraged a large gap between the
prediction scores of the ground truth class and other classes by flattening the target post score of
the non-ground truth class. From another perspective, Xu et al. [89] developed a lightweight and
fine-grained neuron-level regularization that simultaneously guided and coordinated final output
neurons and hidden neurons (or intermediate features) to produce output confidence score distri-
butions that are indistinguishable between the training set and the test set.

5.2.2 Adjust the Number of Parameters in the Model. The work of adjusting the number of
model parameters is mainly to protect the member information by reducing the complexity of
the model through regularization techniques, which can reduce the degree of overfitting of the
model and make the model learn the general characteristics of member data. Common methods
are dropout [23] and model parameter pruning [102].

In Reference [59], Salem et al. evaluated the effectiveness of using dropout in the input and
hidden layers of neural networks to defend against MIAs. Experimental results show that dropout
enables the model to defend against MIAs, but its defense ability is weak and depends on the
dropout rate. A large dropout rate reduces the success rate of MIAs, but also reduces the utility of
the model. Therefore, it is necessary to choose an appropriate dropout rate to balance the utility
of the target model and the privacy of the training data. In addition, spatial dropout is a variant
of dropout method proposed by Tompson et al. [71] in the field of images. The normal dropout
randomly sets some elements to zero, while the spatial dropout randomly sets some regions to
zero. Kaya et al. [37] evaluated the impact of dropout and spatial dropout on MIAs. They found
that spatial dropout can reduce model overfitting to a greater extent, improve the generalization
ability of the model more effectively, and thus can more effectively defend MIAs.

In Reference [82], Wang et al. also noticed that DNN is vulnerable to MIAs due to over-
parameterization, so they proposed a new defense against MIAs called MIA-Pruning. MIA-Pruning
is a pruning algorithm that finds subnets from a fully over-parameterized random network to opti-
mize data privacy and model efficiency. By using MIA-Pruning, the performance of the new model
is comparable to the original model in the case of greatly reducing the parameters, and it can ef-
fectively defend MIAs. Formally, for the model f , the optimization objective of MIA-Pruning can
be formulated as follows:

argmin
{Wi }, {bi }

L ( f ({Wi } , {bi } ;x ) ,y)

s.t. Wi ∈ {Wi | card (Wi ) ≤ ni }
{ni } = argmin

{ni }
max

fA

Gf ( {Wi }, {bi }) ( fA) ,

(8)

where {Wi } and {bi } are the weights and biases of each layer, and L ( f ({Wi } , {bi } ;x ) ,y) is the
loss of the classification model f . card(Wi ) is the cardinality of weights in each layer, which returns
the number of non-zero weights.ni is the desired number of non-zero weights for each layer, which
regularizes the strength of compression. Experimental results show that MIA-Pruning outperforms
DP in defending against MIAs. DP may significantly impairs model accuracy, whereas the loss of
model accuracy due to MIA-Pruning is negligible. Moreover, the combination of MIA pruning and
min-max game can further protect the privacy of the model.
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5.2.3 Affect the Gradient of the Loss Function. The defense works of affecting the gradient of the
loss function mainly utilize information perturbation techniques. Adding noise to the gradients of
the training process to achieve DP is a more general defense against MIAs.

In general, DP can achieve excellent privacy guaranteeing, but at the same time, it will seriously
damage the utility of the model. This type of approach is usually implemented through DPSGD

(Differential Privacy Stochastic Gradient Descent), a differential privacy optimizer proposed
by Abadi et al. [1]. It ensures that the model training process is differentially private by clipping
gradients and adding noise. Taking Reference [56] as an example, Rahman et al. systematically
studied the performance of MIAs against differential privacy models and showed that differential
privacy models can achieve the promise of privacy protection against powerful attackers with low
model efficiency. However, when they provide a model with acceptable utility, the model exposes
vulnerability to MIAs. Some literatures [30, 33, 75, 99] have also analyzed the impact of different
factors on the privacy-preserving capability of DP and shown that some properties of the dataset,
such as bias or data correlation, play a key role in determining the effectiveness of DP as a MIAs
privacy-preserving mechanism.

