
Flexible Resolution of Authorisation Conflicts in
Distributed Systems∗

Changyu Dong, Giovanni Russello, Naranker Dulay

Department of Computing, Imperial College London
180 Queen’s Gate, London, SW7 2AZ, UK

{changyu.dong,g.russello,n.dulay}@imperial.ac.uk

Abstract. Managing security in distributed systems requires flexible
and expressive authorisation models with support for conflict resolu-
tion. Models need to be hierarchical but also non-monotonic supporting
both positive and negative authorisations. In this paper, we present an
approach to resolve the authorisation conflicts that inevitably occur in
such models, with administrator specified conflict resolution strategies
(rules). Strategies can be global or applied to specific parts of a sys-
tem and dynamically loaded for different applications. We use Courteous
Logic Programs (CLP) for the specification and enforcement of strate-
gies. Authorisation policies are translated into labelled rules in CLP and
prioritised. The prioritisation is regulated by simple override rules spec-
ified or selected by administrators. We demonstrate the capabilities of
the approach by expressing the conflict resolution strategy for a moder-
ately complex authorisation model that organises subjects and objects
hierarchically.

1 Introduction

In modern enterprise systems restricting access to sensitive data is a critical
requirement. However, this usually involves a large number of objects which may
have different security requirements. The complexity of managing such systems
results in high administrative costs and long deployment cycles. This worsens as
a system expands because the effort and time required for management becomes
a burden. It is important that security management procedures are simplified
and automated to reduce administrative costs [1, 2]. Policy-based management
is potentially a more appropriate solution where security management includes
support for the specification of authorisation policies, and the translation of
these policies into information which can be used by enforcement mechanisms.

Early authorisation models were usually monotonic and supported only one
type of policy. Most recent authorisation models are non-monotonic and sup-
port both positive and negative authorisation policies [3–7]. The advantage of

∗This research was supported by the UK’s EPSRC research grant EP/C537181/1
and forms part of CareGrid. We also acknowledge financial support in part from the
EC IST EMANICS Network of Excellence (26854). The authors would like to thank
the members of the Policy Research Group at Imperial College for their support and
to Jorge Lobo at IBM T. J. Watson research center for his advice.



supporting both is greater flexibility, expressiveness and convenience. However,
conflicts can arise when both positive and negative policies are applicable at
the same time. This type of conflict is referred to as a modality conflict [8].
When applying a non-monotonic authorisation model in large distributed sys-
tems, modality conflicts are hard to avoid. They can arise due to many rea-
sons, such as omissions, errors or conflicting requirements. Therefore, conflict
resolution is an important practical requirement in systems that support non-
monotonic authorisation.

Many conflict resolution strategies have been developed. The most primitive
conflict resolution rules for authorisation policies include:

– Negative (positive) takes precedence: If a conflict arises, the result will be
negative (positive).

– Most specific (general) takes precedence: When policies defined at different
levels in a hierarchy conflict, the most specific (general) one wins.

– Strong and weak. Some policies are marked as strong authorisations and
others are marked as weak. In the case they conflict, strong ones win.

However, real application may become so complex that using only one rule may
not guarantee solving the conflict (for example, when two strong policies con-
flict). In these cases, either the conflict ends up undecided or further resolution
rules must be applied to resolve the conflict. As a consequence, more and more
sophisticated conflict resolution rules are designed to fulfill the requirements
posed by applications.

On the other hand, different applications usually have different need for con-
flict resolution. For example, negative takes precedence would be one requirement
in military systems while positive takes precedence may be preferred in open sys-
tems. To make an authorisation model flexible, it is better not to fix the conflict
resolution strategy at design time, but leave it to the system administrators to
decide what is the appropriate strategy for a system or sub-system. This raises
the questions: how to express the variety of conflict resolution requirements that
exist in real-world applications and how to make it easy for administrators to
express such requirements. In this paper, we show how to capture and define au-
thorisation conflict resolution strategies using small Courteous Logic Programs
(CLP) [9].

