
O-PSI: Delegated Private Set Intersection on
Outsourced Datasets

Aydin Abadi, Sotirios Terzis, and Changyu Dong

Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
firstname.surname@strath.ac.uk

Abstract. Private set intersection (PSI) has a wide range of applications such as
privacy-preserving data mining. With the advent of cloud computing it is now de-
sirable to take advantage of the storage and computation capabilities of the cloud
to outsource datasets and delegate PSI computation. In this paper we design O-
PSI, a protocol for delegated private set intersection on outsourced datasets based
on a novel point-value polynomial representation. Our protocol allows multiple
clients to independently prepare and upload their private datasets to a server, and
then ask the server to calculate their intersection. The protocol ensures that inter-
sections can only be calculated with the permission of all clients and that datasets
and results remain completely confidential from the server. Once datasets are out-
sourced, the protocol supports an unlimited number of intersections with no need
to download them or prepare them again for computation. Our protocol is effi-
cient and has computation and communication costs linear to the cardinality of
the datasets. We also provide a formal security analysis of the protocol.

1 Introduction

Cloud computing allows clients with limited computation and storage capabilities to
outsource their private data and at a later time, ask the cloud to perform computation
on them. Delegation of data storage and computation to the cloud has become com-
mon practice for individuals and big enterprises alike [1, 2]. As a result, often the need
arises for clients to perform computation on their outsourced private data jointly, ideally
without the need to download the data.

In this paper, we consider a particular such scenario, in which the private data take
the form of sets and the computation of interest is set intersection, i.e. private set inter-
section (PSI).

In PSI, two parties want to find out the intersection of their sets and also want to
prevent the other party from finding out anything more about their own set than the
elements of the intersection. In general, PSI captures a wide range of real-world appli-
cations such as privacy preserving data mining [3], homeland security [4] and so on.
For example, consider a case where a law enforcement agency has a list of suspects and
wants to compare it against flight passenger lists. Here the names of the suspects should
be kept hidden from the airlines while the agency should not be able to find out about
other passengers in order to protect their privacy. As another example, consider the sit-
uation where a social welfare organization wants to know whether any of its members

receives income from another organization, but neither organization can reveal their list
of members.

Although a number of protocols have been proposed for PSI (see section 2 for a
survey), cloud computing introduces additional challenges as the private datasets are
outsourced and the private set intersection is delegated to cloud servers. In addition to
keeping their sets confidential, clients are also interested in preventing cloud servers
from finding out anything about their sets and the intersection. In other words, clients
are interested in delegated private set intersection on outsourced data. To allow for
more flexibility it is desirable that clients should be able to engage in the PSI com-
putation with any other clients of the cloud provider. However, they should remain in
charge of deciding which clients are allowed to use their sets. To fully take advantage
of the cloud capabilities and minimize costs, clients should not have to keep locally or
download their datasets every time an intersection needs to be computed, while their
involvement to the computation should be limited.

We propose O-PSI, a PSI protocol that addresses these requirements. Our protocol
uses homomorphic encryption and a novel point-value polynomial representation for
datasets that allows clients to independently secure their sets and outsource them to the
cloud, while cloud servers are able to calculate their intersection. The protocol ensures
that intersections can only be computed with the permission of the clients and that
the result will remain secret from the server. The protocol also allows sets to be used
an unlimited number of times securely without the need to secure them again. More
interestingly, the novel set representation means that computation and communication
costs are linear to the size of the sets.

The paper starts with a survey of related work in section 2, followed by a brief
overview of our security model and key concepts we rely upon in section 3. Section 4
presents the design of our protocol, while section 5 proves its security. Section 6 pro-
poses extensions to support data integrity verification and multiple clients, while sec-
tion 7 presents an analysis of its computation and communication complexity, and a
comparison to related work that is closest to our aims. Section 8 concludes the paper
and identifies directions for future work.

2 Related Work

Private set intersection (PSI) was introduced in [5]. Following that [6] proposed a num-
ber of protocols supporting further set operations and multiple clients based on additive
homomorphic encryption and polynomial representation of sets. More recently, several
efficient protocols have been proposed. For example, [4, 7] use blind signatures and
hash functions to provide efficient PSI in the semi-honest and the malicious security
models respectively, [8] uses Bloom filters, secret sharing and oblivious transfer to of-
fer even more efficient protocols, and [9] extends [8] and uses hash tables and a more
efficient oblivious transfer extension protocol for better efficiency. However, all these
regular PSI protocols are interactive, in the sense that clients jointly compute the inter-
section. They are not designed with the capability to outsource any data or delegate any
of the computation to a third party.