In Reference [55], Rahimian et al. showed that because DPSGD adds noise at each step of train-
ing, the speed of model training becomes slower, and the privacy budget ϵ also gradually increases
to a large value with the increase of training rounds. Therefore, they proposed DP-logits, which
only adds DP noise to the logits of the sample prediction output. Experimental results show that
DP-Logits can effectively resist MIAs, and the required privacy budget ϵ is lower than DPSGD.
Meanwhile, in the work of exploring the vulnerability of machine learning to MIAs, Chen and
Xie et al. [10, 88] evaluated the effectiveness of DPSGD as a defense mechanism and showed that
MIAs can be more effectively defended when generative models are used in combination with DP.
In addition, Wu et al. [86] established a theoretical framework to analyze the information leakage
of the model trained by SGLD (Stochastic Gradient Langevin Dynamics). In this framework,
the authors demonstrated that for a model trained with SGLD, the member privacy leakage can
be bounded within the desired range of a uniform constant and observed that SGLD can prevent
DNN from overfitting in some cases. The key idea of SGLD is to apply stochastic optimization to
Langevin dynamics, which is achieved by injecting appropriate Gaussian noise into the gradient
estimates of mini-batch samples in the training dataset.

5.3 Defenses at Inference Phase of Target Model

The defense works at the inference phase of the target model are mainly to use information pertur-
bation technology to perturb the confidence vector of the model output so member information
can be hidden. More details of the summary are listed in Table 4.

5.3.1 Adjust the Confidence Vector of the Model Output. Some works have explored how to de-
fend against MIAs by adjusting the confidence vector output from the model. It is worth noting that
this method does not affect the utility of the model, but can only defend against MIAs that depend
on the confidence vector output from the model. There are two methods to resist MIAs in this way.
One is to add adversarial noise to the confidence vector, the other is to use adversarial optimization.

Jia et al. [34] proposed the first defense against black-box MIAs with a formal utility loss guar-
antee, MemGuard. The working process of MemGuard can be roughly divided into two stages.
In the first phase, MemGuard looks for a well-crafted noise vector and converts the confidence
vector into a adversarial example, which causes the attack model to fail to distinguish between
members and non-members. In the second stage, MemGuard adds a carefully selected noise vec-
tor with a certain probability to a confidence vector satisfying a given effective loss budget. Note
that MemGuard does not modify the target model, but only adds noise to the confidence score
vector predicted by the target model and ensures that the addition of noise does not affect the
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Table 4. Summary of Papers on MID during the Inference Phase of Target Model

Phase Optimization Object Defense Technology Defense Method Year Ref.

Inference Confidence Vector Information Perturbation

Output Perturbation -

Adversarial Noise

2019 [34]

2020 [90]

2022 [43]

Output Perturbation -

Adversarial Optimization

2020 [92]

2022 [93]

classification of the model, which can effectively reduce the success rate of MIAs based on the pre-
diction confidence distribution under the black box to the level of random guess. However, Song
et al. [66] evaluated the defense performance of MemGuard in metrics-based MIAs and found that
a model using MemGuard defense still had a high MIAs success rate. In Reference [90], Xue et al.
also proposed an adversarial disturbance defense method, AEPPT. Unlike MemGuard, AEPPT uses
a gradient-based approach to counter disturbances and adds them to the prediction of the target
model by multiplying the disturbance by the random step size. As a result, AEPPT can defend
against more powerful attackers than MemGuard, with stronger security, wider versatility, and
faster generation of adversarial predictions.

