Argumentation-based Fault Diagnosis for Home Networks’

Changyu Dong
Department of Computing
Imperial College London
changyu.dong@imperial.ac.uk

ABSTRACT

Home networks are a fast growing market but managing them
is a difficult task, and diagnosing faults is even more chal-
lenging. Current fault management tools provide compre-
hensive information about the network and the devices but it
is left to the user to interpret and reason about the data and
experiment in order to find the cause of a problem. Home
users may not have motivation or time to learn the required
skills. Furthermore current tools adopt a closed approach
which hardcodes a knowledge base, making them hard to
update and extend. This paper proposes an open fault man-
agement framework for home networks, whose goal is to
simplify network troubleshooting for non-expert users. The
framework is based on assumption-based argumentation that
is an Al technique for knowledge representation and reason-
ing. With the underlying argumentation theory, we can eas-
ily capture and model the diagnosis procedures of network
administrators. The framework is rule-based and extensible,
allowing new rules to be added into the knowledge base and
diagnostic strategies to be updated on the fly. The framework
can also utilise external knowledge and make distributed di-
agnosis.

Categories and Subject Descriptors

C2.3 [Computer-Communication Networks]:
Network Management

General Terms

Design, Management

1. INTRODUCTION

As of mid 2009, about 180 million of households world-
wide had home networks [16]. By 2030, this number could
reach 1 billion [12]. The use of in-home wired and wireless
networking allows multiple computers to share connection
to the Internet. However, many user studies have shown that
managing a home network is a necessary and difficult task
for most of households [13, 7, 9]. Among its subtasks, fault
management is perhaps the most challenging for users.

*This research was supported by the UK’s EPSRC research grant
EP/F064446/1.

Naranker Dulay
Department of Computing
Imperial College London
n.dulay@imperial.ac.uk

Compared to enterprise networks, home networks are sim-
pler: they are small (an average of six devices per network
as estimated by TDG [12]) and their topologies are often
not complex (one hop). However, unlike enterprise networks
which are managed by skilled network administrators, home
networks are managed by non-expert users who have no for-
mal training on networking and may not have the motivation
or time to learn how to diagnose and repair networking prob-
lems. For many, rebooting or contacting a third party is the
only solution they understand. In addition, most fault man-
agement tools are designed for people with advanced knowl-
edge of networking. They provide comprehensive informa-
tion about the network and the devices, but leave it to the
user to interpret and reason about the data to find the cause of
a problem. Home users are unlikely to be able to understand
the output from such tools, nor do they have the necessary
background knowledge to reach the correct conclusions.

Clearly fault management in home networks must take
into account the fact that the users have little technical knowl-
edges. Therefore fault management tools for home networks
must be easy to use and easy to understand: rather than
just presenting networking information, tools must be able
to analyse the data and form decisions based on their own
knowledge. Ideally, the process should be automatic with
minimum user involvement [19]. Although there are sev-
eral tools targeted for home network management, their fault
diagnosis capabilities are poor. As an experiment, we col-
lected 11 home networking faults reported by our colleagues
and users in internet forums. They are real faults which
have been experienced by one or more users. We reproduced
those faults and tested 3 tools which are available: the built-
in Windows Network Diagnostics tool on Windows 7, Net-
work Magic Pro 5.5 from Cisco Systems [3] and HomeNet
Manager from SingleClick Systems [1]. The results of the
tests are shown in Table 1. In the table, v means the tool
could identify the fault correctly and x means the tool could
not identify the fault or could not detect any fault. From the
table, we can see that none of the tools could correctly iden-
tify all the faults. In fact, the best tool could only identify
less than half of the faults (5 out of 11). Many faults were
either not detected or misdiagnosed.