In another line of research, in [10, 11] the protocols proposed for outsourced veri-
fiable dynamic set operations, including set intersection. These protocols make use of
bilinear map accumulators and authenticated hash tables (i.e. accumulator trees) to ver-
ify the correctness of operations carried out by a server on outsourced sets. However,
these protocols are designed for a single client to outsource a collection of sets to a
server and later to compute the intersections of its own sets. The protocols are designed
to provide verifiability of computation, not data privacy. Data is outsourced in plaintext
and the protocols do not work if data is encrypted.

More interestingly, a number of PSI protocols have been proposed in which clients
delegate computation to a server [12–16]. A protocol proposed in [14] allows clients
to outsource their sets to a server by hashing each element and adding a random value.
They then delegate the computation of the intersection to the server. However, this pro-
tocol is not fully private, as it reveals to the server the cardinality of the intersection. In
addition to the above issue, because of the way the sets are encoded if the intersection
between the sets of client A and B is computed, followed by that between the sets of
client A and C, then the server will also find out some elements in common in the sets
of client B and C without their consent. In [16] clients also delegate the computation to
a server. Clients encrypt their sets and outsource them. The server also provides a proof
that allows the clients to verify the correctness of the result. However, the protocol is not
fully private and suffers from the same issues described above. Another protocol that
delegates computation to a server is proposed in [12]. The protocol is based on a pseu-
dorandom permutation (PRP) of the set elements with the key for the PRP generated
jointly by the clients at setup. One variant of the protocol can hide the cardinality of
the intersection. However, in this variant computation is delegated to one of the clients
rather than the server. The server’s role is limited to re-encoding one client’s set to
maintain the privacy of the computation. In the protocol, clients can detect if the server
provided incorrect results at the cost of replicating a number of times all elements of
the sets.

In a similar line of research, a protocol proposed in [13] allows one client, say client
A, to encrypt and outsource its set, and delegate computation to a server. The server
can then engage in a PSI protocol on this client’s behalf with another client, say client
B. However, this delegation is one-off: if A wants to compute set intersection with C,
then A must encrypt its set with a new key and re-delegate to the server. In addition to
this protocol, in [15] both two clients can delegate the PSI computation to a server. In
this protocol rather than encrypting and outsourcing their sets, the clients encrypt and
outsource bloom filters of their sets that are then used by the server to privately compute
their intersection. However, in this case in order for the clients to get the result of the
intersection they need to keep a local copy of their sets. So, this protocol does not really
allow outsourcing the sets.

From the above discussion, it should be clear that none of the protocols above al-
lows clients to delegate fully PSI computation to the server without the need to either
maintain the sets locally or having to re-encode and re-upload the sets for each intersec-
tion computation, namely none support delegated private set intersection on outsourced
sets. As a result, none of them are particularly suited for a cloud computing setting.

3 Preliminaries

3.1 Security Model

We consider a setting in which static semi-honest adversaries are present. In this set-
ting, the adversary controls one of the parties and follows the protocol specification
exactly. However, it may try to learn more information about the other party’s input.
The definitions and model are according to [17].

In a delegated PSI protocol, three parties are involved: a server P , and two clients
A and B. We assume the server does not collude with A or B. As the server (or cloud
provider) is often a well established IT company, it is reasonable to assume it will
not collude with the clients because collusion will seriously damage its reputation and
decrease its revenue. This non-colluding assumption is widely used in the literature [18,
19, 12]. The three-party protocol π computes a function that maps the inputs to some
outputs. We define this function as follows: F : Λ × 2U × 2U → Λ × Λ × f∩, where
Λ denotes the empty string, 2U denotes the powerset of the set universe and f∩ denotes
the set intersection function. For every tuple of inputs Λ, SA and SB belong to P,A and
B respectively, the function outputs nothing to P and A, and outputs f∩(SA, SB) =
SA ∩ SB to B.

In the semi-honest model, a protocol π is secure if whatever can be computed by a
party in the protocol can be obtained from its input and output only. This is formalized
by the simulation paradigm. We require a party’s view in a protocol execution to be
simulatable given only its input and output. The view of the party i during an execution
of π on input tuple (x, y, z) is denoted by viewπi (x, y, z) and equals (w, ri,mi

1, ...,m
i
t)

where w ∈ (x, y, z) is the input of i, ri is the outcome of i’s internal random coin tosses
and mi

j represents the jth message that it received.

Definition 1. Let F be a deterministic function as defined above. We say that the pro-
tocol π securely computes F in the presence of static semi-honest adversaries if there
exist probabilistic polynomial-time algorithms SimP , SimA and SimB that given the
input and output of a party, can simulate a view that is computationally indistinguish-
able from the party’s view in the protocol:

SimP (Λ,Λ)
c≡ viewπP (Λ, SA, SB)

SimA(SA, Λ)
c≡ viewπA(Λ, SA, SB)

SimB(SB , f∩(SA, SB))
c≡ viewπB(Λ, SA, SB)

3.2 Homomorphic Encryption

A semantically secure additively homomorphic public key encryption scheme has the
following properties:

1. Given two ciphertexts Epk(a), Epk(b), Epk(a) · Epk(b) = Epk(a+ b).
2. Given a ciphertext Epk(a) and a constant b, Epk(a)b = Epk(a · b).

