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Abstract

Current security mechanisms are not suitable for organisations that
outsource their data management to untrusted servers. Encrypting and
decrypting sensitive data at the client side is the normal approach in
this situation but has high communication and computation overheads if
only a subset of the data is required, for example, selecting records in a
database table based on a keyword search. New cryptographic schemes
have been proposed that support encrypted queries over encrypted data.
But they all depend on a single set of secret keys, which implies single user
access or sharing keys among multiple users, with key revocation requiring
costly data re-encryption. In this paper, we propose an encryption scheme
where each authorised user in the system has his own keys to encrypt and
decrypt data. The scheme supports keyword search which enables the
server to return only the encrypted data that satisfies an encrypted query
without decrypting it. We provide a concrete construction of the scheme
and give formal proofs of its security. We also report on the results of our
implementation.

1 Introduction

The demand for outsourcing data storage and management has increased dra-
matically in the last decade. The foremost reason is that for nearly all organ-
isations, data growth is inevitable. Data is at the heart of business operations
and applications, driving the critical activities that help the organisations im-
prove customer satisfaction and accelerate business growth. Huge amounts of
data are collected or generated everyday and put into data storage for future
processing and analysing. According to Forrester Research, enterprise storage
needs grow at 52 percent per year [6]. To reduce the increasing costs of stor-
age management, many organizations would like to outsource their data storage
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to third party service providers. Recent research from TheInfoPro shows that
nearly 20% of Fortune 1000 organizations outsource at least some portion of
their storage management activities [10]. Apart from business data, there is
also an emerging trend in personal data outsourcing. People are demanding
more storage space from service provider for various reasons: data backup [1],
sharing photos and videos with family and friends [2] or even to manage their
medical record [3].

One of the biggest challenges raised by data storage outsourcing is data
confidentiality. Business data is vital to many companies, any security breaches
will leave the companies with lost revenues, reduced shareholder value, lawsuits
as well as damaged reputations. Exposing this valuable information to outsiders
poses huge risks. While companies may trust a Storage Service Provider’s (SSP)
reliability, availability, fault-tolerance and performance, they cannot trust that
the SSP is not going to use the data for other purposes. The same problem also
exists in personal data outsourcing. For privacy reasons, individuals want to
be sure that the data can only be accessed by particular people and certainly
not by the SSP’s employees. The negative impact of this distrust is two-fold.
From the customers’ point of view, it is hard to find a trusted service provider
to host their data. From the SSPs’ point of view, as long as they cannot dispel
the concern, they will lose potential customers.

Traditional access controls which are used to provide confidentiality are
mostly designed for in-house services and depend greatly on the system itself to
enforce authorisation policies, effectively relying on a trusted infrastructure. In
the absence of trust, traditional security models are no longer valid. Another
common approach to provide data confidentiality is cryptography. Server side
encryption is not appropriate when the server is not trusted. The client must
encrypt the data before sending it to the SSP and later the encrypted data can
be retrieved and decrypted by the client. This would ease a company’s concern
about data leakage, but introduces a new problem. Because the encrypted data
is not meaningful to the SSP’s servers, many useful data operations are not
possible. For example, if a client wants to retrieve documents or records con-
taining certain keywords, can we keep the data incomprehensible to servers and
their administrators while efficiently retrieving the data? Consider the following
scenarios:

Scenario 1 Company A is considering outsourcing its data processing centre
to a service provider B. This will cut its annual IT cost by up to 25%. But
the company is concerned about data security. The company’s databases
contain valuable production data and customer information. It would be
unacceptable if competitors got hold of the data. Administrative controls
such as formal contracts, confidential agreements and continuous auditing
provide a certain level of assurance, but the company would also like to
encrypt the sensitive data and have fast searches over it.

Scenario 2 Bob subscribes to a Personal Health Record service. The service
allows Bob to maintain his electronic medical records and share them with
his doctors through a web interface. Bob wants to encrypt his records,
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ensuring that the employees of the service provider will not be able to
know what is inside.

A trivial solution is to download all the data to the client’s computer and
decrypt it locally. This does not scale to large datasets. Several schemes have
been proposed to partially address the above problems. The basic idea is to
divide the cryptographic component between the client and the server. The
client performs the data encryption/decryption and manages keys. The server
processes encrypted search queries by carrying out some computation on the
encrypted data. The server learns nothing about the keys or the plaintexts of
the data nor the queries, but is still able to return the correct results.

These schemes have an important limitation. The operations, e.g. encryp-
tion, decryption and query generation, more or less rely on some shared secret
keys. This implies that the operations can only be executed by one user, or by a
group of users who share the secret keys somehow. A single user is usually not
an adequate assumption for data outsourcing. Perhaps the biggest problem for
supporting multiple user access to encrypted data is key management. Sharing
keys is generally not a good idea since it increases the risk of key exposure.
In response to this, keys must be changed regularly. The keys must also be
changed if a user is no longer qualified to access the data. However, changing
keys may result in decrypting all the data with the old key and re-encrypting it
using the new keys. For large data sets, this is not practical.

In this work, we propose a scheme for multi-user searchable data encryption
based on proxy cryptography. We consider the application scenario where a
group of users share data through an untrusted data storage server which is
hosted by a third party. Unlike existing schemes for searchable data encryption
in multi-user settings which have constraints such as asymmetric user permis-
sions (multiple writers, single reader) or read-only shared data set, in our scheme
the shared data set can be updated by the users and each user in the group can
be both reader and writer. The server can search on the encrypted data using
encrypted keywords. More importantly our scheme do not rely on shared keys.
This significantly simplifies key revocation. Each authorised user in the system
has his own unique key set and can insert encrypted data, decrypt the data
inserted by other users and search encrypted data without knowing the other
users’ keys. The keys of one user can easily be revoked without affecting other
users or the encrypted data at the server. After a user’s keys have been revoked,
the user will no longer be able to read and search the shared data.

2 Related Work

Many systems designed for securing untrusted storage rely on the clients to
encrypt the data. For example, in cryptographic distributed file systems such
as [23, 20, 16, 26], the untrusted file servers store encrypted files and have no
knowledge of the keys. Authorised users can retrieve an encrypted file by its
identifier and decrypt it using a key obtained from the owner of the file. The
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servers perform only the basic I/O function and cannot do advanced operations
such as keyword search.

Several schemes have been developed to encrypt data on the client-side and
enable server-side searches on encrypted data. Song et.al. [25] introduced the
first practical scheme for searching on encrypted data. The scheme enables
clients to perform searches on encrypted text without disclosing any informa-
tion about the plaintext to the untrusted server. The untrusted server cannot
learn the plaintext given only the ciphertext, it cannot search without the user’s
authorisation, and it learns nothing more than the encrypted search results. The
basic idea is to generate a keyed hash for the keywords and store this informa-
tion inside the ciphertext. The server can search the keywords by recalculating
and matching the hash value. Yang et. al. [29] proposed an elegant scheme
for performing queries on encrypted data and also provided a secure index to
speed up queries by two-step mapping. Goh’s scheme [15] enables searches on
encrypted data that employed a secure index based on a bloom filter which has
low storage overheads. Damiani et.al. [12] proposed an approach to indexing
encrypted data which allows efficient data access. The indexed attribute values
are encrypted directly with a key or hashed. This approach also support range
queries by creating an encrypted B+-tree. Agrawal et.al. [4] proposed an order
preserving encryption for numeric data which allows queries based on compari-
son conditions. The plaintext is encrypted so that the ciphertext follows a target
distribution provided by the user while the order of the data is preserved.

In the bucketization approach for searching encrypted databases [17, 18], an
attribute domain is partitioned into a set of buckets each of which is identified
by a tag. These bucket tags are maintained as an index and are utilised by the
server to process the queries. Bucketization has relatively small performance
overhead and enables more complex queries such as range queries and com-
parison queries at the cost of revealing more information about the encrypted
data.