In addition, Yang et al. [92] proposed a purification framework to defend against inference at-
tacks by purifying predictive scores. The framework takes the predicted score of the target model
as input to generate a purified version of the output and makes it meet two defense objectives:
(1) to prevent model inversion attacks and (2) to prevent MIAs. The intuitionistic significance of
this purification framework is that it reduces the discreteness of the confidence score vector pre-
dicted by the target classifier on both members and non-members. It helps to reduce the sensitivity
of the prediction to the changes of input data and reduces the resolution of the confidence score
vector between members and non-members. Note that while reducing its dispersion, the purifi-
cation framework shows a negligible distortion to the original confidence score, which preserves
useful information for the prediction. Recently, Yang [93] proposed a modified Purifier consisting
of a confidence reformer and a label swapper, which comprehensively studies MIA from the per-
spectives of individual shape, statistical distribution, and prediction label. Additionally, to alleviate
the prediction difference between training samples and non-training samples, Liu et al. [43] applied
order-preserving and utility-preserving obfuscation to the prediction vector, which can guarantee
the indistinguishability of prediction vector without affecting the prediction performance and can
not recover the original prediction vector for well-informed attackers.

6 MEMBERSHIP INFERENCE DEFENSES ON DIFFERENT DOMAINS

As MIA work has evolved in various fields, MIDs for other tasks or scenarios have been introduced.
At present, MID work for other tasks or scenarios can be divided into federated learning scenario,
image generation task, image translation task, text generation task, and wireless signal classifica-
tion and Beacon service. The categorization of the MIDs in other tasks/scenarios is listed in Table 5.

6.1 MIDs in Federated Learning Scenario

Federated Learning (FL), while providing a robust privacy solution by preventing private data
from leaving the data owner’s local device, is still a serious threat from MIAs. To defend against
MIAs in FL, some work relies mainly on information perturbation technology.

For example, Liu and Naseri et al. [44, 49] proposed to use local and central differential privacy to
reduce the privacy risk of members. However, this defense scheme increases noise in each update,
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Table 5. The Categorization of the MIDs in Other Tasks/Scenarios

Other Tasks Phase
Optimization

Object

Defense

Technology

Defense

Method
Year Ref.

Federated Learning

Scenario
Training

Gradient of the

Loss Function
Information Perturbation DP 2020 [44, 49]

Image Generation

Model

Pre-training
Preprocessing

feature and label
Information Perturbation Data Perturbation 2021 [8]

Training Loss Function Regularization
Adversarial Training 2019 [48]

Lipschitz-Regularization 2019 [87]

Image Translation

Model
Pre-training Preprocessing label Transfer Learning Knowledge Distillation 2022 [2]

Text Generation

Model
Pre-training

Preprocessing

feature and label
Information Perturbation Data Perturbation 2022 [35]

Wireless Signal

Classification and

Beacon Service

Inference

Confidence Vector Information Perturbation
Output Perturbation -

Adversarial Noise
2022 [63]

Model’s Response Information Perturbation
Output Perturbation -

Flip Values
2021 [77]

resulting in a significant sacrifice in the classification accuracy of FL. To effectively alleviate this
problem, Lee et al. [38] proposed an independent neural network, Digestive Neural Network

(DNN), which works in concert with a collaborative network for training. DNN extracts the fea-
tures of a given small batch into completely different domains to delete the private information of
the data. Small batches passing through DNN need to exclude the original information and must
contain features useful for high classification accuracy. A collaborative network receives digested
small batch data and optimizes its parameters to improve the classification accuracy of digested
data. To improve the prediction accuracy of collaborative network, DNN and collaborative net-
work need collaborative training. Simulation results show that DNN has good performance in the
FL mechanism based on gradient sharing and weight sharing.

6.2 MIDs in Image Generation Task

At present, there are many MIA works for the classification model in the visual field, and there
are a lot of defenses against MIAs with the help of the generation model. However, relevant
studies show that generative adversarial networks have poor generalization ability and are easily
affected by MIAs. Therefore, MIDs for GAN have also been launched in succession, mainly by
regularization technology.

