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Abstract— In the specialized domain of brain tumor seg-
mentation, supervised segmentation approaches are hin-
dered by the limited availability of high-quality labeled data,
a condition arising from data privacy concerns, significant
costs, and ethical issues. In response to this challenge,
this paper presents a training framework that adeptly in-
tegrates a plug-and-play component, MOD, into current
supervised learning models, boosting their efficacy in sce-
narios with limited data. The MOD consists of an On-
line Tokenizer and a Dense Predictor, which employs self-
distillation and self-modeling on masked patches, promot-
ing swift convergence and efficient representation learn-
ing. During the inference phase, the plug-and-play MOD
component is excluded, preserving the computational ef-
ficiency of the original model without incurring extra pro-
cessing costs. We substantiated the value of our ap-
proach through experiments on leading 3D brain tumor
segmentation baselines. Remarkably, models augmented
with the MOD consistently showcased superior results,
achieving elevated Dice coefficients and HD95 scores on
two datasets: BraTS 2021 and MSD 2019 Task-01 Brain
Tumor. Code: https://github.com/aigzhusmart/MOD

Index Terms— 3D Medical Image Segmentation, Image
Generation, Representation Learning

I. INTRODUCTION

Medical image segmentation on the brain serves as a
cornerstone within the healthcare domain, specifically within
the context of diagnostic and therapeutic procedures, thereby
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Fig. 1: Comparison of the architectural design between a
conventional medical image segmentation framework and our
proposed general framework, MOD, which is specifically
designed to accelerate the training process.

accentuating its role in facilitating accurate, patient-focused
medical outcomes [1], [2]. In general, current predominant
frameworks incorporate a backbone network linked to a seg-
mentation head, both of which undergo supervised learning
on comparatively smaller datasets of medical images [3]. The
backbone network primarily undertakes the extraction of valu-
able representations from a vast pool of labeled images, sub-
sequently enabling the segmentation head to produce masks
based on these features [4], [5]. Generally, an increase in the
volume of labeled data utilized for training tends to improve
the overall segmentation performance. Nevertheless, compli-
cations associated with data privacy, substantial costs, and
ethical considerations contribute to the limited high-quality
labeled medical data [6], [7], presenting considerable obstacles
to traditional supervised segmentation methodologies. This
challenge highlights the pressing need for the advancement
of more precise segmentation strategies.

Advancements in brain tumor segmentation have been
largely fueled by progress in general computer vision, es-
pecially with hybrid transformer-based frameworks. These
innovations have enabled more precise identification and delin-
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eation of structures in current medical images [8]. To counter
the limitation of high-quality labeled data, a two-stage process,
depicted in Fig. 1A, involving generative pre-training followed
by supervised fine-tuning, has been adopted. Generative pre-
training leverages large volumes of unlabeled data to detect
essential patterns and correlations [9], providing a foundational
understanding of data distribution. This phase is particularly
vital in situations with limited high-quality, labeled training
data. Subsequently, the supervised fine-tuning stage refines this
knowledge on a smaller, task-specific labeled dataset, aligning
the model’s capabilities with the specific requirements of the
segmentation task. This two-stage approach ensures that the
model not only grasps broad data characteristics but also hones
in on specific features necessary for effective segmentation
performance.

Transferring general computer vision advancements to med-
ical image segmentation faces significant challenges, primarily
due to the limited availability of diverse, quality brain tumor
images. This issue stems largely from data privacy and ethical
constraints. For instance, in general, computer vision, models
like CLIP [10] benefit from extensive datasets of around 400
million internet-sourced images for generative pre-training. In
contrast, assembling a similarly large and varied dataset of
unlabeled medical brain tumor images is far less feasible.
Additionally, the diversity shortage in medical imaging modal-
ities, especially in 3D Magnetic Resonance Imaging (MRI),
poses further challenges [11], [12]. The inherent lack of cross-
plane contextual information in 3D MRI adds complexity
to transfer learning processes. In addition, the evolution of
task-specific objectives in computing has led to capability
enhancements but also introduced cross-domain inconsisten-
cies [13]–[15]. In the pretraining phase of general computer
vision, the focus is on high-level semantic representations for
accurate classification within deep hierarchical architectures.
However, medical segmentation tasks require detailed pixel-
level predictions, particularly in the context of 3D high-
resolution medical images [16]–[18]. This shift in focus from
high-level to pixel-level precision presents a challenge, as
traditional brain tumor segmentation frameworks are more
adept at learning high-level representations. An overemphasis
on high-level learning can be counterproductive for tasks
demanding pixel-level accuracy, highlighting the necessity for
a balanced and adaptive approach [19], [20].

To effectively address the challenges associated with trans-
ferring advancements from general computer vision to medi-
cal image segmentation—particularly in the context of high-
quality labeled data—it is crucial to conduct a comprehensive
analysis of the architectural frameworks currently employed in
this domain. These frameworks typically comprise two essen-
tial components in supervised learning: a backbone responsible
for efficiently extracting high-level semantic representation
and a segmentation head designed to achieve precise pixel-
level classification. This dual-structure approach is illustrated
in Fig. 1B and highlights the intricate interplay between fea-
ture abstraction and detailed segmentation. Given the intricate
nature of medical imaging, a critical reassessment of the train-
ing framework is necessary, focusing on its ability to optimize
representation extraction and achieve rapid convergence within

the specific domain of 3D brain tumor segmentation. This
necessitates a thorough understanding of how high-level fea-
tures can be effectively translated into the pixel-level accuracy
required for medical tasks. Moreover, considering the unique
characteristics of 3D imaging modalities, such as the lack of
cross-plane contextual information, it becomes evident that
the architecture must be meticulously calibrated to overcome
these specific challenges. Therefore, the development of a
comprehensive and synergistic framework to current medical
image segmentation models is essential, ensuring that they
are adeptly equipped to navigate the unique complexities and
idiosyncrasies inherent in medical data. Such a framework
will enhance the models’ capability to provide accurate and
clinically relevant segmentation outcomes.