We chose CLP for three main reasons: (1) it has a clear well-defined semantics
that is easy to understand; (2) the conflict handling in CLP is context-neutral,
i.e. it does not depend on what the application is, or on what hierarchies are
being used. This feature is vital to many policy frameworks, which must be flex-
ible in order to serve different applications; (3) the declarative nature of logic
programs makes it possible to separate the conflict resolution rules from the im-
plementation details, and therefore makes it possible to define resolution rules as
reusable meta-policies that can be published and used by different organisations
with only minimal changes to their existing policy management system.



2 Courteous Logic Programs

2.1 Overview

Courteous Logic Programs (CLP) is motivated largely by extended logic pro-
grams [10] where classical negation is permitted in rule heads and bodies. Ex-
tended logic programs are more expressive than normal logic programs where
the negative information is implicit. For example the statement: “Penguins do
not fly” can be expressed naturally as:

¬fly(X) ← penguin(X).

However, explicit negation may also lead to contradictory. For example, with
the above statement and the following ones:

fly(X) ← bird(X).
bird(X) ← penguin(X).

penguin(tweety).

We can derive both ¬fly(tweety) and fly(tweety), which contradict each
other. The design goal of CLP is to preserve the expressive power brought by
explicit negation in extended logic programs while also guaranteeing a consistent
and unique set of conclusions. This is done by labelling the logic rules and pri-
oritising the labels. If two conflicting conclusions can be derived, the conclusion
being derived from a rule with a higher priority label will override the one with
a lower priority label. In the case that each conclusion is derived from multi-
ple rules with different priorities, the conclusion from the rule with the highest
priority wins.

We now illustrate the intuition by a simple example. If we label the rule “birds
fly” with a label 〈bird〉, and the rule “Penguins do not fly” with a label 〈penguin〉.
And imagine there exists a super-penguin which can fly, and its name is Tweety,
we add the following rules and label the first with a label 〈superPenguin〉:

fly(X) ← superPenguin(X).
superPenguin(tweety).

Of course by knowing X is a penguin, we can draw a more precise conclu-
sion about X than only knowing X is a bird. We decide by commonsense that
〈penguin〉 has a higher priority than 〈bird〉, and 〈superPenguin〉 has a higher
priority than 〈penguin〉 by the same reason.

The conclusion fly(tweety) can be drawn by two rules with labels {〈bird〉,
〈superPenguin〉} and ¬fly(tweety) can be drawn by one rule with label {〈penguin〉}.
Although 〈penguin〉 beats 〈bird〉, it is beaten by 〈superPenguin〉. Therefore the
conclusion fly(tweety) is the winner because it is supported by the rule with
the highest priority.

CLP is also computationally tractable for the (acyclic) propositional case,
e.g. under the Datalog restriction. The entire answer set can be computed in



O(m2)time, where m is the size of the ground-instantiated program. This makes
CLP more attractive especially in our case because most of the authorisation
policies can be expressed in Datalog.

2.2 Syntax

A courteous logic program can be viewed as a union of two disjoint parts: the
main sub-program and the overrides sub-program.

The main sub-program is defined as labelled rules. A labelled rule has the
form:

〈lab〉 L0 ← L1 ∧ . . . ∧ Lm∧ ∼ Lm+1 ∧ . . .∧ ∼ Ln

where lab is an optional label for the rule, each Li is a literal. If a rule has a
label, the label is preserved during instantiation, all the ground instances of the
rule have the same label. A literal can be of the form A or ¬A where A is an
atom and ¬ is the classical negation operator. ∼ stands for negation-as-failure.

A special binary predicate overrides is used to specify prioritisation. overrides(i, j)
means that the label i has strictly higher priority than the label j. overrides is
syntactically reserved and cannot appear in the rule body. Given a set Lab of
all the labels in the program, overrides must be a strict partial order over Lab,
i.e. transitive, antisymmetric and irreflexive.