The problem is inherent in their design. The accuracy of

Diagnosis

Fault Windows Diagnostics Tool Network Magic pro HomeNet Manager

Network cable is disconnected v v v

Network adapter is disabled v v v

Conflicting IP address X X X

Default gateway address is not config- | X Cable is not connected | There is a problem with routing

ured table

The Internet connection to the ISP is | v v v

broken

DNS address is wrong v X A problem in the service
provider’s network

DNS address is not configured X X A problem in the service

provider’s network

The address pool of the DHCP server is
exhausted

Adapter doesn’t have a valid IP
configuration

Cable is not connected

A problem with routing table

An IPSec policy is enabled which does
not allow unsecured communication

v

A problem with the
home router

A problem with the home
router

Domain name resolution error due to a | The remote device or resource | X X
modified hosts file won’t accept the connection
Firefox is configured to use a proxy | X X X

server which is not accessible at home

Table 1: Faults Diagnosis Result

the diagnoses depends largely on the quality and complete-
ness of the tools” knowledge bases. This requires the knowl-
edge bases to be updatable and extensible in order to ac-
commodate new diagnostic strategies and new faults which
are not considered initially. However, existing tools adopt
a closed framework which hardcodes the knowledge bases
thus make them hard to modify and extend.

In this paper, we describe an open fault management frame-
work for home networks. The goal of the framework is
to simplify network troubleshooting for non-expert users.
The framework is based on assumption-based argumentation
which is a technique for knowledge representation and rea-
soning. The framework is rule-based and extensible, allow-
ing new rules to be added into the knowledge base and di-
agnostic strategies to be modified on the fly. The framework
can also utilise external knowledge and support distributed
diagnosis.

2. RELATED WORK

A comprehensive survey of network fault diagnosis is pre-
sented in [17]. However, most existing systems target for en-
terprise networks and require users to have in-depth knowl-
edge of networking technologies. As home networks are
usually managed in-house by non-expert users, current sys-
tems are unwieldy to be used.

A recent user study [19] suggests that network diagno-
sis tools for home network have to be easy-to-understand
and easy-to-use. To this end, several research activities have
been carried out. HomeMaestro [14] was designed to diag-
nose performance related faults. The system monitors flows
in a home network and detects performance issues by using
time-series and cross-correlation analysis. It can also iden-
tify whether the problems are caused by contention for net-
work resources. However, the system cannot be adopted or

applied for diagnosing non-performance related faults. Net-
Prints [4] allows automated diagnosis of problems caused by
misconfigurations. The system records and aggregates con-
figurations of network devices from different households.
The configurations are classified as good or bad and are cor-
related to network faults. If a client experiences a recognised
fault in the future, the system can give suggestions on the
client’s configuration. HNDR [8] can log various data in a
home network and later the data can be used in supporting
fault diagnosis.

3. ARGUMENTATION-BASED FAULT DIAG-

NOSIS

3.1 Assumption-based Argumentation

Argumentation [10, 6, 5] is the theory about arguments.
In our work, we use assumption-based argumentation [11] to
formalise the fault diagnosis process and to represent back-
ground information regarding faults. In assumption-based
argumentation, arguments are essentially backward deduc-
tions based on logic rules and supported by sets of assump-
tions or facts. An argument attacks another if the first sup-
ports the contrary of an assumption in the second. Compu-
tationally, the reasoning process in argumentation systems
can be represented as building a dispute tree. It mimics the
behaviour of human debate: one party (proponent) proposes
and tries to defend his theory while another party (opponent)
tries to attack the theory. More formally, in assumption-
based argumentation we have the following definitions:

DEFINITION 1 ([11]). Given adeductive system (L, R),
with a language L and a set of inference rules R, and a set
of assumptions A C L, an argument for c € L, i.e. the con-
clusion or claim, supported by S C A is a tree with nodes

labelled by sentences in L or by the symbol T which stands
for an empty set of premises, such that:

e the root is labelled by c
e for every node N

— if N is a leaf then N is labelled either by an as-
sumption or by T;

— if N is not a leaf and l is the label of N, then
there is an inference rule Iy < by, ...b,, (m > 0)
and either m = 0 and the child of N is T or m >
0 and N has m children, labelled by b, ...b,, re-
spectively

o S is the set of all assumptions labelling the leaves.