Given the challenges mentioned above, we introduce an
effective training framework. This framework seamlessly em-
beds a plug-and-play component, MOD, into existing super-
vised models, enhancing their performance in data-limited
situations. As illustrated in Fig. 1C, the MOD includes two
integral modules: an Online Tokenizer and a lightweight
Dense Predictor. The Online Tokenizer, powered by a self-
distillation mechanism, facilitates the efficient learning of
high-level semantics. This is particularly useful in scenarios
with limited availability of labeled medical images, as it
bolsters the backbone’s ability to incorporate intricate feature
representations during the training phase [21], [22]. Concur-
rently, the Dense Predictor employs a self-modeling strategy,
scrutinizing regions at a lower semantic level. This strategy
allows an evaluation of the backbone’s ability to extract
detailed information from the data [23]–[25]. Through the har-
monious interplay of the Online Tokenizer and Dense Predictor
at diverse semantic levels, the MOD cultivates an efficient
training procedure, enhancing the effectiveness of current
supervised learning backbones, particularly on small yet high-
quality labeled training datasets available in the public domain.
At the inference stage, the plug-and-play component, MOD,
is detached, ensuring that the original model incurs no extra
computational overhead. In order to showcase the efficacy of
our proposed training framework, we conducted a series of
experiments integrating MOD with several competitive 3D
medical segmentation baselines featuring diverse structures.
These experiments were performed on two publicly available
brain tumor datasets both consisting of limited labeled images.
The findings indicate that our training framework significantly
boosts the performance of current supervised learning models,
highlighting its utility as a beneficial addition to established
approaches in brain tumor segmentation.

The main contributions are summarized as follows:
• The paper presents an innovative training framework

incorporating the modular component MOD, designed to
enhance the performance of existing supervised learning
algorithms for segmenting 3D brain tumor images under
conditions of limited training data. During the inference
phase, the plug-and-play MOD component is excluded,
preserving the computational efficiency of the original
model without incurring extra processing costs.

• The MOD component integrates two key elements: the
Online Tokenizer and the Dense Predictor. The Online
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Tokenizer utilizes a self-distillation mechanism to stream-
line the learning of high-level semantic features. Con-
currently, the Dense Predictor, through its self-modeling
approach, focuses on capturing detailed aspects. This
combination effectively bolsters swift convergence and
efficient representation learning of current 3D medical
segmentation models.

• In order to validate the effectiveness of the proposed
framework, we conduct a series of experiments using
various competitive 3D medical segmentation baselines
with and without MOD. The results demonstrate that
when integrated with MOD, these models achieve a
substantial improvement in segmentation performance, as
evidenced by higher Dice coefficients and HD95 on two
public limited supervised labeled datasets: BraTS 2021
[26] and MSD 2019 Task-01 Brain Tumor [27].

II. RELATED WORK

A. Two-Stage Segmentation Tasks

In computer vision, the two-stage process leveraging pre-
trained models for downstream tasks has shown great success
[22]. For example, CP 2, initially trained on the 1.28 million
images of the ImageNet 1K dataset, achieved state-of-the-art
dice accuracy when fine-tuned for tasks in PASCAL VOC
2012 [28]. The Swin Transformer, pre-trained on the 14
million images of ImageNet-22K, outperformed SETR by +3.2
mIoU when fine-tuned on the ADE20K dataset [29]. Zero-shot
transfer learning, a method to save computational resources,
uses pre-trained models on novel datasets without further fine-
tuning [22], like the Clip simple pre-training task applying
image representations for segmentation based on textual class
descriptions. Efforts to increase labeled images led to the
creation of Segment Anything (SA) [30], the largest segmen-
tation dataset with over 1 billion masks across 11 million
images. However, in medical imaging, assembling large high-
quality datasets remains challenging due to data privacy, cost,
and ethical issues. Even extensive datasets like MedSAM
[31], with around 0.2 million masks across 11 modalities,
are significantly smaller than natural image datasets like SA.
Thus, while effective in general computer vision, applying this
two-stage process in medical image analysis is limited by the
scarcity of annotated datasets.