The program must be acyclic and stratified which means one can restructure
the program into separate parts in such a way that references from one part refer
only to previously defined parts.

2.3 Semantics

The semantics of CLP is defined using the concept of an answer set. Let C be a
courteous logic program, it has a unique answer set S which is defined as follows.

We use Cinstd to denote the logic program that results from each rule in C
having variables been replaced by the set of all its possible ground instantiations.
Letρ = p1, ..., pm be a sequence of all the ground atoms of Cinstd such that ρ
is a reverse-direction topological sort of the atom dependency graph. Reverse
means that body comes before head. We call ρ a total atom stratification of C.
For example, given the following logic program:

p(a) ← q(a).
p(a) ← p(b).

A total atom stratification is q(a), p(b), p(a). There may be multiple total strat-
ifications, but the answer set is independent of the total stratification choice.

Given a ρ such that all of the overrides atoms come before all the other atoms
and let pi be the ith ground atom in ρ, the answer set is constructed iteratively:

S0 = ∅
Si =

⋃

j=1,...,i

Tj , i ≥ 1



S =
⋃

i

Ti

where ∅ is the empty set and Ti is defined as follows:

Ti = {σpi|Candσ
i 6= ∅, ∀k ∈ Cand¬σ

i .∃j ∈ Candσ
i .overrides(j, k) ∈ Si−1},

Candσ
i = {j|labels(j, r),Head(r) = σpi, Body(r) ⊆ Si−1}

Here σ stands for a modality, either positive (+, usually omitted) or negative
(¬). ¬σ means the reverse modality of σ. label(j, r) means j is the label for rule
r. Head(r) is a ground literal in the head of the rule r, Body(r) is the set of all
ground literals in the body of r. The set Ti either consists of a single grounded
literal, or is empty. The literal is of positive sign (pi), or of negative sign (¬pi).

According to above definition, C |= p means that p is in the answer set of C.

3 Overview

Our approach is depicted in Figure 1. When a CLP-enabled policy system is
asked to decide on whether a (subject, target, action) request should be per-
mitted, it translates the authorisation policies associated with the request from
the underlying authorisation model (e.g. XACML) into labelled rules in CLP
(the main sub-program). The labelled rules for the request are then forwarded
to the policy decision point that makes the authorisation and uses the conflicts
resolution rules (the overrides sub-program) to resolve any conflicts by choosing
the rules with the highest priorities. If a system supports multiple authorisation
models, then a translation module is needed for each. Systems can also select
the conflict resolution rules needed on an application-by-application basis.

Fig. 1. Architecture of CLP-enabled policy system

4 Case Study: Hierarchical Conflict Resolution

To demonstrate the capabilities of CLP-based conflict resolution, we apply it
to a moderately complex authorisation model, Ponder2 [11]. Ponder2 supports



hierarchies that are used to define objects, entities and organisational structures
at different levels of scale from small embedded devices to complex services
and virtual organisations. It supports both positive and negative authorisation
policies. In Ponder2, managed objects (MOs) are organised in a tree-like domain
hierarchy according to various criteria such as geographical boundaries, object
type, responsibility and authority. Each domain in the hierarchy contains other
domains or MOs. Instances of MOs are allowed to be present in more than one
domain. In this way, if a domain represents a role then an instance of a MO can
be associated with multiple roles. The rationale for the authorisation model and
conflict resolution strategy are described in more detail in [12].

4.1 Domain Hierarchy and Authorisation Policies

Figure 2 shows a small concrete example of a hierarchically organised set of
Ponder2 authorisation policies for printers in a department. In the figure, each
circle represents a domain and the squares are MOs. A domain or an MO can be
addressed by its domain path which is a Unix-style path from the root domain
to the specified domain or MO. An MO may have multiple domain paths since
it can be in more than one domain. For example, there are two domain paths
for cd04: /Doc/DSE/Stud and /Doc/Stud/PhD.