Chen et al. [8] attempted to improve the generalization of GAN from the perspective of privacy
protection and designed a GAN framework, namely, partition GAN (PAR-GAN), which consists
of a generator and multiple discriminators trained on unconnected partitions of training data. The
core idea of the PAR-GAN algorithm is to reduce the generalization gap by approximating the
mixed distribution of all partitions of the training data. Theoretical analysis shows that PAR-GAN
can achieve global optimization like the original GAN. The experimental results on simulated
data and several commonly datasets show that PAR-GAN can improve the generalization ability
of GAN and reduce the information leakage caused by MIAs. In addition, Mukherjee et al. [48]
proposed a novel GAN framework (privGAN), which utilizes multiple generator discriminator
pairs and a built-in opponent to prevent the model from overfitting the training set. Through the
theoretical analysis of the optimal generator/discriminator, the consistency between privGAN and
non-privGAN is proved. In a more practical scenario, it is verified that privGAN loss function is
equivalent to adding regularization to prevent overfitting the training set.

In Reference [87], Wu et al. verified the generalization ability of GAN theoretically and exper-
imentally and showed that the common goal of “narrowing the generalization gap” and “protect-
ing member privacy” is to encourage the neural network to learn the characteristics of the group,

ACM Computing Surveys, Vol. 56, No. 4, Article 92. Publication date: November 2023.



92:26 L. Hu et al.

rather than remembering the characteristics of everyone, that is, the smaller the generalization gap,
the less member information exposed in the training dataset. On the theoretical side, the authors
leveraged the stability-based theory [61] to bridge the gap between differential privacy and the
generalization and provide a new perspective from privacy protection to understand a number of
recent techniques for improving the performance of GANs. On the experimental side, the authors
quantitatively validated the relationship between the generalization gap and the information leak-
age of the training dataset. Results suggest that it is possible to design new variants of GAN from
the perspective of building privacy-preserving learning algorithms, which can bring significant
regularization effects while protecting the sensitive information of the training dataset.

6.3 MIDs in Image Translation Task

With the development of artificial intelligence, the image-to-image translation (image translation)
model has attracted more and more attention, and its privacy problems have been noticed by
relevant researchers. In Reference [60], Shafran et al. showed that the image translation model is
vulnerable to the impact of MIAs, and it showed that the information perturbation technology can
not protect the privacy of members in the image translation task. Alvar et al. [2] showed that they
can resist MIAs on image translation models with the help of transfer learning technologies.

In Reference [2], Alvar et al. used the knowledge distillation method to alleviate MIAs in the
image translation task. However, it is not easy to directly apply the knowledge distillation method
to the image translation task. Because the sample size of image translation datasets is usually
smaller than classification datasets, and the output of the image translation task has no entropy
information, it is not feasible to apply the knowledge distillation method to the image translation
task directly. To achieve a better tradeoff between utility and privacy, an adversarial knowledge

distillation (AKD) method is proposed as a defense against MIAs in the image translation model
by Alvar. This method combines knowledge distillation with adversarial training and protects the
privacy of training samples by improving the generalization of the image translation model.

6.4 MIDs in Text Generation Task

Neural language models (NLMs)—systems trained to predict the next word in a sequence of
text—have become the fundamental building blocks for numerous natural language processing
tasks and domains. Unfortunately, Carlini et al. [5] pointed out that NLMs are vulnerable to MIAs.
By generating sequences from the model and then scoring these sequences with different MIAs,
the sequence with the highest score is classified as training data.

To solve this problem, Kandpal et al. [35] used the help of information perturbation technol-
ogy and showed that the success of Reference [5]’s attack is mainly due to the repeated sequences
found in the common network capture training dataset. To explain this reason, the authors showed
the superlinear correlation between the speed of the language model regenerating the training se-
quence and the count of the sequence in the training set. It also showed that the existing methods
for detecting the memory sequence have approximate accuracy on the non-repeated training se-
quence. Finally, it is found that the language model has high security against these types of privacy
attacks after the method is applied to retrain the data.