B. Supervised Brain Tumor MRIs Segmentation

Semantic segmentation is an essential component of medical
image analysis, as it enables the accurate examination of
anatomical structures [32]. since the introduction of the U-
shaped encoder-decoder architecture with convolutional layers
by U-Net [33], it has demonstrated remarkable performance
in 3D brain tumor segmentation tasks [34], [35]. However,
the convolutional layers often ignore global representations
because of the limitations of receptive field size [3]. In order
to alleviate this issue, TransBTS [36] uses a combination of the
transformer, CNN, and encoder-decoder structure. Which en-
coder utilizes 3D CNN to extract the volumetric spatial feature
maps. The ViTAutoEnc [37] integrates a transformer-based

connection with convolutional layers as its Encoder. Mean-
while, the UNETR [3] utilizes a transformer-based encoder in
conjunction with a convolution-based decoder. By expanding
the number of parameters to develop larger-scale models, this
kind of hybrid transformer-based algorithm exhibits significant
progress in medical image analysis tasks. Nevertheless, the in-
creased model size can lead to overfitting, high computational
demands, and additional expenses, ultimately reducing the
training efficiency for 3D medical images [20]. As an attempt
to address this issue, Swin UNETR enhances efficiency to
linear complexity by incorporating a Swin Transformer as the
encoder, utilizing non-overlapping shifted windows for stream-
lined processing [38]. Edge U-Net [39] precisely localizes
tumors by merging boundary-related MRI data with the main
data from brain MRIs. Even though existing methods have
brought about remarkable advancements in the field of medical
image segmentation, they continue to grapple with a substan-
tial challenge: improving the segmentation performance while
dealing with limited supervised datasets, such as the BraTS
and MSD Task-01 Brain Tumor. While these methods have
demonstrated their capabilities, there remains notable room
for further enhancement. Accordingly, the objective of our
work is to construct a comprehensive framework that can
be integrated with existing models, aiming to improve the
overall accuracy of segmentation tasks. This goal is achieved
by exploiting the meaningful information from the limited
yet high-quality labeled training datasets available publicly,
thereby addressing one of the key issues in the realm of
medical image segmentation.

III. METHODS

As illustrated in Fig. 1B, the existing medical image seg-
mentation framework primarily hinges on two basic compo-
nents: the backbone and the segmentation head [40], [41]. The
backbone extracts pivotal features from brain images, upon
which the segmentation head optimizes the loss function to de-
lineate different medical image parts. Segmentation accuracy
and effectiveness heavily depend on the quality of features
extracted by the model’s backbone and the segmentation
head. Yet, the limited availability of brain tumor segmentation
datasets, constrained by privacy and ethical considerations,
presents a formidable challenge. Thus, it is vital to amplify the
feature-extracting power of the model’s backbone to overcome
these limitations and improve segmentation outcomes [42].

A. Play-and-plug component: MOD
Addressing the prevalent challenges in brain tumor segmen-

tation, we’ve introduced the play-and-plug component named
MOD, which is illustrated in Fig. 2. This innovation is tailored
to amplify the capability of current Medical image segmen-
tation models, driving them towards heightened accuracy and
efficiency. At its core, MOD is bifurcated into two pivotal
components: the Online tokenizer and the Dense predictor. The
online tokenizer is meticulously designed to extract high-level
semantic features, enriching the backbone’s depth of under-
standing. Conversely, the dense predictor zeroes in on pixel-
level details, ensuring granular accuracy. The synchronized
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Fig. 2: The plug-and-play component, MOD, integrates an online tokenizer and a lightweight dense predictor, enhancing the
performance of existing supervised learning algorithms across both semantic levels. The Online Tokenizer utilizes a self-
distillation mechanism to streamline the learning of high-level semantic features. Concurrently, the Dense Predictor, through
its self-modeling approach, focuses on capturing detailed aspects at a lower semantic level.

operation of the Online Tokenizer and Dense Predictor fortifies
representation learning across various semantic strata of the
backbone, culminating in an evident boost in the segmentation
accuracy of the model.

1) Online Tokenizer: The online tokenizer is designed to
enhance the backbone’s capability in extracting high-level
semantic features. Considering the self-distillation approach
[22], the online tokenizer adopts a teacher-student model
framework to advance the backbone’s learning process. Specif-
ically, a teacher backbone f ′ with parameters θ′, structurally
identical to the target backbone f with parameters θ, is
initialized to guide the feature extraction evolution of the target
backbone.

Advanced semantic feature extraction is facilitated through
data augmentation techniques, including Gaussian blur and
contrast enhancement, to produce augmented images µ and
ν. These images are then subjected to blockwise masking,
resulting in µ̂ and ν̂, which serve as masked inputs for
the target backbone. The target backbone processes these
inputs and outputs feature maps fefm

θ (µ̂), whereas the teacher
backbone processes the unmasked inputs to yield fefm

θ′ (µ).
The training target is defined by a loss function Lefm in

Equation 1, aiming to synchronize the learning of enhanced

high-level semantics between the teacher and target back-
bones. This loss is calculated by averaging the cross-entropy
loss between the teacher’s outputs on unmasked images and
the student’s outputs on the corresponding masked variants.
Consequently, the online tokenizer serves a dual function: it
bolsters the target backbone’s capability for feature extrac-
tion while simultaneously refining the model’s performance
through enhanced learning of high-level semantic information.

Moreover, to ensure semantic richness in feature capture as
indicated by [43], the online tokenizer extracts depth feature
maps from the student backbone fθ and the teacher backbone
fθ′ , to produce classification tokens f cls

θ (µ̂), f cls
θ (ν̂), f cls

θ′ (µ),
and f cls

θ′ (ν). These tokens are subjected to further distillation.
Taking f cls

θ (ν̂) and f cls
θ′ (µ) as examples, the training target is

formalized in Equation 2. Additionally, we compute the mean
loss between f cls

θ′ (µ) and fefm
θ (ν̂) via another cross-entropy

term, resulting in the loss Lcls, which is designed to harmonize
high-level semantics across images with the same ground truth.
Thus, the total loss function of the online tokenizer, Lot, is
finally calculated in Equation 3.