All the encrypted search schemes above for searches on encrypted data rely
on secret keys, which implies single user access or sharing keys among a group of
users. Boneh et. al. [8] presented a scheme for searches on encrypted data using
a public key system that allows mail gateways to handle email based on whether
certain keywords exist in the encrypted message. The application scenario is
similar to [25], but the scheme uses asymmetric encryption schemes instead of
symmetric ones. Asymmetric keys allow multiple users to encrypt data using
the public key, but only the user who has the private key can search and decrypt
the data. Curtmola et. al. [11] partly solved the multi-user problem by using
broadcast encryption. The set of authorised users share a secret key r (which is
used in conjunction with a trapdoor function). Only people who know r will be
able to access/query the data. A user can be revoked by changing r, and using
broadcast encryption to send the new key r′ to the set of authorised users. The
revoked user does not know r′, and hence cannot search. In this scheme, the
database is searchable, but is read-only and cannot be updated. In our scheme,
any authorised user can read, search and update the encrypted data.

Our scheme is dependent on proxy encryption. The notion of proxy encryp-
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tion was first introduced in [7]. In a proxy encryption scheme, a ciphertext
encrypted by one key can be transformed by a proxy function into the corre-
sponding ciphertext for another key without revealing any information about
the keys and the plaintext. Proxy encryption schemes can be built on top of
different cryptosystems such as El Gamal [14] and RSA [24]. Applications of
proxy encryption include: secure email lists [22], access control systems [5] and
attribute based publishing of data [21]. A comprehensive study on proxy cryp-
tography can be found in [19].

3 Threat Model

Before presenting our scheme, it is necessary to discuss the threat model. In this
section, we first identify the entities involved and the assumptions underlying
the system design. Then we identify the potential adversaries and the possible
attacks.

3.1 Entities

There are three types of entities in our system:

• Users: Authorised users are able to read, write and search encrypted data
residing on the remote server. Sometimes we may need to revoke an
authorised user. After being revoked, the user is no longer able to access
the data.

• Server: The main responsibility of the data storage server is to store and
retrieve encrypted data according to authorised users’ requests.

• Key management server (KMS): The KMS is a fully trusted server which is
responsible for generating and revoking keys. It generates key sets for each
authorised user and is also responsible for securely distributing generated
key sets. When a user is no longer trusted to access the data, the KMS
revokes the user’s permission by revoking his keys.

Authorised users are fully trusted. They are given permissions to access the
shared data stored on the remote server by the data owner. They are believed
to behave properly and can protect their key sets properly. The data storage
server is not trusted in the sense that we believe that the server will execute
requests it received correctly, but we do not rely on them to maintain data
confidentiality. In other words, the server is modelled as “honest but curious”
in our trust model.The KMS is also fully trusted. Although requiring a trusted
KMS seems at odds with using an untrusted data storage service, we argue that
the KMS requires less resources and less management effort. Securing the KMS
is much easier since a very limited amount of data needs to be protected and
the KMS can be kept offline most of time.
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3.2 Assumptions

We assume that there are mechanisms in place which ensure integrity and avail-
ability of the remotely stored data. Our scheme focuses only on confidentiality
issues and does not provide protection against attacks such as data forgery and
denial of service. Our scheme is a building block that can be integrated into
larger more comprehensive frameworks for securing data on untrusted servers

We also assume that the server cannot collude with the users. In our scheme,
if a user and the server collude and combine their keys, they can recover the
encrypted data. Although this assumption is quite strong, we will show later
in the paper that in practice the assumption can be weakened to an acceptable
level by introducing certain auxiliary mechanisms.

3.3 Adversary and Attacks

We consider a Curious server1 as the adversary. As we mentioned earlier, we
model the server as honest but curious. The server has full access to the en-
crypted data stored on it and all the server side key sets. It can also observe
the communication to and from users. We limit the attacks mounted by the
server to passive attacks. That is, the server will not actively manipulate the
stored data and communication in order to gain knowledge. This is because
we assume that there are mechanisms taking care of integrity issues, which can
detect active attacks.

4 Definitions

4.1 Preliminaries

Throughout the paper, we always consider a scheme to be secure in the sense
that the probability that an adversary can break the scheme is a negligible
function of the security parameter. By negligible we mean an adversary’s success
probability is “too small to matter”. Formally:

Definition 1 (Negligible Function). A function f is negligible if for every poly-
nomial p(·) there exists an N such that for all integers n > N it holds that
f(n) < 1

p(n) .

Our proofs rely largely on the assumption that the Decisional Diffie-Hellman
(DDH) problem is hard regarding certain groups, i.e. it is hard to tell the
difference between group elements gαβ and gγ given gα and gβ.

Definition 2 (DDH Assumption). We say that the DDH problem is hard re-
garding a group G if for all probabilistic polynomial time adversaries A, there
exists a negligible function negl such that

|Pr[A(G, q, g, gα, gβ , gαβ) = 1]− Pr[A(G, q, g, gα, gβ, gγ) = 1]| < negl(k)

1Here “server” actually means an administrator who manages the server or a hacker who

compromises the server.
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where G is a cyclic group of order q (|q| = k) and g is a generator of G,
α, β, γ ∈ Zq are uniformly randomly chosen.

The security of our scheme also depends on the existence of pseudorandom
functions. Intuitively, pseudorandom functions are functions that cannot be
efficiently distinguished from truly random functions when used as black boxes.

Definition 3 (Pseudorandom Function). We say f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

is a pseudorandom function if for all probabilistic polynomial time adversaries
A, there exists a negligible function negl such that

|Pr[Afk(·) = 1]− Pr[AF (·) = 1]| < negl(n)

where k ← {0, 1}n is chosen uniformly randomly and F is a function chosen
uniformly randomly from the set of functions mapping n-bit strings to n-bit
strings.

4.2 System Model

A Multi-user Searchable Data Encryption scheme is a mechanism such that a
group of authorised users can share encrypted documents and perform keyword
search on the encrypted documents without decrypting them. We first intro-
duce some notations to be used in the definitions. ∆ is the set of all possible
data items (documents). W = {w1, ..., wd} is a dictionary which contains all
the possible words that can be used in the queries. Each document Di in ∆ has
an identifier id(Di) and can be associated with a list of keywords kw(Di) which
is a subset of W . The identifiers must be unique and must not contain infor-
mation about the content of the documents. For example, the identifiers can be
randomly generated strings. We use D = {(D1, kw(D1)), ..., (Dn, kw(Dn))} to
denote an arbitrary set of documents with their keywords, i.e. P(∆× P(W)).

Definition 4 (Multi-user Searchable Data Encryption). A multi-user searchable
data encryption scheme is a tuple of probabilistic polynomial time algorithms
(Init, Keygen, Enc, Re-enc, Trapdoor, Search, Dec, Revoke) such that:

• The initialisation algorithm Init(1k) is run by the KMS which takes as input
the security parameter 1k and outputs master public parameters Params
and a master key set MSK.

• The user key sets generation algorithm Keygen(MSK,i) is run by the KMS
which takes as input the master keys MSK and a user’s identity i, gener-
ates two key sets Kui and Ksi. Kui is the user side key set for user i and
Ksi is the server side key set for user i.

• The data encryption algorithm Enc(Kui,D,kw(D)) is run by a user who uses
his key set Kui to encrypt a document D and a set of keywords associated
kw(D), then outputs ciphertext c∗

i
(D,kw(D)).
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• The data re-encryption algorithm Re-enc(i,Ksi,c
∗
i
(D,kw(D))) is run by the

server to re-encrypt a ciphertext tuple c∗
i
(D,kw(D)) from a user i. The

server finds the corresponding key set Ksi and outputs re-encrypted ci-
phertext c(D,kw(D)).

• The trapdoor generation algorithm Trapdoor(Kui,w) is run by a user which
takes the user’s key set Kui and a keyword w and outputs a trapdoor Ti(w)
for the word.

• The data pre-decryption algorithm Pre-dec(i,Ksi,c(D)) is run by the server
to partially decrypt an encrypted document for user i using i’s server side
key set Ksi. The result c′

i
(D) is returned to the user.

• The search algorithm Search(i,Ti(w),E(D),Ksi) is run by the server. For
each c(D,kw(D)) ∈ E(D), if the queried keyword w ∈ kw(D) then the
server runs the data pre-decryption algorithm and returns the result c′

i
(D)

to the user.

• The data decryption algorithm Dec(Kui,c
′
i
(D))is run by a user which de-

crypts c′
i
(D) by using the user’s key set and outputs D.