Fig. 2. Domains and Authorisation Policies for Printers in a Department

Authorisation policies define what actions a subject can(not) invoke on a
target. If a domain is used as a subject or as a target, then the member MOs
of the domain inherit the policies defined for the domain. For example, in the
domain hierarchy shown in Figure 2, an authorisation policy P1 exists with
subject “/Doc”, target “/Ptr” and action “print”, then when MO cd04 sends
a request for action print to MO hue, the policy must be considered in the
authorisation process.

The syntax of an authorisation policy is simple. auth+ means this policy
is a positive authorisation policy and auth- means it is negative. final is an



optional keyword which gives authorisation policies more priority than non-final
ones. Constraints can be used to limit the applicability of policies. In the example
shown in Figure 2, we can see there are six policies defined at different levels
between different domains. We summarise the policies below.

P1 is a general policy which gives all the members in the Department of
Computing (Doc) access to all the printers (Ptr). Policy P2 is a negative policy
which prevents students (Stud) from using colour printers (Colr). However, P3
says that if a student is registered as a PhD student (PhD), then he can use colour
printers. P4 is a final policy which permits all the members of the distributed
software engineering (DSE) group to use all the printers located at level 5 of
the Huxley Building. P5, P6 together say that the students in the DSE group
cannot access colour printers other than hue.

4.2 Translating Authorisation Policies to CLP rules

When cd04 sends a print job to hue, the policies in Figure 2 are translated into
the labelled rules shown in Figure 3. The translation algorithm is specific to
the authorisation model. The translation module for Ponder2 evaluates all the
possible domain paths. The domain paths for cd04 are: {/Doc/DSE/Stud/cd04,
/Doc/Stud/PhD/cd04}. There are two domain paths for hue: {/Ptr/Colr/hue,
/P tr/HuxBldg/Lv5/hue}. For simplicity, we refer to these paths as ps1, ps2,
pt1, pt2 afterwards. For each combination (psi, ptj), two rules are added: one
with a label 〈(p)〉 and the other with a label 〈(n)〉. The first 8 rules in Figure 3
apply the principle that the overall authorisation is the aggregation of the path
authorisation (see section 4.3). The translation module also generates a rule for
the default authorisation policy labelled 〈(d)〉.

The remaining 9 labelled rules in Figure 3 are generated for the actual poli-
cies applied along a specific path combination. For each policy, the translation
module translates it into a labelled rule with head auth(psi, ptj , action) if the
policy is auth+, and ¬auth(psi, ptj , action) if the policy is auth−. These labelled
rules are used to derive the path authorisation for each path combination. The
label is of the form (type, tdis, sdis, mode). type is determined by the policy type.
If the policy is a final policy, then type = f . Otherwise type = n, which means
it is a normal policy. tdis, sdis are the distances regarding the path combination
(psi, ptj). If we view the domain hierarchy as a graph and each policy defined as
an arc between two nodes, then tdis is the number of nodes traversed from the
subject to the target through the “policy arc” and sdis is the number of nodes
traversed from the subject to the node where the arc starts. Finally, mode is
the modality of the policy. For an auth+ policy, mode = p, for an auth− policy,
mode = n.

Let’s take the (ps1, pt1) combination as an example to show how the poli-
cies are mapped into labelled rules. The policies relevant to this combination
are P1, P5, P6. P1 is a positive authorisation policy, so it is mapped into a
rule with head auth(/doc/dse/stud/cd04, /ptr/colr/hue, print). The label of
this rule is 〈(n, 5, 3, p)〉. Recall that P1 is a normal positive policy defined over
(/doc, /ptr, print). In the label, n means a normal policy, p means positive. The



%auth(cd04, hue, print) defined for each path combination.
〈(p)〉 auth(cd04, hue, print) ← auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n)〉 ¬auth(cd04, hue, print) ← ¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).