6.5 MIDs in Wireless Signal Classification and Beacon Service

In addition to the MIA on classification models such as images and texts, it is also pointed out
that the models for classifying wireless signals and genomic datasets are also vulnerable to MIAs.
Considering the different data conditions, the effectiveness of defense methods is also different.
Therefore, the relevant literatures have specifically studied MIDs for these two kinds of data with
the help of information perturbation technology.
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For wireless signal classification service, Yi et al. [63] first proposed an MIA for wireless signal
classifier to expose member privacy of wireless data. On this basis, the author regards the defense
problem as an optimization problem and uses shadow model for active defense. The main idea
of defense is to add disturbance to the classification process so (1) the classification result is un-
changed and (2) the MIA accuracy is low. The gradient search method is used to find the optimal
disturbance in the process of classification. The simulation results show that the defense scheme
can effectively defend against MIA.

Beacon service enables a user to query for the presence of particular minor alleles in an under-
lying private genomic dataset. While exposing such limited information may appear safe, it has
been shown to be vulnerable to MIAs, because it allows users to issue queries for every region of
the genome [65, 78]. A common approach to mitigate privacy risks in Beacon services is to flip the
values in a subset of the query responses [78]. For example, the response to a particular allele does
not exist, but it does exist in the dataset. However, not all methods offer privacy guarantees, and
when they do, they are usually probabilistic. While minimizing the number of flipped queries is
a standard measure of utility, none of the previous approaches provide a formal guarantee of op-
timality. In Reference [77], Rajagopal et al. used likelihood-ratio-test statistics to propose a novel
framework, which can accurately dissect various ways of Beacon services. By controlling query
methods and feedback strategies, the framework is superior to existing technologies in terms of
privacy and practicality.

7 WHY MEMBERSHIP INFERENCE DEFENSES WORK

Membership inference attack exploits the different performance of member and non-member sam-
ples on the target model to infer whether a sample belongs to the training set. Therefore, the
method to defend against membership inference attack must be to make it difficult for attackers to
distinguish members from non-members according to the feedback of the target model, which is
also the basic purpose of defense work. Existing defense works have different deep-seated reasons
for the indistinguishable nature of members and non-members. We can summarize it into the fol-
lowing three defense principles and relate them in Table 6 with the attack principles in Section 3.3,
the defense technologies in Section 4, and the defense phases with the defense optimization objec-
tives in Section 5.

(1) Avoid Overfitting. As mentioned in Section 3.3, currently, the success of most MIAs is
attributed to the overfitting of the target model. When the target model is in the overfitting
state, its performance in the training set and the test set is different. Through this difference,
the attacker can access the target model and determine whether the query data is a member
or not. Therefore, many defense works achieve the defense of MIAs by reducing the degree
of overfitting of the model. For example, some work through regularization tricks, some
work through fine-grained controlling the training mode of the model, and so on.

(2) Information Confusion. As it has been said, existing MIA works are implemented based
on the different performances between members and non-members. Therefore, to achieve
the effect of resisting MIAs, the performance between members and non-members can be
interfered. Defense based on this principle can be achieved by adding a small amount of
noise to the three stages of the target model. However, while realizing defense MIAs, this
defense method may significantly damage the utility of the target model, and the level of
noise is difficult to control.

