
Journal of Information Security and Applications 83 (2024) 103794

A
2

Z
a
E
a

b

c

A

K
Z
B
C
H
M

1

o
b
r
a
t
w
a
m
a
o
u
i
W
k

l

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

eroMT: Towards Multi-Transfer transactions with privacy for
ccount-based blockchain✩

manuele Scala a,∗, Changyu Dong b, Flavio Corradini a, Leonardo Mostarda c

Department of Computer Science, University of Camerino, Italy
Institute of AI and Blockchain, Guangzhou University, China
Department of Mathematics and Computer Science, University of Perugia, Italy

R T I C L E I N F O

eywords:
ero-knowledge
lockchain
onfidential transactions
omomorphic encryption
ulti-transfer

A B S T R A C T

The public blockchain lacks data confidentiality. Although a level of anonymity seems guaranteed, it is still
possible to link transactions and disclose related information. A solution to the privacy problem is to use
cryptography in transactions, however this can lead to increased costs and slowdown in network throughput.
Recent works experiment with advanced cryptography, in particular Zero-Knowledge proofs (ZK-proofs) can
be supplied within a transaction to prove its validity, without revealing sensitive information. We analyze
solutions that adopt ZK-proofs, such as Confidential Transactions (CTs). Several challenges emerge depending
on both the zero-knowledge system and the balance model considered (UTXO, hybrid or account model). For
ZK-proofs, systems that do not introduce additional trust are required. On the other hand, the account model
is the most flexible for addressing security challenges. Moreover, CTs do not fully exploit the potential of
ZK-proofs, since each transaction comes with one or more ZK-proof for a single transfer. Within this paper,
we present ZeroMT, a novel multi-transfer private payment scheme for account-based blockchains. Drawing
inspiration from Zether, our approach extends their work to develop a payment model that supports multiple
payees within a single transaction. This also benefits scalability: ZeroMT enriches the CTs with the aggregation
property, i.e., the batch verification of multiple transfers from a single and aggregate proof. We show that in our
extended model the overdraft-safety and privacy security properties still hold. We provide an implementation
and evaluation of ZeroMT, which shows the benefits of aggregating multiple transfers.
. Introduction

Bitcoin [1] introduces the first decentralized finance system based
n the Unspent Transaction Outputs (UTXOs) model on top of
lockchain theory. In short, a user who owns coins is linked to the cor-
esponding unspent outputs, which can be spent by designating them to
recipient as new outputs of a transaction. Ethereum [2] has enhanced

he blockchain by implementing a decentralized computation system
ith the so-called smart contracts. With these contracts, Ethereum is
ble to move the balance representation of a user from the UTXO
odel to one that is more flexible and semantically close to reality, the

ccount model. In this model, a numerical quantity owned by a user
r contract address serves as a measure of balance. The balances are
pdated when funds are transferred between two addresses, resulting
n a debit to the sender’s account and a credit to the receiver’s account.

hile these solutions promise a level of anonymity for users, it is well-
nown that there are kinds of analyses on the transaction graph that

✩ This article is the extension of our previous works published in AINA 2022 (Corradini et al., 2022) and AINA 2023 (Scala et al., 2023).
∗ Corresponding author.
E-mail addresses: emanuele.scala@unicam.it (E. Scala), changyu.dong@gzhu.edu.cn (C. Dong), flavio.corradini@unicam.it (F. Corradini),

eonardo.mostarda@unipg.it (L. Mostarda).

can link parties to a transaction and even reveal their real-world iden-
tities [3–6]. Moreover, Bitcoin and Ethereum transactions are publicly
announced and propagated to all nodes of the blockchain. Since there
are no mechanisms to ensure confidentiality, all information related
to the transactions is publicly visible, resulting in privacy concerns for
users in many applications. From these issues, a large body of research
is underway for the design of privacy solutions such as Confidential
Transactions (CTs), with the aim of guaranteeing user anonymity and
data confidentiality in transactions. The relevant solutions in CTs are
based on the Zero-Knowledge proofs (ZK-proofs), as a mechanism to
validate transactions without providing the sensitive information to the
blockchain network. In general, these solutions define specific state-
ments for which the cryptographic ZK-proof is constructed, and then
each transaction is supplied with that proof to the ledger maintainers.
An important feature of the proof is that it reveals nothing except the
validity of the statements, and therefore can be verified without any
vailable online 29 May 2024
214-2126/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

ttps://doi.org/10.1016/j.jisa.2024.103794
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
mailto:emanuele.scala@unicam.it
mailto:changyu.dong@gzhu.edu.cn
mailto:flavio.corradini@unicam.it
mailto:leonardo.mostarda@unipg.it
https://doi.org/10.1016/j.jisa.2024.103794
https://doi.org/10.1016/j.jisa.2024.103794
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2024.103794&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.
leakage of information. Several privacy-preserving protocols have been
proposed following the ZK-proofs paradigm as an underlying mecha-
nism. The UTXO-based proposals use ZK-proofs to prove the validity of
the equality relating input and output amounts of a transaction [7–10].
The most common technique concerns the construction of the specific
computation made private through an arithmetic circuit, for example,
using zero-knowledge succinct non-interactive argument of knowledge (zk-
SNARK) schemes. The account-based proposals adopt the strategy of
keeping amounts encrypted in transactions, and balances are updated
homomorphically [11,12]. In this setting, common techniques rely on
arguments of knowledge systems for range proofs, to prove that certain
values are non-negative, and for proving algebraic statements over
DLOG relations [13,14]. Although most protocols divide on one of two
models, there exist hybrid solutions that build on UTXO logic on top
of the account model, mainly using private computation circuits based
on zk-SNARKs for transaction correctness [15,16].