〈(p)〉 auth(cd04, hue, print) ← auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).
〈(n)〉 ¬auth(cd04, hue, print) ← ¬auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).

〈(p)〉 auth(cd04, hue, print) ← auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n)〉 ¬auth(cd04, hue, print) ← ¬auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

〈(p)〉 auth(cd04, hue, print) ← auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).
〈(n)〉 ¬auth(cd04, hue, print) ← ¬auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).

%default authorisation
〈(d)〉 ¬auth(cd04, hue, print).

%the first path combination,policies P1, P5 and P6
〈(n, 5, 3, p)〉 auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n, 2, 1, n)〉 ¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n, 1, 1, p)〉 auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).

%the second path combination,policies P1, P4
〈(n, 5, 3, p)〉 auth(/doc/dse/stud/cd04, /ptr/huxbldg/lv5/hue, print).
〈(f, 3, 2, p)〉 auth(/doc/dse/stud/cd04, /ptr/huxbldg/lv5/hue, print).

%the third path combination,policies P1, P2, P3
〈(n, 5, 3, p)〉 auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n, 3, 2, p)〉 ¬auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n, 2, 1, p)〉 auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

%the fourth path combination,policy P1
〈(n, 6, 3, p)〉 auth(/doc/stud/phd/cd04, /ptr/huxbldg/lv5/hue, print).

Fig. 3. Labelled Rules for the Example

distance from cd04 to the domain /doc is 3, the distance from hue to the do-
main /ptr is 2, therefore tdis is the sum, 5, and sdis is 3. P5 is a negative
authorisation policy, so the labelled rule is with a label 〈(n, 2, 1, n)〉 and head
¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print). In the same way, P6 is trans-
lated into a labelled rule with a label 〈(n, 1, 1, p)〉.

4.3 Conflict Resolution Strategy

Although policies defined over hierarchies simplify configuration and manage-
ment they also give rise to conflicts. In Ponder2, when multiple policies along
the path from the subject to the target have different signs, conflict occurs.



Ponder2 resolves these types of conflict using the following rules: (1) the most
specific policy takes precedence; (2) if two policies are equally specific, the neg-
ative one takes precedence. Informally, a policy that applies to a subdomain is
more specific than a policy that applies to any ancestor domains. The specificity
is determined by the distance from the subject to the target using the policy arc.
In case 4-(a), the path from the subject to the target through p1 is “s, c, a, d, t”
and the path from the subject to the target through p2 is “s, c, d, t”. The second
path is shorter, so p2 is more specific than policy p1. Case 4-(b) shows a not so
intuitive example where both paths have the same length. In such cases, Ponder2
gives higher importance to the subject side path. Therefore, p2 is more specific
than p1 because domain c is closer to s than domain a. Case 4-(c) shows an ex-
ample where two paths have the same length and are defined between the same
levels, i.e. they are equally specific. According to rule (2), p1 “wins” because it
is negative.

Fig. 4. Authorisation conflicts examples

Sometimes it is desirable that a general policy overrides more specific ones.
When a policy is defined as a final policy, it has a higher priority than the
normal ones. If more than one final policy exists, the conflict resolution rules for
final policies are: (1) the most general final policy takes precedence; (2) if two
policies are equally specific, the negative one takes precedence. In figure 4, final
policies are shown with a prefix [F]. In case 4-(d), a final policy “wins” even
though a normal policy p2 is more specific. In case 4-(e), the more general final
policy p1 overrides a more specific final policy p2. In case 4-(f), a final policy
p1 overrides another final policy p2 because they are equally general and p1 is
negative.