One such scheme is the Paillier public key cryptosystem [20]. It works as follows:
Key Generation: Choose two random large primes p and q according to a given security
parameter, and setN = pq. Let u be the Carmichael value ofN , i.e. u = lcm(p−1, q−
1) where lcm stands for the least common multiple. Choose a random g ∈ Z∗N2 , and
ensure that s = (L(gu mod N2))−1 mod N exists where L(x) = (x−1)

N . The public
key is pk = (N, g) and the secret key is sk = (u, s).
Encryption: To encrypt a plaintext m ∈ ZN , pick a random value r ∈ Z∗N , and com-
pute the ciphertext: C = Epk(m) = gm · rN mod N2.
Decryption: To decrypt a ciphertext C, Dsk(C) = L(Cumod N2) · s mod N = m.

3.3 Polynomial Representation of Sets

Many PSI protocols e.g. [5, 6], use a polynomial representation of sets. LetR be a field,
then we denote a polynomial ring as R[x]. The polynomial ring R[x] consists of all
polynomials with coefficients from R. Given a set S of size d, |S| = d, we can map
each element in S to an element in a sufficiently large field R. Then we can represent
this set as a polynomial in the polynomial ring R[x]. The polynomial is defined as
ρ(x) =

∏
si∈S(x− si) and has the property that every element si ∈ S is a root of it.

For two sets SA and SB represented by polynomials ρA and ρB respectively, then
gcd(ρA, ρB) represents the set intersection SA ∩ SB , where gcd stands for the greatest
common divisor. For polynomials ρA and ρB of degree d and γA and γB that are degree
d polynomials chosen uniformly at random from R[x], it is proved in [6] that γA · ρA +
γB · ρB = µ · gcd(ρA, ρB) such that µ is a uniformly random polynomial. This means
that if ρA and ρB are polynomials representing sets SA and SB , then the polynomial
γA · ρA + γB · ρB contains only information about SA ∩ SB and no information about
other elements in SA or SB . This forms the basis of their PSI protocol in which a party
obtains γA · ρA + γB · ρB to find the set intersection but learns nothing more about
elements in the other party’s set.

4 O-PSI: Delegated Private Set Intersection on Outsourced
Datasets

4.1 Polynomials in Point-value Form

In section 3.3 we showed that a set can be represented as a polynomial and set in-
tersection can be computed by polynomial arithmetic. All previous PSI protocols us-
ing polynomial representation of sets, represent a polynomial as a vector of polyno-
mial’s coefficients. They represent a degree d polynomial ρ =

∑d
i=0 aix

i as a vector
a = (a0, a1, ..., ad). This representation, while it allows the protocols to correctly com-
pute the result, has a major disadvantage. The complexity of multiplying two polyno-
mials of degree d in co-efficient representation is O(d2). In PSI protocols, this leads to
significant computational overheads. Usually in such protocols, one polynomial needs
to be encrypted and the polynomial multiplication has to be done homomorphically.
Homomorphic multiplication operations are computationally expensive. Thus using a
co-efficient representation makes the protocols not scalable.

In O-PSI, we solve this problem by representing the polynomials in another well-
known form, point-value. A degree d polynomial ρ can be represented as a set of n
(n > d) point-value pairs {(x0, y0), ..., (xn−1, yn−1)} such that all xi are distinct and
yi = ρ(xi) for 0 ≤ i ≤ n − 1. If the x values are fixed, we can omit them and repre-
sent polynomials as vectors y = (y0, y1, ..., yn−1). A polynomial in point-value form
can be translated into co-efficient form by polynomial interpolation [21]. Polynomial
arithmetic in point-value representation can be done by point-wise addition or multipli-
cation. For two degree d polynomials ρA and ρB represented in point-value form by two
vectors y(A) and y(B), ρA + ρB can be computed as (y(A)

1 + y(B)
1 , y(A)

2 + y(B)
2 , ..., y(A)

n−1 +
y(B)
n−1), and ρA · ρB can be computed as (y(A)

1 · y(B)
1 , y(A)

2 · y(B)
2 , ..., y(A)

n−1 · y(B)
n−1). Note

because the product of ρA · ρB is a polynomial of degree 2d, ρA and ρB must be repre-
sented by at least 2d+1 points to accommodate the result. The key benefit of point-value
representation is that multiplication complexity is reduced to O(d). This makes O-PSI
much more scalable.

4.2 O-PSI Protocol

Client B
Client A

Server (Cloud)

v
(B

) = [y
(B

)

0
· r

(B
)

0
, . .