Lefm = − 1

N

N∑
i=1

mi · fefm
θ′ (µi)

T logfefm
θ (µ̂i) (1)
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Lcls = −
1

N

N∑
i=1

mi · f cls
θ′ (νi)

T logfcls
θ (µ̂i) (2)

LOT = αLefm + βLcls (3)

where miϵ{0, 1}N denotes the amount of mask for the ith
sample and N denotes the total number of training data. In
this case, we set α = 1.5, β = 0.5.

2) Dense Predictor: The dense predictor is designed to
refine the extraction of pixel-level semantic features within a
model’s backbone, a pivotal enhancement for the precise delin-
eation required in 3D brain tumor segmentation. By leveraging
the principles of masked image modeling, the dense predictor
elevates the backbone’s capability for pixel restoration, directly
correlating with an uptick in segmentation fidelity [44]. This
is achieved through a self-modeling mechanism that weaves
the dense predictor into the existing segmentation framework,
thereby sharpening the model’s interpretative precision at the
granular pixel level.

The dense predictor begins its process by integrating po-
sition embeddings with enhanced images µ and ν, which
is a critical step towards achieving accurate localization of
mask tokens. Following this, the images traverse through the
backbone network, resulting in feature maps fefm

θ (µ̂) and
fefm
θ (ν̂), which are then relayed to the decoder. The decoder’s

task is to accurately reconstruct the images into recon(µ̂)
and recon(ν̂), where outputs are transformed into linear
vectors that correspond to the positional encoding, enabling
meticulous patch token localization within the reconstruction
phase. From reconstruction, the dense predictor outputs the
same size as the input image and optimizes the loss function
with the original image.

In pursuit of achieving a reconstructed image that mirrors
the ground truth, the dense predictor optimizes a masked
L1-loss function [45] that compares the patch tokens of the
reconstructed and ground truth images. The minimization of
this loss, defined in the objective function LDP in Equation 4,
only calculates unmasked features, is pivotal for refining pixel-
level feature extraction, consequently enhancing segmentation
precision.

LDP =
1

N

N∑
i=1

||µi − fefm
θ (µ̂i))||1 ∗mask (4)

Where N denotes the total number of patches in the training
image, and fefm

θ (µ̂i)) represents the output feature maps
from the student backbone, and µi corresponds to a single
patch from the augmented image. The dense predictor loss is
calculated only for the masked patches in the input image.
The entire methodology encompassing MOD is concisely
encapsulated in Algorithm 1.

B. Loss Functions

The proposed innovative training framework incorporates
a plug-and-play component named MOD into established
supervised models. Consequently, the overall loss function
within this system is bifurcated into two distinct components:

Algorithm 1 The plug-and-play component MOD

Require: Backbone fθ, dataset D
Ensure: Backbone fθ

1: Initialization: Teacher Backbone fθ′

2: for epoch in {1,...,E} do
3: x← {d|d∈ D } ▷ Load dataset
4: µ← Aµ(x), ν ← Aν(x) ▷ Data Augmentation
5: µ′ ←M(µ), ν′ ←M(ν) ▷ Mask
6: Step 1. Compute total Loss for MOD:
7: LOnlineTokenizer(θ) = αLefm(θ) + βLcls(θ)

8: LDensePredictor(θ) = ||µ− fefm
θ (µ̂))||1

9: LMOD(θ) = λ1LOT(θ) + λ2LDP(θ)
10: Step 2. Compute total Loss for Segmentation Head:
11: LSEG(θ) = λ1Lfocal(θ) + λ2Ldice(θ)
12: Step 3. Back-propagation and update gradient:
13: Update parameter θ
14: θ′ ← θ + lr · ∇(LMOD(θ) + LSEG(θ))
15: Update Teacher Network by EMA
16: end for
17: Return Prime Backbone fθ′

the MOD-specific loss and the conventional loss associated
with the original segmentation task.

MOD-specific Loss: As shown in Equation 5, the MOD-
specific Loss is constituted by two specialized loss functions:
the self-distillation loss, which stems from the Online Tok-
enizer’s high-level semantic analysis, and the self-modeling
loss, which arises from the Dense Predictor’s detailed insight
extraction process.

LMOD = λ1LOT + λ2LDP (5)

In this paper, we set λ1 = 1, λ2 = 1.
Segmentation Optimization: In order to achieve the end-

to-end segmentation task, the loss function of original models
still comprises the minimization of both Dice loss [46] and
Focal loss [47], formalized in Equation 6 and Equation 7
respectively.

Ldice(G, Y ) = 1− 2

J

M∑
j=1

∑N
i=1 Gi,jYi,j∑N

i=1 Gi,j +
∑N

i=1 Yi,j

(6)

s

Lfocal(G, Y ) = −
M∑
j=1

N∑
i=1

(Yi,jG
2
i,j log(1−Gi,j)

+(1− Yi,j)(1−Gi,j)
2log(Gi,j))

(7)

where I denotes the number of voxels and J denotes the
number of classes; Yi,j and Gi,j denote the probability of
output and one-hot encoded ground truth for classj at voxel
i, respectively.

The segmentation loss function is calculated as Equation 8.

LSEG = λ1Lfocal + λ2Ldice (8)

where the optimal values of λ1 = λ2 = 1 were calculated
using a grid-search hyper-parameter optimization.
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Overall Loss of the proposed training framework is finally
calculated in Equation 9.