When there are multiple domain paths from a MO s to MO t, the domain
nesting rules cannot be applied because the policies are defined over different
paths. In such situations, the path authorisation for each path combination is



derived using the above rules. The overall authorisation is then determined by
aggregating the path authorisations. If one of the path authorisations is negative,
then the result is negative; if all the path authorisations are positive, then the
result is positive. In the examples shown in Figure 4-(g), (h), there are two path
combinations: (/e/s, /b/d/t) and (/a/c/s, /b/d/t). In case 4-(g), the path autho-
risation for the first combination is negative and for the second combination is
positive, therefore the overall authorisation is negative. In case 4-(h), the overall
authorisation is also negative because there is a negative path authorisation.
Note that the final keyword only affects conflict resolution in domain nesting
cases. A final policy cannot override a normal policy when the normal policy is
defined over other path combinations.

Administrators are required to define a default authorisation, either positive
or negative that is applied when an authorisation request has no applicable
policy.

4.4 CLP Conflict Resolution Strategy for Example

The conflict resolution rules for Ponder2 can be captured as a small overrides
sub-program in CLP that is used to prioritise the labels and resolve any conflicts.
Recall that we generated two kinds of labels when we translated Ponder2 policies
into CLP.

For the first set of labels (p),(n),(d), we define the following overrides rules:

overrides((n), (p)). (1)

overrides((p), (d)). (2)

overrides((n), (d)). (3)

The meaning of the above rules is that a negative path authorisation has the
highest priority, then the positive ones, and finally the default authorisation
which has the lowest priority.

For the set of labels of the form (type, dis1, dis2,mod), we have the following
overrides rules. First,

overrides((f, , , ), (n, , , )) (4)

states that the priority of a final policy is always higher than a normal one.
Then among the final policies, the overrides rules are:

overrides((f, X1, , ), (f, X2, , )) ← X1 > X2. (5)

overrides((f, X, Y 1, ), (f, X, Y 2, )) ← Y 1 > Y 2. (6)

overrides((f, X, Y, n), (f, X, Y, p)). (7)

which state that a more general final policy always has more priority, and that
we always give higher priority to a negative policy if there is a “tie”.

For normal policies, the rules are reversed and the more specific policy wins:

overrides((n, X1, , ), (n, X2, , )) ← X1 < X2. (8)

overrides((n, X, Y 1, ), (n, X, Y 2, )) ← Y 1 < Y 2. (9)

overrides((n, X, Y, n), (n, X, Y, p)). (10)



It is easy to see that the overrides relations defined in the sub-program are
transitive, anti-symmetric and irreflexive, and therefore meet the requirement.

4.5 Resolving Conflicts in CLP

We now explain how CLP resolves conflicts for our example. For path combina-
tion (ps1, pt1), i.e. (/doc/dse/stud/cd04, /ptr/colr/hue, print), there are two la-
belled rules which permit the action. The labels of these two rules are {(n, 5, 3, p),
(n, 1, 1, p)}. There is also one rule which denies the action, whose label is {(n, 2, 1, n)}.
It’s clear that given the conflict resolution strategy in Section 4.4, the following
are true:

overrides((n, 2, 1, n), (n, 5, 3, p)).
overrides((n, 1, 1, p), (n, 2, 1, n)).

Although the negative rule overrides one of the positive rules, it itself is also over-
ridden by another positive rule. Therefore auth(/doc/dse/stud/cd04, /ptr/colr/hue,
print) is true because a positive rule has the highest priority. In the same way,
we get the following for the other path combinations:

auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).
auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).

Once the authorisation status of each path combination has been decided, the
overall authorisation result can be decided. Given the above results, we can derive
auth(cd04, hue, print) from the CLP program and this is derived from rules
labelled 〈(p)〉. Although a conflicting authorisation, ¬auth(cd04, hue, print), can
also be derived from the default rule, the label of the default rule, 〈(d)〉, has a
lower priority than 〈(p)〉. Finally the request is authorised and cd04 can print
on hue.

5 Alternative Conflict Resolution Strategies

To support different resolution strategies, we simply change the prioritisation
rules (the overrides sub-program). In the example negative authorisations takes
precedence. If we want to change this to positive takes precedence, we only need
to modify rules (1), (7), (10) in Section 4.4 into:

overrides((p), (n)).

overrides((f, X, Y, p), (f, X, Y, n)).

overrides((n, X, Y, p), (n, X, Y, n)).