• The user revocation algorithm Revoke(i) is run by the server. Given i, the
server updates its user-key mapping set Ks = Ks \ (i,Ksi).

The system supports the following primitive data operations:

• Get: Given a document identifier id(Di), retrieves the document Di. The
user sends id(Di) to the server which locates the ciphertext from the
data storage and runs the data pre-decryption algorithm. The partially
decrypted document is returned to the user and the user runs the data
decryption algorithm to recover the plaintext of the document.

• Search: Given a keyword w, retrieves all the documents associated with the
keyword. The user runs the trapdoor generation algorithm and sends the
trapdoor generated from w to the server which runs the search algorithm
to find all matching documents and returns the result set to the user. The
user runs the data decryption algorithm to decrypt all the documents.

• Insert: Inserts a new document and the keyword list associated with it into
the data storage. The user runs the data encryption algorithm to encrypt
the document and the keywords. The ciphertext is sent to the server
which runs the data re-encryption algorithm and stores the re-encrypted
ciphertext.

• Remove: Given a document identifier id(Di), removes the document Di

and the associated keyword list. The server locates the ciphertext by the
identifier and removes it from the data storage.

The primitive operations can be combined to build more complicated ones.
For example, update cannot be done by the system directly due to the fact that
the documents are encrypted. However, it can be implemented by removing the
old document followed by inserting the modified version.

8



4.3 Security Definition

The security definition for searchable encryption is difficult because searching
leaks information about stored data inevitably. As long as the searching al-
gorithm is correct, it always returns the same result set for the same query.
Although the queries and the result sets are encrypted, the adversary can still
build up search patterns. Therefore the security definition for searchable encryp-
tion should be modified to reflect the intuition that nothing should be leaked
beyond the outcome and the pattern of a sequence of searches. Here we adapt
the definition from [11] of non-adaptive indistinguishability security. Informally,
non-adaptive indistinguishability security means that given two non-adaptively
generated query histories with the same length and outcome, no PPT adversary
can distinguish one from another based on what it can “see” in the interaction.
Non-adaptive means the adversary cannot choose queries based on the previous
queries and results. This is acceptable because in our setting only the authorised
user can generate queries.

The major difference between our definition and the one in [11] is that the
definition presented in [11] is defined for a static document set. The whole
document set is encrypted before searching can take place. Afterwards no mod-
ification is allowed on the document set. While in our scheme, the document set
can be continuously updated by authorised users. Therefore in our definition
we have to consider the dynamic changes on the document set.

We formalise the interaction between the server and the authorised users as
history. Generally speaking, a history is defined as a sequence of queries over
a set of documents. Let Q = (∆ × P(W)) ∪ W denotes all possible queries,
we call a query q ∈ Q an insert query if q ∈ ∆ × P(W) and a search query if
q ∈ W . Intuitively, an insert query is issued by a user to insert a document into
the shared data storage and a search query is issued to search a keyword over
currently stored data. We use qu to denote a query issued by a user u.

Definition 5 (History). A history Hi ∈ P(∆ × P(W)) × Qi is an interaction
between a client and a server over i queries on a document set D, i.e. Hi =
(D, qu1

1 , ..., qui

i ).

As we mentioned before, searching leaks information. The maximum infor-
mation we have to leak is captured by a trace. In our settings, a trace contains
information from three sources: the encrypted documents stored on the server,
the queries and the search query pattern. The outcome of a search query q = w

can be represented as a set of identifiers of stored documents which are asso-
ciated with the keyword being queried and the index of the keyword in the
keyword list, i.e. rs(w) = {(id(D), i)|D ∈ Dq∧w is the ith element in kw(D)}.
The intuition of using document identifiers is that the adversaries can identify
the documents but should not learn anything about the content of the docu-
ments. Here Dq means the document set stored on the server at the point of
time the query q is issued. Because the users may insert new documents into
the data storage, Dq can be different from the initial document set D. We also
define the search pattern Πi over a history Hi to be a symmetric binary matrix
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where Πi[j, k] = 1 if qj = qk, and Πi[j, k] = 0 otherwise, for 1 ≤ j, k ≤ i.

Definition 6 (Trace of a Query). Given a query qu, the trace of qu is defined as:

Tr(qu) =

{

(u, id(D), |D|, |kw(D)|) if qu = (D, kw(D)) is an update query,

(u, rs(qu)) if qu is a search query,

Definition 7 (Trace of a History). Given a history Hi = (D, qu1

1 , ..., qui

i ), let
m = |D|, the trace of Hi is defined as a list:

Tr(Hi) =

(

id(D1), |D1|, |kw(D1)|, ..., id(Dm), |Dm|, |kw(Dm)|,
T r(qu1

1 ), ..., T r(qui

i ), Πi

)

The trace includes the following: the identifier, the size and the number of
keywords of each document in the initial set, the trace of each query in the
history and the search query pattern.

During an interaction, the adversary cannot directly see the plaintext of the
documents or keywords. What the adversary can see is the ciphertext. The
view of the adversary is then defined as:

Definition 8 (View of a Query). Given a query qui , the view of qui under a key
set Kui is defined as:

VKui
(qui) =

{

c∗ui
(D, kw(D)) if qui = (D, kw(D)) is an update query,

(Tui
(qui), c′ui

(rs(qui ))) if qui is a search query,

In the above definition, c′ui
(rs(qui )) is shorthand for {c′ui

(D)|id(D) ∈ rs(qui )}.

Definition 9 (View of a History). Given a history Hi = (D, qu1

1 , ..., qui

i ), let
m = |D|, the view generated under a set of user side key sets Ku is defined as

VKu(Hi) = (c(D1, kw(D1)), ..., c(Dm, kw(Dm)), VKu1
(qu1

1 ), ...VKui
(qui

i ) )

where each Ku1, ..., Kui ∈ Ku

Here the view of history is actually defined in a multi-user setting that com-
bines encrypted queries from different users. We do not require each Ku1, ..., Kui

in the history to be distinct: obviously some users may submit multiple queries
during the interaction. A special case is when Ku contains only one user side
key set, in this case the history becomes a history of a single user.

The definition of security against a server is then based on the idea that the
scheme is secure if no more information is leaked beyond what the adversary
can get from the traces. This intuition is formalised by defining a game where
the adversary generates two histories which have the same trace. Then an
interaction is started based on one of the two histories. After observing the
interaction, the adversary must decide which history the interaction is based
on. Since the traces are identical, the adversary cannot distinguish the two
histories by the traces, i.e. the knowledge it already has. It must extract
additional knowledge from what else it can observe during the interaction, i.e.
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the view. The negligible probability of the adversary successfully distinguishing
the two histories implies that it cannot get extra knowledge and in consequence
the scheme is secure.

Definition 10 (Non-Adaptive Indistinguishability against a Curious Server). A
multi-user searchable data encryption scheme is secure in the sense of non-
adaptive indistinguishable against a curious server if for all i ∈ N, for all PPT
adversaries A there exists a negligible function negl such that

Pr













b′ = b

(Params, MSK)← Init(1k),
(Ku,Ks)← KeyGen(MSK,U),

Hi0 , Hi1 ← A(Ks),

b
R
← {0, 1},

b′ ← A(Ks, VKu
(Hib

))













< 1
2 + negl(k)

where U is a set of user IDs, Ku and Ks are the set of user side key sets
and the set of server side keys generated for users in U , Hi0 and Hi1 are two
histories over i queries such that Tr(Hi0) = Tr(Hi1).

5 Concrete Construction

In this section, we introduce a concrete construction of the multi-user search-
able data encryption scheme. The construction is based on a proxy encryption
scheme built upon the El Gamal encryption scheme.

5.1 El Gamal-based Proxy Encryption Scheme

We first briefly review the El Gamal encryption scheme [14]. The El Gamal
Encryption Scheme E consists of 3 algorithms:

• E-Init(1k): On input 1k, output two prime numbers p, q such that q divides
p− 1, a cyclic group G with a generator g such that G is the unique order

q subgroup of Z∗
p. Choose x

R
← Zq and compute h = gx. The public key

is pk = (G, g, h, q) and the private key is sk = x.

• E-Enc(pk, m): Choose r
R
← Zq and output the ciphertext c(m) = (gr, hrm).