(3) Information Isolation. In the defense of MIAs, our basic goal is to protect the member
privacy of the target model training data. Therefore, from another point of view, we can
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Table 6. The Association between Defense Principle, Attack Principle, Defense Technology, Defense Phase,

and Defense Optimization Goal

Principle of MIDs Against MIAs Principle
Defense

Technology

Defense

Phase
Optimization Object

Avoid Overfitting. • Overfitting of the target model Regularization

Pre-training

Preprocessing feature

Preprocessing label

Preprocessing feature and label

Training
Loss Function

Model Parameter

Information Confusion

• Overfitting of the target model

• The unique impact of the training set

• Other properties of the target model

Information

Perturbation

Pre-training
Preprocessing feature

Preprocessing feature and label

Training Gradient of the Loss Function

Inference Confidence Vector

Information Isolation

• Overfitting of the target model

• The unique impact of the training set

• Other properties of the target model

Transfer

Learning
Pre-training

Preprocessing feature

Preprocessing label

Preprocessing feature and label

Generative

Models-based
Pre-training

Preprocessing feature

Preprocessing feature and label

substitute privacy-secure data for the original training data of the target model. Specifically,
we can train a proxy model of the target model using privacy-secure data and publish the
proxy model to provide the service. This method avoids the disclosure of member privacy by
isolating the unprotected target model training data. In this process, the training data of the
target model are all non-member data for the proxy model, so the membership attributes
of the training data of the target model cannot be inferred according to the output of the
proxy model to achieve the purpose of resisting membership inference attacks. However,
this method also requires fine optimization to ensure the utility of the surrogate model.

8 FUTURE RESEARCH DIRECTIONS ON MEMBERSHIP INFERENCE DEFENSE

With the development and reform of deep learning technology and computing hardware architec-
ture, artificial intelligence technology has made major breakthroughs in key tasks such as machine
vision, speech recognition, and so on. However, membership inference attacks have also exposed
privacy vulnerabilities in various domain models. In this section, we discuss several major chal-
lenges and potential research directions of membership inference defense to stimulate interested
readers to explore this field more.

(1) MIDs for Other Tasks/Scenarios. At present, the membership inference defense of the
classification model in the field of computer vision is relatively comprehensive. However,
the defense work in other fields or tasks is not explored much, and the work in this gap
needs to be further explored. Moreover, although there are many membership inference
defense methods for classification models in the field of computer vision, whether they can
be compatible with other tasks also needs systematic research.

(2) Design MIDs from the Perspective of Member Features. To date, most of the reasons for
the success of membership inference attacks are attributed to the overfitting of the model,
and the related attack work or defense work is to attack or defend by means of different
performances of overfitting. However, what is the feature of model overfitting remains to
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be explored, i.e., the nature of member features is still unclear. Although the literature [21]
showed that data features can be decoupled into class features and member features, this
work had only been verified on simple data, and the utility of data after removing member
features is significantly reduced. It is not feasible to apply the work to defense directly, and
the defense work from this point of view still needs to be improved.

(3) Analyze the Privacy and Utility Implemented by MIDs. Although there are many ex-
isting works on defending against membership inference attacks, there are not many works
that can actually protect the member privacy of target model without compromising the
utility of the model. Moreover, the work that satisfies this requirement does not inherently
analyze the reasons for its implementation. There is still a lot of research space in the design
and analysis of the work that can achieve privacy and ensure that the utility of the model is
not damaged.

9 CONCLUSION

The large-scale and industrialized development of deep learning technology has formed a business
pattern. In this pattern, data is widely used, yet at the same time, it also makes the privacy data
of data holders face the risk of leakage. Although many researchers have carried out a series of
studies on membership inference attacks and defenses and have carried out systematic classifica-
tion and description, they have not carried out an independent systematic analysis on membership
inference defenses.

This article first combs the work of membership inference attacks from the perspective of the
amount of knowledge gained by the attacker and introduces the basic principles of membership
inference attacks. We then give a brief overview of the existing defense technology. After that,
taking the defense phase as the dividing point, it clearly shows the research progress and research
ideas in the membership inference defense of the classification model in the field of computer vi-
sion. Subsequently, the defense work of missions in other fields is analyzed. Finally, the working
principle and the challenge of membership inference defenses is discussed, and the potential di-
rection of future research is pointed out. Through this comprehensive investigation, we hope to
provide a solid foundation for the research on membership inference defenses.
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