The most general final policy takes precedence can be changed to the most
specific final policy takes precedence by modifying rules (5),(6) into:

overrides((f, X1, , ), (f, X2, , )) ← X1 < X2.

overrides((f, X, Y 1, ), (f, X, Y 2, )) ← Y 1 < Y 2.



In this case, we can even combine rules (5), (6), (8), (9) into the following two
rules:

overrides((W, X1, , ), (W, X2, , )) ← X1 < X2.

overrides((W, X, Y 1, ), (W, X, Y 2, )) ← Y 1 < Y 2.

Ponder2 defines the most specific policy as the one with the shortest path from
the subject to the target and in the case that there are several ones with the same
path length, the one which is closest to the subject. We can change this to allow
the one closest to the target to win. In the context of the most general final/most
specific normal policy takes precedence, this can be done by modifying rules (6),
(9) into:

overrides((f, X, Y 1, ), (f, X, Y 2, )) ← Y 1 < Y 2.

overrides((n, X, Y 1, ), (n, X, Y 2, )) ← Y 1 > Y 2.

After modification, if two policies have the same distance, the one closer to
the target takes precedence. Many other variations are possible as long as the
override rules define a strict partial order.

Besides assigning priorities according to the domain hierarchy and inheri-
tance, our approach can easily support conflict resolution strategies based on
other factors. For example, which administrator defined this policy, who the
owner of a policy is, the date and time that a policy was enabled, etc. The
translation module needs to obtain all such information when an access request
is made and include the information in the labels of CLP authorisation rules.
Strategies would then assign priorities according to the new labels.

6 Related Work

Early authorisation models such as SeaView [13] and the Andrew File System
[14] employ a simple negative takes precedence rule to resolve conflicts. However,
as the authorisation models become more complex, such rules are not enough
for handling all the conflicts.

Woo and Lam [15, 7] propose an access control model for distributed systems
where the management of authorisation is decentralised. The authorisation re-
quirements are specified as policy rules using a language similar to default logic.
Conflicts can be resolved by either positive takes precedence or negative takes
precedence. The problem of this model is that it has no hierarchical structure
for organising subjects or objects. Therefore, all the policies must be defined
instance by instance, which will be burdensome in large systems.

Bertino et.al. [3] propose an authorisation model for relational data man-
agement systems. In this model, subjects are grouped in a group hierarchy and
authorisation policies are classified as strong and weak. Strong policies always
override weak policies and conflicts among strong policies are not allowed. The
administrators must be very careful to avoid the conflicts among strong policies.
The conflict resolution strategy is fixed in this model, while in our framework, the
resolution strategy can be tailored to meet different applications’ requirements.



Jajodia et.al. [6] proposed a flexible authorisation framework and a formal
language called Authorisation Specification Language (ASL). The subjects are
organised into hierarchies and the authorisation is defined as rows in an autho-
risation table. To define a full-fledged conflict resolution strategy, an adminis-
trator need to define the following: a propagation policy specifies how to derive
authorisations according to the hierarchies and the authorisation table; a conflict
resolution policy specifies how to eliminate conflicts; a decision policy decides the
default authorisation in the absence of explicit specifications for the access; a set
of integrity constraints impose restrictions on the content and the output. The
conflict resolution in this framework is quite flexible and powerful, but complex
to understand and support. Our approach is much simpler. All the administrator
need to do is to decide an ordering over policies based on the properties captured
by the labels (modality, position in the hierarchy and so on), and write a small
override program.

Benferhat et.al. [16] proposed a stratification-based approach for handling
conflicts in access control. They classify the information used in access control
as facts, rules without exceptions, and rules with exceptions. The information is
prioritised as follows: facts and rules without exceptions are always preferred to
rules with exceptions; for rules with exceptions, more specific ones are preferred
to the more general ones. After information has been stratified according to the
priority, conflicts can be solved by probabilistic logic inference or lexicographical
inference. However, this approach requires that the facts and the rules with-
out exceptions to be consistent and can only implement one conflict resolution
strategy for the rules with exceptions.