. , y
(B

)

n�1
· r

(B
)

n�1
]

(1)

v (A)
= [y (A)

0 · r (A)
0 , . . . , y (A)n�1 · r (A)n�1]

(1)

e(B) = [EpkB
(r(B)

0), . . . , EpkB
(r(B)

n�1)]

(2)

e (A)
= [E

pk
B (r (B)

0 · (r (A)
0)�1

), . . . , E
pk

B (r (B)n�1 · (r (A)n�1)�1
)]

(3)

t =[EpkB
(r

(B
)

0
· (w

(A
)

0
· y

(A
)

0
+ w

(B
)

0
· y

(B
)

0
)),

. . .
,

EpkB
(r

(B
)

n�1
· (w

(A
)

n�1
· y

(A
)

n�1
+ w

(B
)

n�1
· y

(B
)

n�1
))]

(4)

Fig. 1: Interaction between parties in O-PSI.

The interaction between parties in O-PSI is depicted in Fig. 1. At a high level, the
protocol works as follows. Each client first outsources its set to the server. To do so, the
client uploads a vector that encodes its set to the server. The vector is blinded so that
the server cannot figure out the client’s set, and the other client cannot figure out any
element outside the intersection. If a client, client B, wants to compute the intersection
of its own set and another client’s set, say client A’s set, it must obtain permission from
A. If A agrees, A can compute jointly with B some encrypted values. The encrypted
values will be used by the server to remove part of the blinding factors from A’s data,
and this then allows the set intersection to be computed. At the end of the protocol client
B receives an encrypted vector which it can decrypt and use the decrypted values to
interpolate a polynomial that encodes the intersection. The protocol is described below.
We will explain the rationale behind the protocol design after the protocol description.

1. Setup Let U be the universe of set elements. There is a public finite field R that
is big enough to encode all elements in U and also when an element is picked
uniformly at random from R has only negligible probability of representing an
element of a set. Client A has a set SA ⊂ U and client B has a set SB ⊂ U .
Without loss of generality, we let |SA| = |SB | = d. The server publishes a vector
x containing n = 2d+ 1 random distinct values from R. The server also publishes
a pseudorandom function f : {0, 1}l × Z → R, which maps an l-bit string to an
element in R pseudorandomly.

2. Outsource This step is the same at both clients. Let I ∈ {A,B}, then the client I
does the following:
(a) Generates a Paillier key pair (pkI , skI) (see section 3.2) and publishes the pub-

lic key. It also chooses a random private key kI for the pseudorandom func-
tion f . All keys are generated according to a given security parameter.

(b) Constructs a polynomial τI =
∏
s
(I)
i ∈SI

(x − s(I)i) that represents its set SI .
Evaluates τI at every value in the x published by the server producing y(I) such
that y(I)

i = τI(xi) for 0 ≤ i ≤ n− 1.
(c) Sends v(I) to the server, where ∀v(I)

i ∈ v(I), v(I)

i = y(I)

i · r(I)

i , y(I)

i is the ith
element in y(I), r(I)

i = f(kI , i). Here, v(I) is a blinded version of its set poly-
nomial.

3. Set Intersection In this step, client B wants to know the intersection of its set and
client A’s set.
(a) ClientB sends a request to clientA. Along with the request, clientB also sends

its ID and a vector e(B), such that e(B)

i = EpkB (r
(B)

i) where r(B)

i = f(kB, i)
for 0 ≤ i ≤ n− 1 are the values used to blind its set polynomial.

(b) Client A can send a Deny message to end the protocol here, or if it agrees to
engage in the computation of the set intersection, it sends a Permit message
to client B. It also sends a Compute message that contains its own and B’s
IDs, and a vector e(A) to the server. The vector e(A) is computed as follows:
for 0 ≤ i ≤ n − 1, e(A)

i = (e(B)

i)(r
(A)
i)−1

= EpkB (r
(B)

i · (r(A)

i)−1) where
r(I)

i = f(kI , i) for I ∈ {A,B} are the values from step 2c above.
(c) After receiving the Compute message from A, the server extracts e(A) and

retrieves the data v(A) and v(B) from its storage. The server then chooses two
degree d polynomials ωI randomly from R[x] and computes two vectors w(I)

(I ∈ {A,B}) such that w(I)

i = ωI(xi) for 0 ≤ i ≤ n − 1 where xi is the ith
element in the public vector x.

(d) The server computes a result vector t such that for 0 ≤ i ≤ n− 1:
ti = (e(A)

i)v
(A)
i ·w

(A)
i · EpkB (w(B)

i · v(B)

i)

= EpkB (r
(B)

i · (r(A)

i)−1 · y(A)

i · r(A)

i · w(A)

i) · EpkB (w(B)

i · y(B)

i · r(B)

i)

= EpkB (r
(B)

i · (w(A)

i · y(A)

i + w(B)

i · y(B)

i))
The server sends t to client B.