LTotal = λ1LMOD + λ2LSEG (9)

where λ1 = λ2 = 1.
In addition, after every iteration involving loss in the back-

bone, we utilize Exponential Moving Average (EMA) tech-
niques [43] to judiciously transfer a subset of the parameters
from the backbone fθ to the teacher backbone fθ′ within
the Online Tokenizer, ensuring the teacher backbone provides
credible guidance.

IV. EXPERIMENTS AND DISCUSSION

Our experimental framework involves an extensive com-
parison of several leading 3D brain tumor baselines, both
with the integration of the MOD component during training
and without it. The goal is to evaluate the training efficiency
and the segmentation results by excluding MOD during the
inference stage. This comparison is designed to showcase
the enhanced performance that our proposed general training
framework contributes to the domain.

A. Datasets
We utilized two datasets with a limited number of high-

quality labeled images: the BraTS 2021 [26] and the MSD
2019 Task-01 Brain Tumor [27] datasets. The BraTS 2021
dataset includes 1,251 data samples, whereas the MSD 2019
dataset offers 484 samples of multimodal MRI. The assess-
ment of our MOD’s performance on these smaller datasets is
critical to determine its effectiveness in supervised learning
scenarios with constrained data availability.

The BraTS 2021 Brain Tumor dataset encompasses 1, 251
multi-institutional magnetic resonance imaging (MRI) scans,
each detailing a volumetric snapshot with dimensions of
240× 240× 155. These scans are instrumental in identifying
three pivotal tumor sub-regions: the enhancing tumor (ET), the
peritumoral edema (ED), and the necrotic and non-enhancing
tumor core (NCR/NET). Ground truth annotations within this
dataset are meticulously segmented into three hierarchical
categories: the Whole Tumor (WT), the Tumor Core (TC),
and the Enhancing Tumor (ET). The BraTS 2021’s inherent
challenge lies in the inherent diversity of its data—stemming
from various MRI scanners and institutions—compounded by
the intricate complexity of the tumor sub-regions delineated
within it.

The MSD 2019 Task-01 Brain Tumor dataset, a corner-
stone of the Medical Segmentation Decathlon 2019, consists
of 484 data samples with uniform voxel dimensions of 1.0×
1.0×1.0 mm3. Each sample comprises four modalities of 3D
MRI scans, akin to those found in the BraTS 2021 dataset, and
includes ground truth labels delineating glioma segmentation
into the necrotic/active tumor and edema. Given the modest
number of training samples, the ability of models to learn
representations is expectedly diminished when compared to
those trained on more extensive datasets. As such, evaluating
model performance for brain tumor segmentation within the
MSD 2019 dataset serves as a litmus test for the efficacy of

representation learning, offering a direct comparison against a
range of different methodologies.

B. Experimental Settings
Our proposed training framework, constructed on PyTorch

[48] and MONAI [49], leverages the computational prowess
of 4 NVIDIA V100 GPUs, with each processing a batch of 4
patches sized at 128 × 128 × 128. Optimization is facilitated
through AdamW [50], paired with a cosine scheduler for a
warm-up and an initial learning rate set at 0.001, further fine-
tuned with a weight decay of 0.05. We employed a cosine
scheduler with a momentum value of 0.996 for the EMA
update teacher model. And used a random masking method
with a mask rate of 0.6 during the training phase. Our data
augmentation strategy includes intensity normalization and
random intensity adjustments, with a scale factor oscillating
by ±0.1 and shifts maintained at a 0± 0.1 range.

C. Evaluation Metrics
Our framework’s efficacy in medical image segmentation

is gauged using two principal metrics: Dice accuracy [46],
which assesses the overlap between the predicted and ground
truth segments (computed as per Equation 10), and HD95
[51], which measures the 95th percentile Hausdorff distance to
evaluate shape similarities, detailed in Equation 11. While the
former reflects segmentation precision, the latter offers insights
into the contour accuracy, with lower HD95 values signifying
a closer resemblance to the actual anatomy.

Dice(G, Y ) =
2
∑I

i=1 GiYi∑I
i=1 Gi +

∑I
i=1 Yi

(10)

HD(G′, Y ′) = max{maxmin ∥g′ − y′∥,
maxmin ∥y′ − g′∥}.

(g′ ∈ G′, y′ ∈ Y ′)
(11)

where the notations Gi and Yi represent the ground truth
and predicted values for the ith data sample, respectively. In
the context of surface distances, G′ and Y ′ correspond to the
sets of surface points derived from the ground truth and the
predicted segmentation.

D. Empirical Results
1) Segmentation Results on limited supervised datasets: In

evaluating the effectiveness of the proposed training frame-
work, we scrutinized nine distinct 3D brain tumor segmen-
tation detection models utilized for medical image analy-
sis on the limited supervised BraTS 2021 dataset, bench-
marked by Dice and HD95 scores. For a more comprehensive
understanding, we elected four representative models ViT,
UNETR, UNETR++, and Swin-UNETR to demonstrate the
performance alterations brought about by the incorporation
of the MOD framework. As shown in Table I, ViT, which
introduced long-range dependency in visual images, recorded
the lowest performance among all evaluated models with
a dice score of 61.80% and HD95 of 38.89 mm on the
BraTS 2021 dataset. Conversely, UNETR, which uniquely

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2025.3530715

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



AUTHOR et al.: TITLE 7

TABLE I: Evaluation on BraTS 2021 Brain Tumor with and without integration of MOD component. The Metrics of the
Integration Framework are Highlighted in Gray. The increase and loss of metrics are recorded in red and green in this table.
Moreover, the performance metrics of the baseline setting of MOD are highlighted in gray .