• E-Dec(sk, c(m)): The ciphertext is decrypted as hrm·(gr)−x = grx−rxm =
m.

The proxy encryption scheme is described below and the encryption/decryption
process is shown in Figure 1:

The proxy encryption scheme PE consists of 6 algorithms:

• PE-Init(1k): On input 1k, run E-Init(1k) to obtain (G, g, q, x). Publicise
(G, g, q) as public parameters and keep x secret as the master key. This
algorithm is run by a trusted key management server once when the system
is set up .
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User i

UEnc

UDec

User j

UEnc

UDec

PEnc

PDec

PEnc

PDec

m

xi1 xi2

xj2 xj1

m

Proxy

Figure 1: Encryption/Decryption in the El Gamal Proxy Encryption Scheme

• PE-Keygen(MSK, i): For each user i, the key management server chooses

xi1
R
← Zq and computes xi2 = x − xi1. xi1 is securely transmitted to the

user and (i, xi2) is securely transmitted to the proxy.

• PE-U-Enc(xi1, m): The user side encryption algorithm. The user chooses

r
R
← Zq and outputs the ciphertext c∗i (m) = (gr, grxi1m). The ciphertext

is sent to the proxy

• PE-P-Enc(i,xi2, c
∗
i (m)): The proxy re-encryption algorithm. Given the

ciphertext received from user i, the proxy finds the user’s server side key
xi2, compute (gr)xi2 · grxi1m = gr(xi1+xi2)m = grxm. The ciphertext at
the proxy side then becomes c(m) = (gr, grxm).

• PE-P-Dec(j,xj2, c(m)): The proxy side decryption algorithm. Before send-
ing a ciphertext (gr, grxm) to a user j, the proxy finds j’s server side
key. Then the ciphertext is partially decrypted as grxm · (gr)−xj2 =
gr(x−xj2)m = grxj1m. c′j(m) = (gr, grxj1m) is sent to the user j.

• PE-U-Dec(xj1, c
′
j(m)): After receiving (gr, grxj1m), the user fully decrypts

the ciphertext as grxj1m · (gr)−xj1 = m.

It is easy to see that the proxy encryption scheme is correct. We show that
it is also secure under the DDH Assumption.

Theorem 1. If the DDH problem is hard relative to G, then the El Gamal
based proxy encryption scheme is indistinguishable under chosen plaintext attack
(IND-CPA) secure against the proxy. That is, for all PPT adversaries A there
exists a negligible function negl such that

SuccAPE,P (k) = Pr

2

6

6

6

6

6

6

6

4

b′ = b

(Params,MSK)← PE-Init(1k),
(Ku,Ks)← PE-KeyGen(MSK,U),

m0, m1 ← A
PE-U-Enc(Ku,·)(Ks)

b
R
← {0, 1},

c∗i (mb) = PE-U-Enc(xi1, mb),

b′ ← APE-U-Enc(Ku,·)(Ks, c
∗
i (mb))

3

7

7

7

7

7

7

7

5

< 1
2

+ negl(k)
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Proof. Let’s consider the following PPT adversary A′ who attempts to solve the
DDH problem using A as a sub-routine. Recall that A′ is given G, q, g, g1, g2, g3

as input, where g1 = gα, g2 = gβ and g3 could be gαβ or gγ for some random
α, β, γ. A′ does the following:

• A′ sends G, q, g it received to A as the public parameters. It then chooses

randomly xi2
R
← Zq for each i ∈ U and also computes gxi1 = g1 · g

−xi2 . It
then sends all (i, xi2) to A and keeps all (i, xi2, g

xi1).

• Whenever A requires oracle access to the user encryption algorithm, it

passes m to A′. A′ chooses randomly r
R
← Zq and replies with (gr, grxi1m).

• At some point of time, A outputs m0, m1. A
′ chooses a random bit b and

sends g2, g
−xi2

2 g3mb to A.

• A outputs b′. If b = b′, A′ outputs 1, otherwise outputs 0.

There are two cases to consider:
Case 1: If g3 = gγ , we know that gγ is a random group element of G because

γ is chosen at random. Then g−xi2

2 g3mb is also a random group element of
G and gives no information about mb, i.e. the distribution of g−xi2

2 g3mb is
always uniform no matter what value mb takes. g2 also contains no information
about mb. So the adversary A must distinguish m0, m1 without additional
information. The probability it can successfully output b′ = b is exactly 1

2 when
b is chosen uniformly randomly. A′ outputs 1 iff A outputs b′ = b, then we have:

Pr[A′(G, q, g, gα, gβ, gγ) = 1] =
1

2

Case 2: If g3 = gαβ , because g2 = gβ and g−xi2

2 g3mb = g−βxi2gαβ =
gβ(α−xi2) = gβxi1, then g2, g

−xi2

2 g3mb is a proper ciphertext encrypted under
PE . In this case, we have:

Pr[A′(G, q, g, gα, gβ, gαβ) = 1] = SuccAPE,P (k)

If DDH problem is hard regarding G, then the following is true

|Pr[A′(G, q, g, gα, gβ, gαβ) = 1]− Pr[A′(G, q, g, gα, gβ, gγ) = 1]| < negl(k)
Pr[A′(G, q, g, gα, gβ , gαβ) = 1] < 1

2 + negl(k)

So we have SuccAPE,P (k) < 1
2 + negl(k).

Theorem 1 basically says that without knowing user side keys or without
the help from a user, the proxy cannot distinguish the ciphertexts in a chosen
plaintext attack.

13



5.2 Keyword Encryption

From the proxy encryption scheme, we also obtain a keyword encryption scheme.
The aim of this keyword encryption scheme is to securely encrypt keywords and
also allow users to generate trapdoors which can be tested over the encrypted
keywords in search queries. The keyword encryption scheme KE is defined as
follows:

• KE-Init(1k): On input 1k, run PE-Init(1k) to obtain (G, g, q, x). Compute
h = gx. Choose a collision resistant hash function H , a pseudorandom
function f and a random key s for f . Publicise (G, g, q, h, H, f) and keep
x, s securely as the master key.

• KE-Keygen(MSK, i): Run PE-Keygen(MSK, i) to obtain xi1, xi2. Trans-
mit (xi1, s) securely to user i and (i, xi2) securely to the server.

• KE-U-Enc(xi1, kw): The user chooses r
R
← Zq, the keyword kw is en-

crypted as: c∗i (kw) = (ĉ1, ĉ2, ĉ3) where ĉ1 = gr+σ, σ = fs(kw), ĉ2 = ĉxi1
1 ,

ĉ3 = H(hr).

• KE-P-Enc(i, xi2, c
∗
i (kw)). The proxy computes c(kw) = (c1, c2) such that

c1 = (ĉ1)
xi2 · ĉ2 = ĉxi2+xi1

1 = (gr+σ)x = hr+σ and c2 = ĉ3 = H(hr).

Note that there is no decryption algorithm for this keyword encryption
scheme. This is because the ciphertexts of the keywords are only used for
testing whether there is a match and do not need to be decrypted.

Next we will prove that this keyword encryption scheme is secure, i.e. that
the proxy learns nothing about the encrypted keyword in a chosen plaintext
attack.

Theorem 2. If the DDH problem is hard relative to G, then the keyword en-
cryption scheme is IND-CPA secure against the proxy. That is, for all PPT
adversaries A there exists a negligible function negl such that

SuccAKE,P (k) = Pr

2

6

6

6

6

6

6

6

4

b′ = b

(Params,MSK)← KE-Init(1k),
(Ku,Ks)← KE-KeyGen(MSK,U),

kw0, kw1 ← A
KE-U-Enc(Ku,·)(Ks)

b
R
← {0, 1},

c∗i (kwb) = KE-U-Enc(xi1, kwb),

b′ ← AKE-U-Enc(Ku,·)(Ks, c
∗
i (kwb))

3

7

7

7

7

7

7

7

5

< 1
2

+ negl(k)

Proof. This proof again starts from a PPT adversary A′ who attempts to chal-
lenge the DDH problem using A as a sub-routine. A′ does the following:

• A′ sets h = g1 and also chooses H, f, s. It then passes (G, g, q, h, H, f) as

the public parameters to A. A′ chooses randomly xi2
R
← Zq for each i ∈ U

and computes gxi1 = hg−xi2 = gα−xi2 . It keeps (i, gxi1 , xi2) and passes
each (i, xi2) to A.