(e) After receiving t, client B computes a vector z such that for 0 ≤ i ≤ n− 1:
zi = DskB (ti) · (r(B)

i)−1

= r(B)

i · (w(A)

i · y(A)

i + w(B)

i · y(B)

i) · (r(B)

i)−1

= w(A)

i · y(A)

i + w(B)

i · y(B)

i

It then interpolates the polynomial ζ using point-value pairs (xi, zi). The roots
of ζ are the elements in the set intersection.

Remark 1: In the Setup step, the server needs to publish a vector x that has 2d + 1
elements, because the polynomial ζ in step 3e is of degree 2d and at least 2d+1 points
are needed to interpolate it. The elements in x are picked at random from R so that the
probability of xi being a root of a client’s polynomial is negligible.
Remark 2: In step 2c, the client blinds its vector. If the client stores y directly on
the server without blinding, then the server can use y and x to interpolate the client’s
polynomial, thus revealing the client’s set. With blinding this is not possible unless the
server knows the pseudorandom function key used by the client. The protocol blinds
values by multiplication. However, multiplication cannot blind a value if the value is 0.
This is why we require the probability of xi in x being a root of a client’s polynomial
to be negligible. If xi is a root then yi is 0 and cannot be blinded.
Remark 3: The data values stored on the server are blinded by their owner. To compute
the set intersection those blinding factors (r(I)

i in the protocol) must be eliminated. In
step 3b, client A and B jointly compute the vector e(A) to “switch” A’s blinding factors
toB’s blinding factors. In step 3d, e(A) is used to eliminate r(A)

i and replace it with r(B)

i .
This factor switching makes it possible later to eliminate r(B)

i in step 3e. The values in
e(A) are encrypted with B’s public key, so the server learns nothing in this process.
Remark 4: The client’s original blinded dataset remains unchanged in the server. In fact
in step 3.c, the server multiplies a copy of the client’s blinded dataset by the vector w(I).

5 Proof of Security

Now we sketch the security proof of O-PSI in the semi-honest model (see section 3.1).
We conduct the security analysis for the three cases where one of the parties is cor-
rupted.

Theorem 1. If the homomorphic encryption scheme is semantically secure, the O-PSI
protocol is secure in the presence of a semi-honest adversary.

Proof. We will prove the theorem by considering in turn the case where each of the
parties has been corrupted. In each case we invoke the simulator with the corresponding
party’s input and output. Our focus is in the case where party A wants to engage in the
computation of the intersection. If party A does not want to proceed in the protocol, the
views can be simulated in the same way up to the point where the execution stops.
Case 1: Corrupted server In this case, we show that we can construct a simulator
SimP that can produce a computationally indistinguishable view. In the real execution,
the server’s view is as follows:

viewπP (Λ, SA, SB) = {Λ, rP , v(A), v(B),Compute, e(A), Λ}
where rP are the random coins of the server, v(A), v(B) are the blinded set representa-
tion of A’s and B’s sets, Compute is the command to proceed from A, and e(A) is the
encrypted vector that is used in the protocol to switch blinding factors.

To simulate the view, SimP does the following: it creates an empty view, then
appends Λ and uniformly at random chosen coins r′P to the view. It then randomly

generates two d-element sets S′A and S′B . It also chooses two random keys k′A and
k′B for a pseudorandom function f . It encodes S′A into its polynomial representation,
evaluates the polynomial with the public values x, and blinds the evaluation results with
r
(A)′

i = f(k′A, i) for 0 ≤ i ≤ n− 1. The result is v(A)′ . Similarly it can generate v(B)′ .
Then v(A)′ and v(B)′ are appended to the view. Following that, the simulator generates
the Compute command string with the correct format and appends it to the view. It then
computes r(B)′

i · (r(A)′

i)−1 and encrypts the results with B’s public key. This produces
e(A)′ that is appended to the view. Finally, the simulator appends Λ to the view and
outputs the view.

We argue that the simulated view is computationally indistinguishable from the real
view. In both views, the input parts are identical, the random coins are both uniformly
random, and so they are indistinguishable. In the real view v(A), v(B) are blinded with
the outputs of a pseudorandom function, so do the vectors in the simulated view. Since
the outputs of the pseudorandom function are computationally indistinguishable, the
distributions of v(A), v(B), v(A)′ , v(B)′ are therefore computationally indistinguishable.
If the homomorphic encryption is semantically secure, then e(A) and e(A)′ are also
computationally indistinguishable. The output parts in both views are identical. So, we
conclude that the views are indistinguishable.

Case 2: Corrupted client A In the real execution, the A’s view is as follows:
viewπA(Λ, SA, SB) = {SA, rA, e(B), Λ}

The simulator SimA does the following: it creates an empty view, then appends Λ and
uniformly at random chosen coins r′A to the view. It then chooses n random values
ri and encrypts each ri with B’s public key. The result is e(B)′ and it is appended to
the view. The simulator then appends Λ to the view. It is easy to see that If the ho-
momorphic encryption is semantically secure, then e(B) and e(B)′ are computationally
indistinguishable. So, the two views are indistinguishable.