e an argument for claim c supported by a set of assump-
tions S is denoted by S F ¢

e an argument S1 F ¢y attacks an argument Sy + co
if and only if the claim cy of the first argument is the
contrary of one of the assumptions in So

® a set of arguments Arg, attacks a set of arguments
Args if an argument in Arg, attacks an argument in
Args

e a set of arguments Arg defends an argument arg if
Arg attacks all arguments that attack arg

The benefit of using assumption-based argumentation as
our theoretical foundation for the fault diagnosis framework
is that it naturally models the fault diagnosis procedure of
network administrators. To diagnose a fault, a network ad-
ministrator first needs to propose what are the potential causes
given the symptom. Then the potential causes are eliminated
through a systematic checking process. For causes that are
not eliminated, further investigation needs to be conducted
to identify the root of the problem. This is exactly how
the assumption-based argumentation system reasons about
faults. The symptoms are captured as goals and the back-
ground knowledge is captured as inference rules. The pos-
sible causes are the assumptions. Arguments are formed re-
garding the symptom and the assumptions. Arguments may
be attacked by other arguments and therefore eliminated. For
arguments which successfully defend, further tests will be
done to confirm the assumptions.

Let us illustrate it with a simple example. A possible
symptom might be “cannot access the Internet” and two pos-
sible inference rules regarding this symptom might be “if the
network media (cable and wireless) is disconnected, then the
computer cannot access the Internet” and “if the connection
to the ISP is broken, then the computer cannot access the In-
ternet”. In the fault diagnosis process, the system may first
assume “the network media is disconnected” as the cause.
The argument “the computer cannot access the Internet be-
cause the network media is disconnected” is a valid argu-
ment supported by the assumption. However, if there is an-
other inference rule “if we can ping another local devices in
the network, then the network media is not disconnected”
and a ping test is successful, then another argument “the net-
work media is not disconnected because can ping another

neighbour in the network™ can be formed which attacks the
first one. Since the second argument is based on a fact and
we cannot find other arguments to defend the first argument,
the first argument is eliminated and the system needs to find
a better theory to explain the symptom. An argument can
then be formed based on the assumption “the connection to
the ISP is broken”. An argument which attacks the new ar-
gument can be “the connection to the ISP is not broken be-
cause trace route can reach the 2nd hop”. This time the test
fails and trace route gets no response from the 2nd hop, i.e.
the ISP’s router. Then the attack fails and the failed test also
confirms the problem is with the connection to the ISP.

3.2 Fault Diagnosis Rules

In assumption-based argumentation, arguments are deduc-
tions using rules in an underlying logic language. The rules
for diagnosing faults can be represented as logic program-
ming rules [15] of the form:

L:— Lo,...;Ln,(n >0).

Here L, Ly, ..., L, are ground literals, i.e. atoms a or
negation of atoms ~a. L is the head of the rule and the con-
junction Ly, ..., L, is the body of the rule. In fault diagnosis
rules, we have 3 different types of literals:

e Symptom: A symptom literal represents an abnormal-
ity in the home network perceived by the user. For ex-
ample, “cannotConnectInternet” or “cannotUseEmail”.
It serves as the goal of the reasoning and can only be
used in the head of a rule.

e Assumption: Assumption literals can be used in the
head and the body of rules. Given arule L : — Ly, ...,
L,,(n > 0),if Lis a symptom and L,,,0 < m < n
is an assumption, then the assumption L,, is a possi-
ble cause of the symptom. If L and L,, are both as-
sumptions, then L,, is a specialisation of L. For ex-
ample, L can be physical Layer Fault and L,, can be
networkM ediaDisconnected.

e Test: A test literal represents a test function to be per-
formed in order to confirm or eliminate an assumption.
It can only be used in the body of a rule in which
the head is an assumption literal. The truth value of
a test literal is determined by the result of the linked
test function.

The diagnosis rules in the example in Section 3.1 can be
represented as the following:

cannotConnect(X) :— physical Layer Fault(X).
cannotConnect(X) :— networkLayer Fault(X).

physical Layer Fault(_) :— networkM ediaDisconnected().
~networkM ediaDisconnected(_) :— canPingNeighbour().

networkLayer Fault(X) :— linkTol SPBroken(X).
~linkT ol SPBroken(_) :— canReachHop(2).
linkTol SPBroken(_) :— ~canReachHop(2).