14



• Whenever A requires oracle access to the user encryption algorithm, it

passes kw to A′. A′ chooses r
R
← Zq and replies with c∗i (kw) = (ĉ1, ĉ2, ĉ3)

where ĉ1 = gr+σ, σ = fs(kw), ĉ2 = (gxi1)r+σ = ĉxi1
1 and ĉ3 = H(hr).

• A generates two keywords kw0, kw1. A
′ chooses a random bit b and gen-

erates: c1 = g2 · g
σb , c2 = g3g

−xi2

2 gxi1σb and c3 = H(g3). c∗i (kwb) =
(c1, c2, c3) is given to A.

• A outputs a bit b′, if b = b′, A′ outputs 1, otherwise outputs 0.

Case 1: g3 = gγ , in this case since both β and γ are random we have:

Pr[A′(G, q, g, gα, gβ, gγ) = 1] =
1

2

Case 2: g3 = gαβ , in this case c2 = gxi1

2 gσbxi1 which is a valid ciphertext,
then we have:

Pr[A′(G, q, g, gα, gβ, gαβ) = 1] = SuccAKE,P (k)

If DDH problem is hard regarding G, we have SuccA
KE,P (k) < 1

2 + negl(k).

In Theorem 1 and 2 we proved that no PPT adversary can learn anything
about the plaintext given a single ciphertext. The following corollary shows that
it follows that no PPT adversary can learn anything given multiple ciphertexts.

Corollary 1. Under the same assumptions, the proxy encryption scheme PE
and the keyword encryption scheme KE have indistinguishable multiple encryp-
tion under a chosen-plaintext attack against the proxy.

Proof. The difference is that now the adversary A is allowed to challenge the
game with two vectors of messages ~M0 and ~M1 where | ~M0| = | ~M1| = t. Let
~C(i) = C(m1

0), ..., C(mi
0), C(mi+1

1 ), ..., C(mt
1)). It is clear that

SuccA(k) =
1

2
Pr[A(~C0) = 0] +

1

2
Pr[A(~Ct) = 1]

Consider an adversary A′ that tries to challenge the single encryption IND-CPA
game using the corresponding multiple encryption adversaryA as a sub-routine.
Since the settings in the two games are the same, A′ passes all the parameters
it received to A and answers A’s oracle queries by querying the oracle in its
own game. Then A′ obtains two vectors ~M0 and ~M1 from A. A′ chooses a

random i
R
← [1, t], uses mi

0, m
i
1 as its challenge and gets ci

b as the result. It then
constructs a hybrid vector (c1

0, ...c
i−1
0 , ci

b, c
i+1
1 , ...ct

1) and sends it to A. It outputs
the bit b′ which is output by A. It is easy to see that in this case A is required
to distinguish ~C(i) and ~C(i−1) and the probability that A can distinguish the
two is:

Succi
A(k) =

1

2
Pr[A(~C(i)) = 0] +

1

2
Pr[A(~C(i−1)) = 1]

15



since i is randomly chosen, SuccA′ is

SuccA′(k) =
∑t

i=1 Succi
A

(k) · 1
t

= 1
2t

(Pr[A(~C0) = 0] +
∑t−1

i=1(Pr(A(~Ci) = 0) + Pr[A(~Ci) = 1])

+Pr[A(~Ct) = 1])

= 1
t
(1
2Pr[A(~C0) = 0] + 1

2Pr[A(~Ct) = 1]) + t−1
2t

= 1
t
SuccA(k) + t−1

2t

Since SuccA′(k) < 1
2 + negl(k), it follows that SuccA(k) < 1

2 + negl(k).

5.3 Multi-user Searchable Data Encryption

Enc

kw1, ..., kwk

D
c∗i (D) = (gr, grxi1D)

,

User i

Re-

enc

,

c∗i (D) c(D) = (gr, grxD)
Server

σ1, ..., σk

fs

c∗i (σ1), ..., c
∗

i (σk) c∗i (σm) =







c1 = grm+σm

c2 = c
xi1
1

c3 = H(hrm)

(c∗i (D), c∗i (σ1), ..., c
∗

i (σk))

c∗i (σ1), ..., c
∗

i (σk)
c(σ1), ..., c(σk) c(σm) =

{

c1 = h
rm+σm

c2 = H(hrm)

xi1

xi2

Figure 2: Data Encryption Process

Now we are ready to present our multi-user searchable data encryption
scheme SE . It is constructed as follows:

• Init(1k): the KMS takes as input the security parameter 1k and invokes
KE-Init(1k), outputs Params=(G, g, q, h, H, f) and a master key set MSK=
(x, s).

• Keygen(MSK,i): the KMS takes as input the master key set and a user
identifier i, generates two keys Kui, Ksi by invoking KE-Keygen(MSK, i).
Each Kui is sent securely to the user i and each Ksi is sent securely to the
server along with the user ID. The server updates its user-key mapping
set Ks = Ks ∪ (i, Ksi).

• Enc(Kui,D,kw(D)): as shown in Figure 2, run by a user with his key Kui

to compute c∗i (D) = PE-U-Enc(Kui, D) and for each keyword in kw(D)
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Trapd
oor

User i

c(D) = (gr, grxD)

Server

w

Test PDec

Dec D

c2

?
= H(c1T

−1)
Yes

c′i(D) = (gr, grxi1D)

fs

σw

Ti(w) =

{

t1 = g−rgσw

t2 = gxi2rgxi1σw

T = g
xσw

c(σm) =

{

c1 = h
rm+σm

c2 = H(hrm)

xi1 xi1

xi2 xi2

Figure 3: Search and Decryption Process

c∗i (kw) = KE-U-Enc(Kui, kw), then outputs ciphertext c∗i (D, kw(D)) =
(c∗i (D), c∗i (kw1), ..., c∗i (kwk)), where k = |kw(D)|.2

• Re-enc(i,Ksi,c
∗
i
(D,kw(D))): as shown in Figure 2, run by the server to re-

encrypt a ciphertext tuple from a user i. The server finds the correspond-
ing key Ksi = xi2 and outputs re-encrypted ciphertext c(D, kw(D)) =
(c(D), c(kw1), ..., c(kwk)), where c(D) = PE-P-Enc(i, Ksi, c

∗
i (D)) and

c(kwk) = KE-P-Enc(i, Ksi, c
∗
i (kwk)) for each c∗i (kwk) . c(D, kw(D)) is

then inserted into the encrypted data storage E(D) = E(D) ∪ c(D, kw(D)).

• Trapdoor(Kui,w): as shown in Figure 3, run by a user which takes the
user’s key Kui = (xi1, s) and a keyword w and outputs a trapdoor. The

user chooses a random number r
R
← Zq, computes Ti(w) = (t1, t2) for the

word such that t1 = g−rgσw and t2 = hrg−xi1rgxi1σw = gxi2rgxi1σw where
σw = fs(w).

• Pre-dec(i,Ksi,c(D)): as shown in Figure 3, run by the server. c(D) is par-
tially decrypted as c′i(D) = PE-P-Dec(i, Ksi, c(D)). c′i(D) is returned to
the user i.

• Search(i,Ti(w), E(D),Ksi): as shown in Figure 3, run by the server. On
receiving Ti(w) = (t1, t2), find the corresponding Ksi = xi2 and compute
T = txi2

1 · t2 = gxσw . For each c(D, kw(D)) ∈ E(D), test each c(kw) =

2For the sake of simplicity, in the description of the algorithm, the document is encrypted

directly under PE-U-Enc. However in practice, the document can be encrypted by a more

efficient hybrid encryption scheme, where a secure symmetric cipher is chosen to encrypt the

document under a random key and the random key is then encrypted under PE-U-Enc. Using

such a hybrid scheme will not decrease the security of the scheme as long as the symmetric

cipher is IND-CPA secure.
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(c1, c2) = (hrgxσkw , H(hr)), if c2 = H(c1 · T
−1) then w = kw with a

overwhelming probability, i.e. a match is found. Then c(D) is partially
decrypted as c′i(D) = PE-P-Dec(i, Ksi, c(D)). c′i(D) is returned to the
user i.