Case 3: Corrupted client B In the real execution, the B’s view is as follows:
viewπB(Λ, SA, SB) = {SB , rB ,Permit, t, f∩(SA, SB)}

The simulator SimB does the following: it creates an empty view, and appends Λ and
uniformly at random chosen coins r′B to the view. Then it generates the Permit com-
mand string with the correct format and appends it to the view. Following that, it creates
two d-element sets S′A and S′B such that S′A ∩ S′B = f∩(SA, SB), converts S′A to its
polynomial representation, evaluates the polynomial using the public values x and ob-
tains y(A)′ . Similarly the simulator can obtain y(B)′ . The simulator chooses randomly
two degree d polynomials ω′A and ω′B , evaluates them using the public values x and
obtains w(A)′ and w(B)′ . It also chooses a random key k′B for a pseudorandom function
f and computes r(B)′

i = f(k′B , i) for 0 ≤ i ≤ n − 1. Then the simulator computes
for each i, EpkB (r

(B)′

i · (w(A)′

i · y(A)′

i + w
(B)′

i · y(B)′

i)). The result is t′. The simu-
lator appends t′ to the view and then appends f∩(SA, SB). It is easy to see that the
distributions of t and t′ are computationally indistinguishable. So, the two views are
indistinguishable.

Combining the above, we conclude the protocol is secure and complete our proof.

6 Extensions

In this section we extend O-PSI to support dataset integrity verification and multiple
clients. These extensions require no major modification of the protocol.

6.1 Dataset Integrity Verification

To add data integrity verification to O-PSI we can use the verification mechanism of
any provable data possession protocol that does not reveal any information about the
confidential data to the server. For this purpose, we can adopt the homomorphic verifi-
cation tags proposed in [22]. These tags are homomorphic in the sense that given two
tags Ta and Tb for elements a and b one can combine them Ta·Tb which is equal to the
tag Taga+b of the sum a+ b of the two elements.

In O-PSI, client I ∈ {A,B} defines a tag for each element v(I)

i of the blinded
dataset as: T

v
(I)
i

= (h(kI ||i) · gv
(I)
i)dI mod N , where h is a secure deterministic hash-

and-encode function that maps strings uniformly to a unique cyclic subgroup of Z∗N ,

QRN , kI is a random value used for all elements in the set, g = a2, a
R← Z∗N , and

N = p′q′ is a RSA modulus, p′ = 2p′′ + 1, q′ = 2q′′ + 1 and dI · eI = 1 mod p′′q′′,
where q′′ and p′′ are prime numbers. The hash value h(kI ||i) binds the tag T

v
(I)
i

to the

value v(I)

i and prevents the server from using the tag to compute a proof for a different
value. Note, v(I)

i = y(I)

i · r(I)

i is a uniformly random value. Consequently, each tag T
v
(I)
i

does not leak any information about the private value y(I)

i to the server. In this protocol
client I , along with its blinded dataset, outsources a vector tag(I) comprising values
T
v
(I)
i

(0 ≤ i ≤ n − 1) to the server. The challenge, proof generation and verification
phases of the protocol remain unchanged to those described in [22].

6.2 Multiple Clients

O-PSI can be used to compute the intersection of the outsourced datasets of multiple
clients. In this case, the client interested in the intersection, client B, sends the same
request (see step 3a of the protocol) to all other clients, Aj (1 ≤ j ≤ m). The protocol
for each client Aj remains unchanged (see step 3b). For each client Aj , the server
carries out step 3c, and computes the result vector t such that for 0 ≤ i ≤ n− 1:

ti = EpkB (w
(B)

i · v(B)

i) ·
∏

1≤j≤m
(e

(Aj)

i)v
(Aj)

i ·w(Aj)

i

= EpkB (r
(B)

i · (w(B)

i · y(B)

i +
∑

1≤j≤m
w

(Aj)

i · y(Aj)

i))

Then the server sends t to client B, that carries out the final step, step 3e, unchanged.
Note that in this protocol, even if m− 1 clients collude, none can infer the set elements
of the non-corrupted client, as the random polynomials ω

(Aj)

I , picked by the server, are
unknown to the clients.

7 Evaluation

We evaluate O-PSI by comparing its properties to those provided by other protocols
that delegate PSI computation to a server. We also compare these protocols in terms of
communication and computation complexity. Table 1 summarises the results.