3.3 Dependency Rule

Modern networks follow a layered model. On each layer,
an instance provides services to the instances at the layer
above and requests services from the layer below, which
means a service at the higher layer is functionally dependent
on the lower layer services. Therefore a fault that appears to
be at a higher layer could be actually caused by one or more
faults at a lower layer. For example, a failed DNS query
could be the result of a disconnected cable.

When diagnosing network faults, we need to work in a
bottom-up approach, i.e. start from the lowest layer of the
protocol stack. In our framework, we use dependency rules
to specify the order of the inference rules to be taken into the
reasoning. A dependency rule is of the form L; < Lo, where
L, and L, are different assumptions. Intuitively, L1 < Lo
means Lo is dependent on L, therefore Lo should only be
taken into account after ,; has been ruled out. For example,
when a computer cannot connect to the Internet, the fault
could be at the physical layer or the data link layer, and we
should always consider the physical layer fault first. The
rules can be expressed as:

cannotConnect(X) : —physical Layer Fault(X).
cannotConnect(X) : —dataLinkLayer Fault(X).

physical Layer Fault < dataLinkLayer Fault.

If L1 < Lo and in the reasoning process, an acceptable
argument supported by L, can be derived, then the reasoning
process will stop. By focusing on one layer and one problem
each time, it also makes it easier for fixing multiple faults. If
a fault has been detected and fixed but the symptom remains,
then another iteration can start and other faults at a higher
layer can be found subsequently.

3.4 Distributed Diagnosis

When a user observes a certain symptom on a device, the
cause of the symptom can be local or external. To iden-
tify the fault, local knowledge may not enough. For exam-
ple, many problems caused by network contention are hard
to identify with only local knowledge. Sometimes, external
knowledge may also help make the reasoning process more
efficient.

We can obtain external knowledge from neighbours run-
ning our diagnosis framework. For distributed diagnosis, we
attach the following labels to the test literals:

o @external: the test needs to be run on all the neigh-
bours which are currently available. The local device
does not need to run this test.

e Qqll: the test needs to be run on all neighbours and the
local device.

e all— >: the truth value of the test literal is the con-
junction of the test results from all the neighbours. The
truth value will be true if all the neighbours return true,
will be false otherwise.

e one— >: the truth value of the test literal is the dis-
junction of the test results from all the neighbours. The

truth value will be false if all the neighbours return
false, will be true otherwise.

For example, you have ruled out all the faults at lower lay-
ers and now you suspect you cannot connect to a website be-
cause the remote server is down. This assumption can easily
be proved wrong if one of the devices in the home network
can ping the remote server. These rules can be captured as
the following:

cannotConnect(X) : —remoteServer Down(X).
~ remoteServer Down(X) : —{Qall, one— >}ping(X).

Another example is that you may suspect your network is
slow because someone is downloading using Bittorrent. You
can run a check across all neighbours to see whether they
have a Bittorrent client running:

networkSlow : —bittorrent.
~ bittorrent : —{Qall, all— >} ~ bittorrentClient.

Another source of external knowledge which is more spe-
cific is from the information plane architecture [18] we have
developed in the Homework project [2]. The information
plane architecture provides network measurements in real-
time, correlates these measurements and low level network
events to generate high-level events which drive manage-
ment and makes the measurement data persist for offline
analysis. To utilise the information plane, we use the fol-
lowing label.

e Qguw: the test needs to be run with the data from the
information plane architecture. “gw” means gateway.
This is because the current implementation of the ar-
chitecture runs on a Homework router which is the
gateway of the home network.