• Dec(Kui,c
′
i
(D)): as shown in Figure 3, a user decrypts all c′i(D) in the result

set by invoking PE-U-Dec(Kui, c
′
i(D)).

• Revoke(i) run by the server. Given i, the server updates its user-key map-
ping set Ks = Ks \ (i, Ksi).

It is easy to see that the correctness of the searching algorithm follows di-
rectly from the collision resistant property of H . If w = kw, then c1 · T

−1 =
hrgxσkw ·g−xσw = hr for sure and therefore H(hr) = H(c1 ·T

−1). This means the
search algorithm will not produce false negative results. In the case that a false
positive occurs, we have w 6= kw which means c1 · T

−1 = hrgxσkw · g−xσw 6= hr

and we also have H(hr) = H(c1 · T
−1). This equally means we find a collision

of H . Since the probability of finding a collision is negligible for a collision
resistant hash function, the false positive rate is also negligible.

Note that the re-encryption step here is only used for controlling the write
operation. That is, only an authorised user should be able to insert a document
into the storage. If another mechanism for the same purpose is available, this
step can be omitted. Because h = gx is available as a public parameter in the
system, the user can encrypt a document and the keyword set as c(D, kw(D))
directly using gx. Taking out this step will also decrease the server side compu-
tation load.

We now analyse the security of the multi-user searchable encryption scheme
according to Definition 10.

Theorem 3. If the DDH problem is hard relative to G, then SE is a non-
adaptive indistinguishable secure multi-user searchable encryption scheme.

Proof. First let’s consider an adversary A′ who wants to challenge the proxy
encryption IND-CPA game using A as a sub-routine. A′ does the following:

• A′ receives public parameters G, q, g and the server side keys. It then
picks a random user ID u and queries its oracle with m = 1 to obtain
the ciphertext gr, grxu1. A′ then computes grxu1grxu2 = grx. It can then
compute for every user i, grxi1 = grxg−rxi2 since it knows xi2.

• A′ sets g0 = gr and h = grx = gx
0 . A′ also chooses H, f, s. A′ sends

(G, q, g0, h, H, f) to A and also the server side keys.

• Recall that Hi is a sequence (D, qu1

1 , ..., qui

i ) A′ can generate a view of the
history by doing the following steps:

1. For each document and its associated keyword set (D, kw(D)) in D,
do the following: for each keyword kw, choose a random number z,
compute ĉ1 = gz+σ

0 , ĉ2 = (grxi1)z+σ = (gz+σ
0 )xi1 , ĉ3 = H(hz) where
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σ = fs(kw). Then compute (c1, c2) as c1 = ĉxi2

1 · ĉ2, c2 = ĉ3. (c1, c2)
is the ciphertext for this keyword. It then chooses a random number
r̃ and computes (gr̃

0 , g
r̃x
0 D).

2. For each insert query qui = (D, kw(D)), compute ĉ1, ĉ2, ĉ3 for each
keyword as above and (gr̃

0 , g
r̃xi1

0 D). (ĉ1, ĉ2, ĉ3) and (gr̃
0 , g

r̃xi1

0 D) are
valid ciphertext for the insert query.

3. For each search query qui = w, construct the result set rs(w) for
the query. Choose a random number r̂, compute σw = fs(w) and
generate t1 = g−r̂

0 gσw

0 , t2 = gxi2r̂
0 gxi1σw

0 . (t1, t2) is the trapdoor. For
each document whose identifier id(D) is in rs(w), find the encrypted
version (the document must be encrypted in the above two steps)
and partially decrypt it using the server side key.

• A outputs Hi0, Hi1. A
′ encrypts every keyword and trapdoor in Hi1 by

itself and challenges its game with ~D0, ~D1 which returns a result PE( ~Db)

where ~Db is the vector of all document in Hib. It combines the results to
form a view (PE( ~Db),KE( ~kw1), T rapdoor(~w1)) (in the correct order as in
the trace) and returns it to A.

• A′ outputs b′ which is output by A.

By Theorem 1 and Corollary 1, it is clear that:

1
2 + negl(k) > SuccA

′

PE
(k)

= 1
2Pr[A((PE( ~D0),KE( ~kw1), T rapdoor(~w1))) = 0]

+ 1
2Pr[A((PE( ~D1),KE( ~kw1), T rapdoor(~w1))) = 1]

Now let us consider another adversary A′′ who wants to distinguish the
pseudorandom function f using A as a sub-routine. It does the following:

• It generates (G, g, q, h, H) as public parameters, sends the parameters to
A along with f . For each user i, it chooses randomly xi1, xi2 such that
xi1 + xi2 = x. Send all (i, xi2) to A and keeps all (i, xi1, xi2).

• A outputs Hi0, Hi1. A
′′ encrypts all the documents in Hi0 as PE( ~D0).

It also chooses a random b, then consults its oracle and encrypts all the
keywords and trapdoors in Hib. It combines the results to form a view
(PE( ~D0),KE( ~kwb), T rapdoor(~wb)) and returns it to A.

• A outputs b′. A′′ outputs 1 if b′ = b and outputs 0 otherwise.

There are two cases to consider:
Case 1: the oracle in A′′’s game is the pseudorandom function f , then

Pr[A′′fs(·)(1k) = 1] = 1
2Pr[A((PE( ~D0),KE( ~kw0), T rapdoor(~w0))) = 0]

+ 1
2Pr[A((PE( ~D0),KE( ~kw1), T rapdoor(~w1))) = 1]
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Case 2: the oracle in A′’s game is a random function F , then for each distinct
keyword wb, σwb

is completely random to A. Moreover we know the traces are

identical, so KE( ~kwb) and Trapdoor(~wb) are completely random to A. In this
case

Pr[A′′F (·)(1k) = 1] =
1

2

Since f is a pseudorandom function, by definition

|Pr[A′′fs(·)(1k) = 1]− Pr[A′F (·)(1k) = 1]| < negl(k)

Pr[A′′fs(·)(1k) = 1] < 1
2 + negl(k)

Sum SuccA
′

PE
(k) and Pr[A′′fs(·)(1k) = 1] up, we have

1 + negl(k) > 1
2Pr[A((PE( ~D0),KE( ~kw0), T rapdoor(~w0))) = 0]

+ 1
2Pr[A((PE( ~D0),KE( ~kw1), T rapdoor(~w1))) = 1]

+ 1
2Pr[A((PE( ~D0),KE( ~kw1), T rapdoor(~w1))) = 0]

+ 1
2Pr[A((PE( ~D1),KE( ~kw1), T rapdoor(~w1))) = 1]

= 1
2 + SuccASE(k)

Therefore we have SuccA
SE

(k) < 1
2 + negl(k).

5.4 User Revocation

In our scheme, revoking a user’s access is straightforward. The KMS sends a
request to the server to remove the server side keys. After the keys have been
removed, the user cannot access the data unless the KMS generates new keys
for him.

Inserting data and generating trapdoors must be done by the server and must
involve both the user side keys and the server side keys. If we assume the server
is honest, it is trivial to show that after the server removes the revoked user’s
server side keys, the user cannot insert new data or search the data anymore.

The revocation of read permission, however, is not so trivial. Although a
revoked user cannot directly access the documents stored on the server, he may
be able to eavesdrop the communication between the server and the authorised
users, namely the insert queries and the result sets of search queries. In the
following theorem, we prove that a revoked user cannot distinguish insert queries
generated by authorised users even if he has a revoked key set.

Theorem 4. If the DDH problem is hard relative to G, then the revoked users
cannot distinguish the insert queries generated by authorised users. That is, for
all PPT adversaries A there exists a negligible function negl such that

SuccASE,U (k) = Pr

2

6

6

6

6

6

4

b′ = b

(Params,MSK)← Init(1k),
(Ku,Ks)← KeyGen(MSK,U),

(q0, q1)← A
Enc(Ku,·)(Kui),

j ← U , j 6= i, b
R
← {0, 1},

b′ ← AEnc(Ku,·)(Kui, VKuj
(qb))

3

7

7

7

7

7

5

< 1
2

+ negl(k)
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where qb = (Db, kw(Db)) is an insert query such that Tr(q0) = Tr(q1).