Property O-PSI [12] [13] [14] [15] [16]
Non-interactive setup X × × X X X

Hiding the intersection size from the server X X X × X ×
Many set intersections without re-preparation X × × × × ×

Multiple clients X X X X × X

Computation integrity verification × X × × × X

Communication complexity O(d) O(d) O(d2) O(d) O(d2) O(k)

Computation complexity O(d) O(d) O(d2) O(d2) O(d2) O(d)

Table 1: Comparison of different delegated PSI protocols. Set cardinality and intersec-
tion cardinality are denoted by d and k respectively.

Properties. The protocols in [12, 13] require clients to interact with each other at setup.
In [12] clients need to generate jointly the key of the pseudorandom permutation used
to encode the datasets, while in [13] they need to jointly compute some parameters that
are used in the encryption of their datasets. In contrast to these protocols, in [14, 16, 15]
and O-PSI the clients can independently prepare and outsource their private datasets.
This is desirable in a cloud computing context as organizations and individuals can take
advantage of the storage capabilities of the cloud and outsource their data at different
points in time and without prior consideration of who is going to use them.

In a delegated PSI protocol, privacy should be maintained and the server should not
learn anything about the intersection during the computation, including its cardinality.
This is the case for the size-hiding variation of [12], protocols in [13, 15], and O-PSI.
However, as discussed in section 2 this is not the case for [14, 16].

More interestingly, O-PSI is the only protocol in which clients can reuse their out-
sourced datasets on the server in multiple delegated PSI computation without the need
to prepare their datasets for each computation, and computing PSI on the outsourced
dataset multiple times does not reveal any information to the server. This is an impor-
tant advantage in scenarios where outsourced datasets are expected to be used a lot of
times, as it significantly reduces the overall communication and storage cost for the
clients. This is not the case for any of the other protocols, because the clients either
do not outsource their datasets, or need to re-encode them locally for each operation in
order to prevent the server from inferring information about the intersection over time.

As we showed in section 6.2, O-PSI can be easily extended to support multiple
clients. This is also the case for [12–14, 16]; however, this is not possible for [15], as
this requires an additional logical operation that is not supported by the homomorphic
encryption scheme used.

O-PSI has been designed for the semi-honest security model and as a result does not
consider the case where the server maliciously deviates from the protocol and computes

the wrong result. This is a reasonable assumption in a cloud computing context where
cloud providers are keen to preserve their reputation and this assumption is widely
considered in the literature [23, 24, 13–15]. However [16] allows the client to verify the
correctness of the results, while as we have seen in section 2, [12] can detect server
misbehavior at an additional cost.

In conclusion, in contrast to other protocols, O-PSI has a unique combination of
properties that make it particularly appealing for a cloud computing setting.
Communication Complexity. The communication complexity of O-PSI for the client
who receives the result, client B, is O(d), where d is the dataset size. This is because,
client B sends to client A the n = 2d + 1 encrypted random values EpkB (r

(B)

i) for
0 ≤ i ≤ n−1 (see step 3a). The communication complexity for clientA, who authorizes
the operation on its dataset, isO(d), as for each of the n values it receives from clientB
it sends to the serverEpkB (r

(B)

i ·(r(A)

i)−1) (see step 3b). The communication complexity
for the server is O(d), as it sends to client B the result vector t of size n (see step 3d).
Thus, the overall communication complexity of our protocol is 3nwhich is linear,O(d),
to the dataset size.

In [13] for each set intersection, the client engages in a two-round protocol, one
round to upload its elements in the form of RSA ciphertexts to the server with O(d)
communication complexity, and another to interactively compute private set intersec-
tion with the server with O(d2) communication complexity. For the protocol in [15],
the communication complexity is also quadratic O(sd2), where s is the number of hash
functions used for the bloom filter, and the messages contain BGN encryption cipher-
texts. On the other hand, the protocol in [12] has O(d) communication complexity
with messages containing symmetric key encryption ciphertexts. Finally, the protocol
in [14] has O(d) communication complexity with messages containing symmetric key
encryption ciphertexts, while the protocol in [16] has O(k) complexity, where k is the
intersection size.

In conclusion, similar to the most efficient protocols, O-PSI has linear communi-
cation complexity, however at an increased message size, which results from the addi-
tional dataset outsourcing properties and privacy guarantees that it provides.
Computation Complexity. We evaluate the computational cost of O-PSI by counting
the number of exponentiation operations, as their cost dominates that of other opera-
tions. More specifically, client B performs n exponentiations to encrypt the random
values in step 3.a, and needs another n exponentiations to decrypt the polynomial sent
by the server in step 3.e. So, in total it carries out 2n exponentiations. ClientA performs
n exponentiations to enable the set intersection in step 3.b, while the server carries out n
exponentiations to encrypt client B’s dataset and n exponentiations to transform client
A’s dataset in step 3.d, a total of 2n exponentiations. It is interesting to note that using
the point-value representation increases the overall storage costs at the server. However,
the modest increase in storage brings a significant decrease in the computational costs,
from O(d2) (when using encrypted coefficients such as in [6]) to O(d). In total O-PSI
involves 5n exponentiations. Hence, its computation complexity is linear to the size of
the dataset, O(d).