The information plane architecture can potentially pro-
vide a huge amount of information which is helpful in net-
work fault diagnosis. For example, a common issue in home
networks which can cause connectivity problems is the fire-
wall. Most home routers have built-in firewalls. If certain
rules have been enabled to block traffic, it is usually hard to
find out the problem with only information collected on the
device being blocked. However this would be relative easy
to check in the information plane whether there has been
traffic blocked events recently, e.g. within the last 1 minute,
with matching source/destination addresses. The rules can
be captured as in the following (in the rule the local address
is implicit):

cannotConnect(X) : —blocked By Firewall(X).
blocked By Firewall(X) : —{@Qgw}block Events(X, 60).

3.5 Diagnosis Example

We have written rules for diagnosing all the faults in Ta-
ble 1. The full set of rules can be found in the Appendix.
Here we describe how the system diagnoses a connectivity
problem.

The diagnosis system first builds a dispute tree as shown
in Fig 1. The dispute tree is built automatically using the

cannot
Connect(*)

[physicalLayerFaull
)

[dataLinkLayerFauh networkLayerFault
() ()

T attack Tahack

A
0
L
~physicallLayerFault ~datalLinkLayerFault ~networkLayerFault
(") () () conflictlP()

dhcpFailure()

nicconfigManager canPingNeighbour Ping i
ErrorCode(0) () (74.125.230.112-116)

ipConflictEventInSy:

ipInAPIPA
Range()
[K
~staticIP
s (~dhcpFailure))
Log() 0

é} ~staticIP || dhcpEnabled || canRenewLease
() () O

Figure 1: The Dispute Tree of a Fault Diagnosis Example

rules. In the dispute tree, white nodes are put forward by
the proponent and the grey nodes are put forward by the op-
ponent. The initial argument proposed by the proponent is
that the problem is caused by a physical layer problem. This
argument is chosen because physical Layer Fault is at the
lowest layer as specified by the dependency rules. The oppo-
nent then proposes an attacking argument that the problem
is not at the physical layer. The argument is supported by
the fact that the error code gathered from the config man-
ager suggests that each network card works properly. Being
attacked and there is no counter-attack, the proponent’s first
argument is not acceptable. The proponent then proposes
the second argument that the problem is caused by a data
link layer problem. This argument is also attacked by the
opponent and not acceptable.

The third argument by the proponent is that the problem
is caused by a network layer problem. The opponent tries to
form an attacking argument. However, the ping test fails
which means the attacking argument is not supported by
ground fact. Since the opponent’s argument is not able to
attack the proponent’s argument, the proponent can go on
develop his argument. There are several more specific rules
about network layer faults. The proponent first tries to ex-
tend his argument by assuming the fault is caused by conflict
IP addresses. Although the opponent cannot propose an at-
tacking argument for this assumption, this assumption is not
supported by the test result. So the proponent chooses an-
other assumption that the fault is because of a failure on the
DHCEP server. The opponent can propose an attacking argu-
ment, but the following test shows that the computer cannot
renew DHCP lease. Therefore the opponent’s attacking ar-
gument is not supported. The proponent goes on to test his
assumption. This time all tests confirm his assumption. In
this case, the system makes the decision that the problem is
very likely to be caused by a DHCP failure.

4. IMPLEMENTATION

We have developed a prototype of the argumentation-based
fault diagnosis tool. The prototype has a simple user in-
terface. The user selects the symptom he has observed in

his home network, and when necessary, a domain name or
IP address of the external website/service he was accessing.
Currently we focus on connectivity issues, but we are also
extending to performance and other problem domains.

The prototype has two main components: the rule engine
and the test functions.

The rule engine is written in Java. It takes as input a set of
rules and reasons about the faults according to the rules. The
rules are written using the syntax we have shown in Section
3. The rules are parsed and fed into an interpreter. The inter-
preter then starts building arguments from the symptom in-
put by the user using a backward chaining algorithm. When
a local test is needed as part of the reasoning process, it in-
vokes the corresponding test functions. For remote tests, it
can communicate with neighbours and the information plane
residing on the homework router with UDP.