Proof. Consider an adversary A′ who attempts to challenge the DDH problem
using A as a sub-routine.

• A′ sets h = g1 and also chooses H, f, s. It passes (G, g, q, h, H, f) as the
public parameters to A. A′ also chooses for each authorised user u a ran-
dom xu2 from Zq and computes gxu1 = hg−xu2 . It keeps all (u, gxu1 , xu2).
It then chooses a random xi1 from Zq and sends (xi1, s) to A as its user
side key set.

• A′ can answer A’s oracle query for q = (D, kw(D)) as follows:

1. For the document D, choose a random r from Zq and compute
gr, grxu1D.

2. For each keyword kw ∈ kw(D), choose a random r from Zq and
compute ĉ1 = gr+σ, σ = fs(kw), ĉ2 = (gxu1)r+σ and c3 = H(hr).

• After a certain time, A generates q0, q1. q0 and q1 can be viewed as two
vectors of equal size t where the first element in ~qb is the document Db

and the rest t− 1 elements are the keywords. A′ chooses a random index

n
R
← [1, t] and a random bit b. It constructs a hybrid ciphertext vector ~Cn

as follows:

1. Encrypt the elements q1
0 , ..., q

n−1
0 in ~q0 and the elements qn+1

1 , ..., qt
1

in ~q1 as above.

2. Encrypt qn
b as (g2, g3g

−xu2

2 Db) when n = 1 and as (c1, c2, c3) where
c1 = g2g

σb , c2 = g3g
−xu2

2 gxu1σb and c3 = H(g3) when n > 1.

• ~Cn is returned to A. A′ then outputs the bit b′ output by A.

Use a hybrid argument similar to that used in the proof of Corollary 1,
when g3 = gc, the probability of A outputs 1 is exactly 1

2 . When g3 = gab, the
probability of A outputs 1 is 1

t
SuccA

SE,U (k) + t−1
2t

. Since A′ outputs 1 when

A outputs 1, if the DDH problem is hard, then it follows that SuccA
SE,U (k) <

1
2 + negl(k).

Theorem 5 states that a revoked user cannot distinguish the result sets of
search queries. It follows directly from Theorem 4. Intuitively, each partially
decrypted document in the result set returned to a user i is c′i(D) = (gr, grxi1D).
And let us also consider an insert query submitted by the same user qi =
(D, kw(D)). The view of the query VKui

(qi) = ((gr̂, gr̂xi1D), c∗i (kw(D))). It
is clear that if the adversary can distinguish the search query result sets, it
can also distinguish the insert queries, which contradicts the theorem we have
proved.

Theorem 5. If the DDH problem is hard relative to G, then the the revoked
users cannot distinguish the search result sets retrieved by authorised users. That
is, for all PPT adversaries A there exists a negligible function negl such that
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(R0, R1)← A
Enc(Ku,·)(Kui),
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R
← {0, 1},

b′ ← AEnc(Ku,·)(Kui, c
′
j(Rb))

3

7

7

7

7

7

5

< 1
2

+ negl(k)

where Rb = {Db1, ..., Dbn} is a search query result set such that |D0i| = |D1i|
for each Dbi ∈ Rb.

Using the same techniques we used in proving Theorem 4, we can also prove
Theorem 5. The proof is omitted.

It follows from the above theorems that as long as the server is honest and
the authorised users can protect their keys, revocability is guaranteed.

6 Discussion

6.1 Authentication

In our scheme, each authorised user has a secret key xi1 and the server holds the
corresponding part xi2 such that xi1 + xi2 = x where x is the master key in the
system. This key pair can be used for mutual authentication and establishing
secure channels. An example protocol to demonstrate the idea is presented
below:

1. A user i sends a request to the server which contains his id: {i}.

2. The server retrieves the user’s server side key and generates a fresh nonce
N , replies the user with {gr, hrg−rxi2N}.

3. The user decrypts the message g−rxi1hrg−rxi2N = N , then generates a
fresh session key K and replies with {gr′

, hr′

g−r′xi1m} where m = (N −
1, K).

4. The server decrypts the message, checks N − 1 is correct, then the au-
thentication succeeds and both parties have the shared session key K.

The benefit is obvious: encryption prevents the server from learning what
is stored, but only gives us very basic controls over the users. We can control
which users can access the data by controlling the keys. But this all-or-nothing
mechanism may not be sufficient if we want to assign permissions to the users
based on their need to know. Authentication makes it possible to implement
fine-grained user access control mechanisms on top of the encryption scheme.
Since we believe the server is honest, we can let the server authenticate the users
and enforce our authorisation policies. It is also necessary if we need auditing
and accounting.
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6.2 Collusion Attacks

The main concern with proxy encryption schemes comes from a collusion attack.
If a user colludes with the server, they can easily recover the master keys by
combining their keys. Although some work has been done in [5] using bilinear
maps to prevent the colluded parties from recovering the master key, the collud-
ing parties are still able to decrypt the ciphertext with a weak secret they can
recover. Theoretically, the design of fully collusion-resistant proxy encryption
schemes is still an open problem.

However in practice, we can lower the risk to an acceptable level by imple-
menting other mechanisms. One possible solution is to store user side keys in
smart cards (or other tamper resistant devices). Another possible solution is to
split the master key into multiple shares and introduce multiple servers from
several SSPs competing with each other. The assumption is that a collusion
attack is only possible when all the SSPs involved collude and the SSPs are
competitors thus are unlikely to co-operate in such a collusion. We explain this
solution further by an example.

Consider now that we have two servers and they belong to different SSPs.
One server, say α, will be used as the primary server which stores the encrypted
data. The other server, say β, is used for countering collusion and needs to be
involved in the computation but does not necessarily need to store the data.
The first step is still to run Init(1k) to generate parameters (G, g, q, h, H, f) and
a master key set key MSK= (x, s). This is the same as in section 5.3. Then
we need to generate the user side key set and the server side key sets. The
algorithm Keygen(MSK, i) is modified a little bit because we have two servers.
Remember when we have only one server, x in the master key is split into xi1

and xi2 such that xi1 + xi2 = x. xi1 is given to the user and xi2 is given to
the server. If we have two servers α and β we split xi2 into xiα + xiβ = xi2

and send xiα to the server α and xiβ to the server β. It is easy to see that
xi1 + xiα + xiβ = x.

The primary server α runs the server side algorithms in section 5.3 without
any change. Only the user side algorithms are changed in order to add collusion
control.

To insert a document D and the associated keyword list kw(D), the user
first runs Enc(Kui, D, kw(D)). This algorithm is unchanged. So the document is
encrypted as (gr, grxi1D) and each keyword kwm is encrypted as (cm1, cm2, cm3)
where cm1 = grm+σm , cm2 = cxi1

m1, cm3 = H(hrm). Now the user needs to run an
additional interaction with the server β. The user sends gr in the ciphertext of
the document and cm1 in the ciphertext of each keyword to β. β uses its key
xiβ to compute grxiβ and c

xiβ

m1 and returns them back to the user. The user then
updates the ciphertexts by multiplying grxiβ with grxi1D and c

xiβ

m1 with cm2.
The ciphertext of the document becomes (gr, gr(xi1+xiβ)D) and the ciphertext

of each keyword becomes (cm1, c
xi1+xiβ

m1 , cm3). The updated ciphertexts are sent
to server α.

After receiving the ciphertexts, the server α runs the re-encryption algo-
rithm. This algorithm is unchanged. α computes grxiα and cxiα

m1 using the
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corresponding key xiα. After re-encryption, the ciphertext of the document be-
comes (gr, grxD) because grxiαgr(xi1+xiβ)D = gr(xi1+xiβ+xiα)D and xi1 + xiβ +
xiα = x. The ciphertext of a keyword kwm becomes (hrm+σm , H(hrm)) because

cxiα

m1 c
xi1+xiβ

m1 = c
xi1+xiβ+xiα

m1 = cx
m1 = g(rm+σm)x = hrm+σm . The ciphertexts are

inserted into the encrypted data storage.
To search, the user must generate a trapdoor of a keyword w with the help

from β. The user first computes t1 = g−rgσw and sends it to β. β computes
t
xiβ

1 and returns it back to the user. The user then computes t2 = hrtxi1

1 t
xiβ

1 =

hrt
xi1+xiβ

1 = gxrg−r(xi1+xiβ)gσw(xi1+xiβ) = grxiαgσw(xi1+xiβ). The user queries
with (t1, t2).