The semi-honest variant of the protocol in [12] also has linear complexity O(d),
as the client computing the result and the server invoke the pseudorandom permutation

(PRP) d times, while the other client invokes the PRP, 2d times. On the other hand,
the computational overhead in [13] is quadratic O(d2), as it involves a joint PSI pro-
tocol (plus public key encryption of the dataset elements). The protocol in [15] also
has quadratic complexity, as it involves O(d2) BGN public key encryption operations.
In [14] the client performs O(d) modular additions, while the server carries out O(d2)
operations to compare the expanded sets of the users. Finally, the protocol in [16] is
based on bilinear maps and requires 6d pairings at the server side and 2k exponentia-
tions at the client side, resulting inO(d) andO(k) computation complexity at the server
and client side respectively.

In conclusion, similar to the most efficient protocols, due to the use of polynomials
in point-value form, O-PSI incurs only linear computational costs. However, the addi-
tional properties it provides come at the cost of more costly exponentiation operations.

8 Conclusions and Future Work

In this paper we have presented O-PSI, a protocol that allows clients to outsource their
private datasets and delegate PSI computation to a server. A key building block of O-PSI
is a novel representation of sets as polynomials in point-value form. The protocol allows
clients to independently prepare and outsource their private datasets, while allowing,
with the clients’ permission, the server to compute multiple set intersections without
revealing any information about the result or the sets, and no need for re-preparation of
the sets. O-PSI has been shown to be secure in the semi-honest model, and has linear
communication and computation complexity, with respect to the size of the datasets. O-
PSI can be easily extended to support multiple clients and dataset integrity verification.
As a result, O-PSI is a scalable protocol particularly suited for cloud computing envi-
ronments. In the future, we plan to investigate how O-PSI can be extended to support
additional set operations like set union or subset. We also plan to explore how clients
can update their sets without the need to fully re-encode them, and verify the integrity
of any computation.

Acknowledgments We would like to thank the anonymous reviewers. Aydin Abadi is
supported by a EPSRC Doctoral Training Grant studentship.

References

1. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In:
21st ACM Conference on Computer and Communications Security, Scottsdale, AZ, USA.
(2014) 844–855

2. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced
data. In: 20th ACM Conference on Computer and Communications Security, Berlin, Ger-
many. (2013) 863–874

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM Sigmod Record 29(2) (2000)
439–450

4. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with linear complex-
ity. In: 14th International Conference on Financial Cryptography and Data Security. (2010)
143–159

5. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In:
EUROCRYPT 2004, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Interlaken, Switzerland. (2004) 1–19

6. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO 2005, 25th Inter-
national Cryptology Conference. (2005) 241–257

7. Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols
secure in malicious model. In: ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security. (2010) 213–231

8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and
scalable protocol. In: 20th ACM Conference on Computer and Communications Security.
(2013) 789–800

9. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension.
In: 23rd USENIX Security Symposium, San Diego, CA, USA, USENIX (2014)

10. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: CRYPTO 2011, 31st International Cryptology Conference. (2011) 91–110

11. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over
outsourced databases. In: 17th IACR International Conference on Theory and Practice of
Public-Key Cryptography. (2014) 113–130

12. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to
billion-element sets. In: 18th International Conference on Financial Cryptography and Data
Security. (2014) 863–874

13. Kerschbaum, F.: Collusion-resistant outsourcing of private set intersection. In: 27th ACM
Symposium on Applied Computing, Riva, Trento, Italy. (2012) 1451–1456

14. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection protocol for
outsourced datasets. In: IEEE International Conference on Cloud Engineering. IC2E ’14,
Washington, DC, USA, IEEE Computer Society (2014) 135–140

15. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryption. In: 7th
ACM Symposium on Information, Compuer and Communications Security, ASIACCS ’12,
Seoul, Korea, May 2-4, 2012. (2012) 85–86

16. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced encrypted
data. IACR Cryptology ePrint Archive (2014) 178

17. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press (2004)

18. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: 20th ACM Conference on Computer
and Communications Security, Berlin, Germany. (2013) 247–258

19. Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database search. In:
First ACM Cloud Computing Security Workshop, Chicago, IL, USA. (2009) 115–126

20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EU-
ROCRYPT ’99, International Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic. (1999) 223–238

21. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms. 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1974)

22. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song,
D.X.: Provable data possession at untrusted stores. In: 14th ACM Conference on Computer
and Communications Security. (2007) 598–609

23. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear programming in
cloud computing. In: 30th IEEE International Conference on Computer Communications,
Shanghai, China. (2011) 820–828

24. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: 21st
ACM Conference on Computer and Communications Security, Scottsdale, AZ, USA. (2014)
310–320