The test functions are platform dependant. They are scripts
written in script languages, therefore can be created or mod-
ified easily. For example, on Windows platforms, the test
functions are implemented as batch files or Windows Man-
agement Instrumentation (WMI) scripts. The file name of a
test function must correspond to one used in the diagnosis
rules. When the rule engine encounters a leave node in the
argument trees, it will try to invoke a test function using the
name of the atom.

S. CONCLUSION AND FUTURE WORK

We have presented an argumentation-based fault diagno-
sis framework. It represents knowledge as logic rules and the
reasoning process is very similar to what network adminis-
trators do when diagnosing faults. The rule-based approach
also makes it highly extensible. Rules can be modified or
added without needing to rebuild the system. In addition,
the framework supports distributed fault diagnosis when ex-
ternal knowledge is available.

A critical question all rule-based systems, including ours,
need to solve is how to break the knowledge bottleneck. To
be useful, the system needs high quality rules which cover
all faults or those which are most likely to be encountered in
a home network. This requires significant amount of knowl-

edge regarding network devices, operating systems and ap-
plications. We hope to tackle the problem in a community-
based approach by leveraging shared information across a
large user population. Rules can be submitted and reviewed
by community experts. This development model has been
proven to be more responsive and efficiently than a “closed”
model. Several successful rule-based open source systems,

e.g.

Snort intrusion-detection system, are developed using

this model. Since the rules in our system are loosely cou-
pled, a rule writer doesn’t need comprehensive knowledge
about the whole rule set. He just needs to construct argu-
ments for and against certain assumptions. This makes it
easier for people to add and modify rules.

Currently the system supports only simple collaborative
tasks, we would like to investigate what additional function-
alities are needed for distributed diagnosis and to improve it
accordingly in the future.

6.
(1]

(2]
(3]

(4]

(5]
(6]

(7]
(8]

(9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

Homenet manager. http://www.softpedia.com/get/Network-
Tools/Network-Tools-Suites/HomeNet-Manager.shtml.

The homework project. http://www.homenetworks.ac.uk/.
Net work magic pro.
http://www.purenetworks.com/product/pro.php.

B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker. Netprints: Diagnosing
home network misconfigurations using shared knowledge. In
NSDI, pages 349-364, 2009.

L. Amgoud and H. Prade. Using arguments for making and
explaining decisions. Artif. Intell., 173(3-4):413-436, 2009.
A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An
abstract, argumentation-theoretic approach to default
reasoning. Artif. Intell., 93:63-101, 1997.

A. Brush. IT@home: Often best left to professionals. In CHI
2006 Workshop: IT@ Home, 2006.

K. L. Calvert, W. K. Edwards, N. Feamster, R. E. Grinter,
Y. Deng, and X. Zhou. Instrumenting home networks. In
Proceedings of the 2010 ACM SIGCOMM workshop on
Home networks, HomeNets *10, pages 55-60, New York,
NY, USA, 2010. ACM.

M. Chetty, J.-Y. Sung, and R. E. Grinter. How smart homes
learn: The evolution of the networked home and household.
InJ. Krumm, G. D. Abowd, A. Seneviratne, and T. Strang,
editors, Ubicomp, volume 4717 of Lecture Notes in
Computer Science, pages 127-144. Springer, 2007.

P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning and logic
programming. In IJCAI, pages 852859, 1993.

P. M. Dung, R. A. Kowalski, and F. Toni. Assumption-based
argumentation. In G. Simari and I. Rahwan, editors,
Argumentation in Artificial Intelligence, pages 199-218.
Springer, 2009.

P. Filipovic. The future of home networks - a global
perspective, 2008.

R. E. Grinter, W. K. Edwards, and M. W. Newman. The work
to make a home network work. In H. Gellersen, K. Schmidt,
M. Beaudouin-Lafon, and W. E. Mackay, editors, ECSCW,
pages 469-488. Springer, 2005.

T. Karagiannis, C. Gkantsidis, P. Key, E. Athanasopoulos,
and E. Raftopoulos. Homemaestro: Distributed monitoring
and diagnosis of performance anomalies in home networks.
Technical Report MSR-TR-2008-161, Microsoft Reasearch,
2008.