Baseline
Dice(%)↑ HD95(mm)↓

TC WT ET Avg. TC WT ET Avg.
VIT 62.64 69.63 53.13 61.80 43.59 35.66 37.42 38.89

VIT(MOD) 66.30 +3.66 73.46 +3.83 58.65 +5.52 66.14 +4.34 33.85 -9.47 33.31 -2.35 12.55 -24.87 26.57 -12.32
UNETR 90.78 92.53 87.59 90.05 5.19 8.97 4.22 6.13

UNETR(MOD) 92.84+2.06 93.63 +1.10 89.56 +1.97 92.01 +1.96 3.60 -1.59 4.20 -4.77 2.90 -1.32 3.57 -2.56
UENTR++ 91.49 92.87 88.82 91.06 3.81 6.12 3.45 4.42

UENTR++(MOD) 91.54 +0.05 92.87 +0.00 89.08 +0.26 91.16 +0.10 3.94 +0.13 5.81 -0.31 3.01 -0.44 4.25 -0.17
Swin-UNETR 91.69 93.22 89.08 91.36 5.81 4.64 4.65 5.03

Swin-UNETR(MOD) 93.15 +1.46 93.32 +0.10 89.85 +0.77 92.11 +0.75 4.54 -1.27 3.83 -0.81 3.80 -0.85 4.06 -0.97
Swin-UNETRV2 92.48 93.49 89.30 91.76 5.35 4.12 4.20 4.55

Swin-UNETRV2(MOD) 93.64 +1.16 93.52 +0.03 90.05 +0.75 92.40 +0.64 4.11 -1.24 3.67 -0.45 3.53 -0.67 3.77 -0.78
SegMamba 92.10 93.81 89.49 91.80 6.03 5.76 5.10 5.63

SegMamba(MOD) 93.28 +1.18 93.90 +0.09 90.70 +1.21 92.62 +0.82 5.28 -0.75 4.90 -0.86 4.31 -0.79 4.83 -0.80

TABLE II: Evaluation on MSD 2019 Task-01 Brain Tumor with and without integration of MOD component. The colors of
the record in this table are labeled the same as in Table I.

Baseline
Dice(%)↑ HD95(mm)↓

TC WT ET Avg. TC WT ET Avg.
VIT 55.08 62.56 33.65 50.43 41.42 44.89 37.31 41.20

VIT(MOD) 61.36 +6.28 70.38 +7.82 36.86 +3.21 56.20 +5.77 40.74 -0.68 43.03 -1.86 36.88 -0.43 40.22 -0.98
UNETR 79.87 87.18 55.93 74.33 17.34 19.74 13.74 16.94

UNETR(MOD) 83.44 +3.57 90.87 +3.69 60.82 +4.89 78.37 +4.04 7.73 -9.61 15.37 -4.37 9.44 -4.30 10.84 -6.10
UENTR++ 83.65 87.19 62.38 77.74 8.00 6.99 8.31 7.76

UENTR++(MOD) 83.66 +0.01 90.05 +2.86 62.40 +0.02 78.85 +1.11 7.01 -0.99 5.91 -1.08 8.43 -0.12 7.11 -0.65
Swin-UNETR 81.76 92.54 62.16 78.82 6.34 11.90 7.95 8.73

Swin-UNETR(MOD) 84.22 +2.46 93.23 +0.69 63.02 +0.86 80.15 +1.33 5.82 -0.52 6.36 -5.54 7.11 -0.84 6.43 -2.30
Swin-UNETRV2 84.59 91.17 63.63 79.80 6.22 10.51 7.12 7.95

Swin-UNETRV2(MOD) 85.04 +0.45 92.92 +1.75 63.71 +0.08 80.55 +0.75 5.38 -0.84 5.94 -4.57 6.59 -0.53 5.97 -1.98
SegMamba 84.81 90.50 64.22 79.84 8.56 9.39 8.10 8.68

SegMamba(MOD) 84.99 +0.18 91.23 +0.73 64.86 +0.64 80.36 +0.52 8.30 -0.26 8.48 -0.91 7.22 -0.88 8.00 -0.68

integrated global and local representation through its U-shape
architecture, delivered high segmentation accuracy but was
marred by high computational complexity. In response to this,
UNETR++ introduces efficient paired attention and channel-
wise discriminative features, resulting in an improved dice
score of 91.06% and HD95 of 4.42 mm. However, Swin-
UNETR harnessed the Swin Transformer as an encoder, thus
transforming global representation into a linear computational
complexity reduction, and consequently achieving the highest
dataset accuracy with a dice score of 91.36% and HD95 of
5.03mm.