Given the trapdoor (t1, t2), α runs the search algorithm which is the same
as in section 5.3. α computes T = txiα

1 t2 = g−rxiαgσwxiαgrxiαgσw(xi1+xiβ) =
gσw(xi1+xiβ+xiα) = gσwx = hσw . Then α tests for each encrypted keyword
c(kw) = (hrm+σm , H(hrm)) to see whether H(hrm) = H(hrm+σmT−1). If so, a
match is found and the encrypted document will be returned to the user.

To decrypt a document, the document is first partially decrypted by α. α

runs the pre-decryption algorithm in section 5.3. Given the ciphertext (gr, grxD),
α computes g−rxiα and grx−rxiαD = gr(xi1+xiβ)D. (gr, gr(xi1+xiβ)D) is returned
to the user. The user then sends gr to β and gets g−rxiβ back. The user can
then fully decrypt the document by first computing g−rxi1 and then multiplying
gr(xi1+xiβ)D with g−rxi1 and g−rxiβ .

This approach can be easily extended to n servers by splitting xi2 into n

shares such that they add up to xi2 and give one share to each server. To
encrypt, search and decrypt, the user must first interact with all n− 1 collusion
control servers and then with the primary server.

Introducing more servers will not weaken the security of the system. It can
be proved by a simple reduction: if in an n-server setting an adversary A′ who
controls up to n servers can break the system with non-negligible probability,
then in a single-server setting an adversary A can use A′ to break the system
with non-negligible probability. A just splits xi2 randomly into n shares and
givesA′ the number of shares it needs. That is, with multiple servers, the scheme
is at least as secure as with one server. And obviously, splitting the master key
into multiple shares makes collusion harder: it requires all the servers and at
least one user to collude together to recover the master key.

7 Implementation and Performance

We implemented a prototype of our scheme in Java 1.6 using the big integer class
provided by the standard API. We used a 1024-bit prime p, a 160-bit prime q

and SHA-1 as the hash function to encrypt a single table database. To compare,
we also measured the performance of the enhanced RSA-based scheme that we
proposed in the earlier version of this paper [13]. The RSA-based scheme was
implemented with a 1024-bit RSA key pair for the proxy encryption and a 1024-
bit prime p, a 160-bit prime q and SHA-1 for the keyword encryption. The tests
were executed on a Intel Core2 Duo 2.53 GHz MacBook Pro with 4 GB of RAM.
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Figure 4: Performance Evaluation of Individual Operations

In the first experiment, we measured the execution time of each of the follow-
ing operations: (1) PE-P-Enc: the server side proxy encryption; (2) PE-U-
Enc: the user side proxy encryption; (3) PE-P-Dec: the server side proxy de-
cryption; (4) PE-U-Dec: the server side proxy decryption; (5) KE-P-Enc: the
server side keyword encryption; (6) KE-U-Enc: the user side keyword encryp-
tion; (7) Trapdoor(U): the user side trapdoor generation; (8) Trapdoor(P):
the server side trapdoor generation; (9) Trapdoor-test: the trapdoor/keyword
match test.

The chart in Figure 4 shows the results. The time on the X-axis is given in
milliseconds. The figure provides the average time for 10,000 executions. We
can see from the chart that the proxy encryption/decryption operations (PE-P-
Enc, PE-U-Enc, PE-P-Dec and PE-U-Dec) are more efficient in the new scheme.
This is because to achieve the same security level, the exponents used in the
El Gamal based scheme are smaller than those used in the RSA based scheme
(160-bit vs. 1024-bit). The test results of the server side keyword encryption
operations in the two schemes are quite close. The performance of the user
side keyword encryption operation is better in the new scheme. The difference
comes from the fact that in the new scheme this operation requires two modular
exponentiations while in the old scheme requires three. The trapdoor generation
is slower in the new scheme because the algorithm is slightly more complex and
requires more arithmetic operation. Overall, the El Gamal based scheme is
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Figure 5: Performance Evaluation of Bulk Encryption/Decrytpion

better than the RSA based scheme in performance.
In the second experiment measured the performance of bulk encryption/decryption.

The data set we used was 100 pdf files, the total size was 99.2 MB. Each docu-
ment was associated with 10 keywords, i.e. 1000 keywords to encrypt in total.
The files were encrypted with 128-bit AES and the AES keys were encrypted
using proxy encryption. The results are shown in Figure 5. In the figure, P
means server side operation and U means user side operation. We can see that
the performance of the new scheme is better than the old one.

The third experiment was to measure the search times with various sized
databases. We used databases containing 10,000 keywords, 100,000 keywords
and 1,000,000 keywords. We used two strategies in searching the databases: the
first one was to search the entire database with a single thread and the second
one was to divide the database into several equal-sized parts and search all the
parts in parallel using multiple threads. The results are shown in Figure 6. In
the figure, MT means using the multi-threaded strategy. We can see that in
both cases the performance of the new scheme is similar to or slightly better than
the old one. We can also see that with multi-core computers, multi-threading
does boost the performance. In our case, the computer used in the experiment
has two cores and the search time was nearly halved with the largest database.

We also measured the performance with a different number of collusion con-
trol servers as described in 6.2. The number of collusion control servers ranges
from 0 to 9. The collusion control servers ran on dedicated machines each with
an Intel Core2 Duo 2.13 GHz CPU and 2 GB of RAM. We measured the time of
the modified user-side operations which include the user-side processing time,
the collusion control server side processing time and the communication time
with the collusion control servers. Since the interactions with the collusion con-
trol servers are independent, they can be done in parallel. We can see from
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Figure 6: Performance Evaluation of Searches on Different Database Sizes

Figure 7 that there is an overhead when using collusion control servers. How-
ever, additional collusion control servers resulted in only very small increase in
the overhead. Therefore, having more collusion control servers will not have a
big impact on scalability of the system.

Note that we did not do any optimisation on the code. Also our implemen-
tation is based on group Z

∗
p as described in the paper, however it is not hard

to reformulate the idea based on elliptic curve groups, which might be more
efficient.

8 Conclusion and Future Work

In this paper, we presented a new data encryption scheme that does not require
a trusted data server. In the scheme the server can perform encrypted searches
and updates on encrypted data without knowing the plaintext or the decryption
keys. Unlike previous searchable data encryption schemes that require a shared
key for multi-user access, each user in our system has a unique set of keys. The
data encrypted by one user can be correctly decrypted by all the authorised users
in the system. Moreover the keys can be easily revoked without any overhead,
i.e. without having to re-encrypt the stored data. We provided a construction
for the scheme built on top of proxy encryption schemes. We gave the formal
definitions and proofs of security. We also implemented the scheme in Java and
evaluated the performance.

One aspect of our future work is to achieve access pattern privacy. A weak-
ness of our scheme and most of the other keyword-based search schemes is that
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Figure 7: Performance Evaluation under Collusion control

the server knows the access pattern of the users which allows it infer some in-
formation about the queries. One possible direction is to combine our scheme
with Private Information Retrieval (PIR) schemes. PIR schemes allow a user
to retrieve data items from a database without revealing to the database which
items were queried. By combining PIR, the search queries can be executed
without revealing the access pattern to the server. This idea has been inves-
tigated in [9] and a scheme for single-reader/multiple-writers environment has
been proposed in the paper. However, PIR schemes are computationally ex-
pensive. Using secure hardware assisted PIR schemes which are more efficient
[27, 28] is a possible approach to address this.

Another possible extension may be to integrate bucketization [17, 18]. Buck-
etization means to partition an ordered attribute domain into a set of buckets
and each of which is identified by a tag. Range queries can be translated into
querying a set of bucket tags. A tag is equivalent to a keyword and can be easily
encrypted and tested in our scheme. This would allow our scheme to support
range queries. Another benefit of bucketization is the result set may contain
some false positive results, which can obscure the access pattern. However, the
impact on security needs to be carefully analysed.

Secure indexes [15, 29] is also a promising technique that is used to improve
the performance and decrease the storage overhead of searchable encryption
schemes. We will investigate the use of secure indexes in multiple users settings.
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