[15] J. W. Lloyd. Foundations of Logic Programming, 2nd

Edition. Springer, 1987.

[16] K. Scherf. Home networks for consumer electronics, 2009.
[17] M. Steinder and A. S. Sethi. A survey of fault localization

techniques in computer networks. Sci. Comput. Program.,
53(2):165-194, 2004.

[18] J. Sventek, A. Koliousis, O. Sharma, N. Dulay,

D. Pediaditakis, M. Sloman, T. Rodden, T. Lodge,

B. Bedwell, K. Glover, and R. Mortier. An information plane
architecture supporting home network management. In The
proceddings of 12th IFIP/IEEE International Symposium on

Integrated Network Management, 2011.

[19] J. Yang and W. K. Edwards. A study on network
management tools of householders. In Proceedings of the
2010 ACM SIGCOMM workshop on Home networks,
HomeNets 10, pages 1-6, New York, NY, USA, 2010.
ACM.

Appendix

% set dependency
physicallayerFault<datalLinkLayerFault.
datalLinkLayerFault<networkLayerFault.
networkLayerFault<transportLayerFault.
transportLayerFault<applicationLayerFault.
%%%% physical layer problems $%%%%
cannotConnect (X) : -physicallayerFault (X) .

o

% config manager error code 0 means work properly

~physicallayerFault (_) :-nicConfigManagerErrorCode (0) .
physicallayerFault (_) :—networkMediaDisconnected() .
~networkMediaDisconnected(_) :—canPingNeighbour () .

networkMediaDisconnected (_) :—
allEnabledAdapterStatus (disconnect) .

physicallayerFault (_) :—networkAdapterDisabled() .
~networkAdapterDisabled(_) :—canPingNeighbour () .
networkAdapterDisabled(_) :-noAdapterEnabled() .

coo

%%%% datalink layer problems $%%%%

% currently empty
cannotConnect (X) :—dataLinkLayerFault (X) .
~dataLinkLayerFault (_) :—canPingNeighbour () .

%$%%% network layer problems %%%%%
cannotConnect (X) : —networkLayerFault (X) .

% 74.125.230.112-116: addresses of www.google.com

S

~networkLayerFault (_) :-ping(74.125.230.112-116) .

networkLayerFault (_) :—conflictIP ().

conflictIP():—ipConflictEventInSysLog() .

networkLayerFault (_) :—dhcpFailure () .

~dhcpFailure () :—~staticIP (), dhcpEnabled(),
canRenewLease () .

% APIPA address: 169.254.0.0/16, self assigned
% when DHCP server is not available

dhcpFailure () :—=~staticIP (), dhcpEnabled(),
ipInAPIPARange () .
networkLayerFault (_) : —noDefaultGateWay () .
noDefaultGateway () : —noDefaultRoute () .
networkLayerFault (_) :-1inkToISPBroken (X) .
~1inkToISPBroken () : —canReachHop (2) .
1inkToISPBroken () :— ~canReachHop (2) .
networkLayerFault (_) : —noDNS () .
noDNS () : —dnsNotConfigured() .
networkLayerFault (_) :—ipSec() .

% require security means not to communicate

o

% with non-IPSec nodes

ipSec () :-policyAssigned (), requireSecurity () .
networkLayerFault (_) : -wrongDNSAddress () .
wrongDNSAddress () :—nslookupFail () .

%%%% transport layer problems $%$%%%%
% currently empty
cannotConnect (X) : —transportLayerFault (X) .
%$%%% Application layer problems %%%%%
cannotConnect (X) :—applicationLayerFault (X) .
applicationLayerFault (X) :-modifiedHostFile (X) .
~modifiedHostFile (X) :—~isIPAdress (X) .
~modifiedHostFile (X) :—~inHostFile (X,_) .
modifiedHostFile (X) :-nsLookup (X,Y),
~inHostFile (X,Y) .
applicationLayerFault (X) : —-deadProxy (X) .
~deadProxy (_) : —~proxyConfigured (_) .
deadProxy (_) :—proxyConfigured(X), ~ping (X) .