Chadha [17] argued that many application-specific runtime policy conflicts
can be addressed by re-writing policies. Rather than writing policies and define
complex resolution rules, it is may be simpler to just re-write the policies. The
conclusions were based on the analysis of obligation policies and conflicts such
as redundant conflicts, mutually exclusive configurations or inconsistent con-
figuration. Authorisation policies and modality conflicts, which is the focus of
this work, were not discussed in detail. However, the author also concluded that
“conflicts such as modality conflicts that are application-independent should be
resolved automatically using conflict resolution tools”, which is exactly our ap-
proach trying to do.

7 Conclusions and Future Work

In this paper we express conflict resolution strategies in terms of Courteous
Logic Programs. Authorisations are dynamically translated into labelled logic
rules. The label for each rule is determined by a translation module specific
to each authorisation model and can use features such as the policy type, the
domain hierarchy and the policy modality. The priority of the label is defined
through a special overrides predicate and conflicts are resolved by choosing the
rule with the highest priority. The conflict resolution rules are not static and can
be dynamically changed according to domain-specific requirements.



The Ponder2 policy model was used as a case study and to demonstrate a
variety of conflict resolution strategies and how easy it is for administrators to
define their own. An implementation of our CLP translation module and PDP
is available as an option for Ponder2 and can be used instead of its Java-coded
conflict resolution strategy. The implementation is based on a Prolog version of
CLP engine. We hope to develop an implementation and a library of conflict
resolution strategies for XACML (Extensible Access Control Markup Language)
[18] in the near future, and to investigate how to combine multiple strategies.

References

1. Feridun, M., Leib, M., Nodine, M.H., c. Ong, J.: Anm: Automated network man-
agement system. IEEE Network 2(2) (March 1988) 13–19

2. Strassner, J.: Policy-based network management, solution for the next generation.
MORGAN AND KAUFMANN (2004)

3. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for
relational data management systems. ACM Trans. Inf. Syst. 17(2) (1999) 101–140

4. Bertino, E., Samarati, P., Jajodia, S.: Authorizations in relational database man-
agement systems. In: ACM Conference on Computer and Communications Secu-
rity. (1993) 130–139

5. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: POLICY. (2001) 18–38

6. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2) (2001) 214–260

7. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2-3) (1993) 107–136

8. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6) (1999) 852–869

9. Grosof, B.N.: Courteous logic programs: Prioritized conflict handling for rules.
Research Report RC 20836(92273), IBM (1997)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4) (1991) 365–386

11. Ponder2: The Ponder2 project. www.ponder2.net

12. Russello, G., Dong, C., Dulay, N.: Authorisation and conflict resolution for hier-
archical domains. In: POLICY. (2007) 201–210

13. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The seav-
iew security model. IEEE Trans. Software Eng. 16(6) (1990) 593–607

14. Satyanarayanan, M.: Integrating security in a large distributed system. ACM
Trans. Comput. Syst. 7(3) (1989) 247–280

15. Woo, T.Y.C., Lam, S.S.: Authorization in distributed systems: A formal approach.
In: SP ’92: Proceedings of the 1992 IEEE Symposium on Security and Privacy,
Washington, DC, USA, IEEE Computer Society (1992) 33–50

16. Benferhat, S., Baida, R.E., Cuppens, F.: A stratification-based approach for han-
dling conflicts in access control. In: SACMAT. (2003) 189–195

17. Chadha, R.: A cautionary note about policy conflict resolution. Military Commu-
nications Conference, 2006. MILCOM 2006 (Oct. 2006) 1–8

18. XACML: Extensible access control markup language. http://xml.coverpages.

org/xacml.html