Results from our experiments strongly indicate that the On-
line Tokenizer of the MOD framework significantly augmented
the ability of target models to extract advanced semantic
features. In Table I, ViT, after MOD integration, achieves
an average Dice score improvement of 4.34%, jumping to
66.14%. UNETR’s Dice score increased from 90.05% to
92.01% after MOD incorporation. Notably, the implementation
of the MOD framework in UNETR++ resulted in a Dice
score increase from 91.06% to 91.16%. While Swin-UNETR,
already achieving a Dice score of 91.36%, still improved
by 0.75% upon the inclusion of MOD. Furthermore, owing

to the Dense Predictor component enhancing the pixel-level
semantic feature extraction capability of the trained models,
the application of MOD led to marked improvements in
segmentation edge accuracy (HD95) across the three task
models. ViT, UNETR, UNETR++, and Swin-UNETR wit-
nessed HD95 reductions of 12.32mm, 0.67mm, 0.17mm,
and 0.97mm, respectively, thereby emphasizing the potency
of the MOD framework in enhancing the performance of hy-
brid transformer-based models in medical image segmentation
tasks.

2) Segmentation Results on smaller supervised datasets:
In settings with limited training datasets, the proficiency
of a model in feature extraction is a critical determinant
of its effectiveness. We executed a sequence of evaluations
to gauge the power of pre-trained models from the MSD
2019 Task-01 Brain Tumor dataset, particularly when different
frameworks are incorporated during training. Notably, this
dataset is markedly less extensive than the BraTS 2021 dataset,
containing merely 38.69% of the latter’s volume of data.

Table II showcases the performance boost for the ViT
model upon the incorporation of the MOD component during
training. In the inference phase, there was a notable increase in
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Ground Truth Swin-UNETRSwin-UNETR
（MOD）

UNETRUNETR
（MOD）

Axial
View

Segittal
View

Coronal
View

Original Image VITVIT
（MOD）

Fig. 3: Visual comparisons of model performance, highlighting the differences when MOD components are included versus
excluded, offer qualitative insights into their impact on the MSD 2019 Task-01 dataset. The segmentation of necrotic tumor
core (NT, highlighted in green), peritumoral edema (ED, highlighted in yellow), and enhancing tumor (ET, highlighted in red).

Dice scores, achieving 55.08% for Tumor Core (TC), 62.56%
for Whole Tumor (WT), and 33.65% for Enhancing Tumor
(ET). These scores signify improvements of 6.28%, 7.82%,
and 3.21% compared to those obtained prior to the MOD
incorporation. Furthermore, UNETR, UNETR++ and Swin-
UNETR also exhibited improved Dice accuracy, with average
Dice increases of 4.04%, 1.11% and 1.33% respectively.
In terms of the HD95 metric, the integration of the MOD
framework yielded reductions across the three experimental
task models. Notably, ViT showed a slight average HD95
decrease from 41.20mm to 40.22mm. UNETR, on the other
hand, showcased a remarkable reduction in HD95 for all three
regions, with respective decreases of 9.61mm, 4.37mm, and
4.3mm, culminating in an overall average HD95 reduction of
6.10mm. As for UNETR++, it recorded an improvement in
HD95 from 7.76 mm to 7.11 mm. Similarly, Swin-UNETR
displayed a notable average HD95 decrease from 8.73mm
to 6.43mm, a reduction of approximately 26%. These com-
pelling results indicate that the MOD framework is capable of
significantly enhancing the performance of baseline models,
particularly in resource-constrained environments typified by
limited data availability.

3) Convergence Speed in the Training Process: UNETR,
and Swin-UNETR demonstrated a notable increase in accuracy
within a reduced number of training epochs. Fig. 4 compares
the Dice coefficients of these models on the BraTS 2021
dataset both with and without the proposed MOD-enhanced
training framework. The results showed that with MOD,
models converged faster. For example, the Swin-UNETR
model, which normally required 120 epochs to achieve a Dice
score of 80%, reached this milestone in just 10 epochs after
incorporating MOD. This marked improvement in training
efficiency is attributed to the MOD framework’s facilitation
of faster and more effective extraction of high-level and pixel-
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Fig. 4: This fig illustrates the convergence trends of existing
segmentation models throughout training, both with and with-
out the inclusion of our proposed training framework, using the
BraTS 2021 Dataset. The solid line represents the progression
of Dice scores over epochs within our framework, while the
dashed line reflects the performance trends of the existing
models.

level semantic features. This rapid convergence demonstrates
the strength of the MOD-enhanced training framework in
promoting a streamlined and potent training regime, which is
crucial for complex tasks like high-resolution medical image
segmentation.

4) Qualitative visualization: Fig. 3 presents the compara-
tive segmentation outcomes for the primary tumor region
across different planes—axial, sagittal, and coronal—utilizing
baseline models with and without the incorporation of the
MOD component, relative to the ground truth delineation. The
various tumor regions, including the necrotic core, peritumoral
edema, and the enhancing tumor, are differentiated by a color-
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Ground Truth UNETR++ UNETR++(MOD) Swin-UNETRV2 Swin-UNETRV2(MOD) SegMamba SegMamba(MOD)

Enhancing TumorPeritumoral EdemaNecrotic Tumor Core

Case 1

Case 2

Case 3

Case 4

Fig. 5: Qualitative visualizations on 3D BraTS 2021 Brain Tumor with and without integration of MOD component. The
inclusion of MOD specifically showcases its ability to delineate complex cardiac structures such as the necrotic tumor core
(NT, highlighted in red), peritumoral edema (ED, highlighted in green), and enhancing tumor (ET, highlighted in blue).

coded scheme. The ground truth segmentation is depicted in
the first column, while the subsequent columns demonstrate
the segmentation achieved by the Swin-UNETR and UNETR
baseline models, both prior to and following the application of
the MOD component during the training phase. The integra-
tion of MOD with the baseline models results in markedly
improved delineation of tumor boundaries and heightened
accuracy in identifying intersecting regions, highlighting the
enhanced performance of our proposed training framework in
facilitating superior 3D segmentation for brain tumor tasks.

Fig. 5 provides a 3D visual comparison of brain tumor
segmentation performance, comparing results with and without
the inclusion of MOD components, using the BraTS 2021
dataset. The tumor regions, including the necrotic core, peri-
tumoral edema, and enhancing tumor, are distinguished using
a color-coded scheme. The first column shows the ground
truth segmentation, while the subsequent columns display
segmentation results from the UNETR++, Swin-UNETRV2,
and SegMamba models, both before and after incorporating
the MOD component during the training phase. The integration
of MOD into the baseline models significantly improves the
delineation of tumor boundaries and increases accuracy in
identifying overlapping regions. This demonstrates that our
proposed training framework effectively extracts both high-
level and pixel-level features, leading to superior 3D segmen-
tation for brain tumor tasks.

TABLE III: Evaluation outcomes of linear probing for different
training frameworks on the BraTS 2021 dataset, utilizing
UNETR as the baseline model. The colors of the record in
this table are labeled the same as in Table I

Dice(%) ↑ Avg Acc TC WT ET
Baseline 74.1 67.9 85.2 69.1

Baseline+Online Tokenizer 87.90+13.8 86.3+18.4 90.3+5.1 87.1+18.0
Baseline+Dense Predictor 89.2 +15.1 89.0 +21.1 90.8 +5.6 88.0 +18.9

Baseline+MOD 89.9 +15.8 90.0 +22.1 91.3 +6.1 88.2 +19.1

HD95(mm) ↓ Avg Score TC WT ET
Baseline 34.0 33.7 34.3 34.1

Baseline+Online Tokenizer 13.2-20.8 13.6-20.1 16.2-18.1 9.8-24.3
Baseline+Dense Predictor 8.4 -25.66 7.4 -26.35 12.5 -21.8 5.2 -28.9

Baseline+MOD 6.0 -28.06 5.6 -28.15 8.8 -25.5 3.6 -30.5

E. Ablation Study

1) Evaluating the Effectiveness of MOD Architecture: Eval-
uating the effectiveness of the MOD architecture involved a
meticulous analysis focusing on the architecture’s two innova-
tive modules: the Online Tokenizer and the Dense Predictor.
The assessment employed the Linear Probe method to preserve
the integrity of the UNETR backbone’s parameters during
the evaluation of downstream tasks. According to the data
presented in Table III, the integration of the Dense Predictor
enhanced the Dice score by a substantial 15.1% and con-
currently achieved a reduction in the HD95 metric by 25.66
mm, showcasing its prowess in pixel-level image restoration.
Moreover, the inclusion of the Online Tokenizer significantly
improved the model’s grasp of high-level semantics, achieving
an impressive Dice accuracy of 89.9% and an HD95 of 6.0
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mm.
Further examination through Fig. 6 indicated that adding

the Online Tokenizer to the standalone backbone notably
improved the Dice score from approximately 70% to 83%
within a training span of 100 epochs. The full MOD frame-
work registered the highest Dice scores, underscoring the
incremental but critical enhancement brought by the On-
line Tokenizer, which refined the segmentation performance
through advanced semantic feature extraction. In summation,
the MOD architecture’s components—Online Tokenizer and
Dense Predictor—collectively strengthen the model’s ability to
interpret images more effectively, bolster learning efficiency,
and lead to higher segmentation accuracy.
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Fig. 6: Comparison of baseline model linear probing perfor-
mance across various training frameworks using the BraTS
2021 dataset, with UNETR serving as the baseline model.
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Fig. 7: Comparision of the standalone backbone (UNETR) and
the backbone combined with MOD on fewer samples in the
training process.

2) Evaluation of fewer samples in the training process: Fig. 7
compares the results of the standalone baseline (UNETR) and
the baseline combined with MOD component across various
dataset sizes for medical image segmentation. When utilizing a
mere 100 images, the standalone baseline’s Dice score reaches
66%, whereas the Dice of the baseline integrated with MOD
achieves 75%, representing an enhancement of approximately
10% compared to the base model. When employing 500
images, the Dice of the standalone baseline attains 84%, while

the baseline integrated with MOD achieves 87%. Upon using
200 images, the Dice of the baseline combined with MOD
reaches 83%, signifying an improvement of roughly 10%
compared to the standalone baseline with an equal number
of training samples.

The modest 9% difference in Dice scores between the
baseline integrated with MOD trained on 500 images and
the one trained on 200 images demonstrates that our train-
ing framework excels in capturing both high-level and low-
level semantic information during the learning process. This
capability facilitates a more comprehensive understanding
of medical images and enables the achievement of positive
segmentation performance in scenarios with limited data.

V. CONCLUSION

In conclusion, this paper presents a training framework
that adeptly integrates a plug-and-play component, MOD, into
current supervised learning models, boosting their efficacy in
scenarios with limited data. During the inference phase, the
plug-and-play MOD component is excluded, preserving the
computational efficiency of the original model without incur-
ring extra processing costs. Our experiments demonstrated the
superiority of models integrated with the MOD component
over standalone models and the impact of pre-trained repre-
sentation learning accuracy on subsequent segmentation tasks.
The results highlight MOD’s potential as a valuable plug-and-
play component for high-quality 3D brain tumor segmentation,
paving the way for advancements in medical image analysis.
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