1.1. Limitations derived from ZK-proofs of CT protocols

First, we recall the meaning of trustless and succinctness. Trustless
in our context means a scheme should not rely on trusted hardware
and/or trusted executors to perform private transfers. Existing schemes
typically involve a Trusted Execution Environment (TEE) or a trusted
third-party in the protocol working out of the main-chain together
with the other entities of the system. Some other schemes may not
be completely trustless when making strong security assumptions that
require additional trust. As an example, zk-SNARKs constructions re-
quire a trusted third-party to generate a Common Reference String
(CRS) [17]. This CRS is then distributed among all participants to
enable the generation and verification of proofs. However, malicious
users compromising the CRS could break the soundness of the entire
protocol by producing valid false proofs. To overcome this problem, a
secure multi-party computation for the distribution of the CRS has been
proposed in [18], but it is difficult and costly to manage among a large
set of participants. Moreover, a dishonest user could participate with
multiple identities by imposing his unfair influence on the resulting
CRS [16]. Another drawback is that CRS models are circuit-dependent,
which means that a generation of a new CRS must be done for any
change to the circuit.

The succinctness definition is strictly related to the proof size and
verifier time of the proof system. In particular, a proof system is
succinct if the proof is compact and is of constant size and the verifier
runs in time (|𝑥|) on the size of the input 𝑥 [8]. Groth16 [19] is the
closest proof system to this definition and all the solutions that adopt it
benefit from succinctness. However, the pre-processing of the CRS still
remains a known drawback.

Known alternatives to the CRS-based proof systems are the zero-
knowledge argument of knowledge systems of Bootle et al. [20] and its
improvement proposed in Bulletproofs [13]. They present the Inner
Product Argument (IPA), a method of satisfying an inner product re-
lation (used in Bulletproofs as a subroutine for range proofs), which
depends on weaker hardness assumptions (the soundness is ensured
under the discrete logarithm assumption in standard groups).

Nonetheless, this class of proof systems is used in CTs to achieve
the trustless property, but at the expense of succinctness, since the
proofs generated are not of constant size. Although the challenge of
succinctness remains, in our paper we follow the direction of ZK-proofs
based on DLOG assumptions which eliminate the need for a trusted
setup. A further motivation is that there are recent works trying to
optimize the verifier time and proof size of the IPA protocol. Among
these works, Bowe et al. [21] propose the amortized succinctness from
a polynomial commitment scheme, used in an argument of knowledge
for commitments employed in the IPA. With this method, the burden
of the verifier is amortized by performing costly operations outside
the verifier’s process and adopting batching techniques for the ZK-
2

proofs through accumulators. Bünz et al. [22] establish a generalized
result from the previous one, showing that any polynomial commit-
ment schemes under DLOG assumptions can support accumulation
schemes. To conclude this line of research, there are optimizations on
the IPA based on pairing-friendly groups, landing into the inner-pairing
product [23–26]. However, such schemes may incur costly pairing
operations for the verifier [27].

1.2. Limitations and security requirements of CT protocols

Several limitations arise when approaching the balance model to the
privacy-preserving protocol. It is difficult to deal with confidentiality
when coins with fixed denominations, even encrypted, are considered
in a UTXO transaction [9], given the possibility of deriving other infor-
mation such as the number of coins exchanged. Moreover, UTXO-based
protocols such as Zerocash [8] and Monero [10] suffer from continuous
growth in the size of the UTXO set [11,28], due to the method of mixing
addresses in transactions. This incurs storage problems considering
peers on the network do not have a concise UTXO representation,
which is possible in Bitcoin instead. Quisquis [11] aims at solving the
aforementioned issues by adopting a hybrid balance model together
with the updatable public keys primitive, which allows the update of all
the output addresses with each transaction. However, this mechanism
is not resistant to front-running attacks [12,28], and the hybrid balance
models can lead to increased gas costs for storage when integrated into
practice in smart contract platforms [12].

Pure account-based privacy mechanisms can provide a natural way
to solve some of the above issues. Transactions can deal directly with
the amounts to be transferred to/from an account as a numerical quan-
tity, hence fixed coin denominations do not pose confidentiality issues.
There are no unspent outputs for each user to be stored in a global
state, each transaction draws directly from the total owned by users,
leading to an efficient way of managing balances. Moreover, in account-
based blockchains such as Ethereum, smart contracts can be used to
address security requirements flexibly at the protocol level, without
any changes to the underlying system. In this direction, it is worth
to mention Zether [12], an account-based private payment mechanism
built for smart contract protocols, which solves security challenges of
front-running and replay attacks. Other important security requirements
can be addressed with respect to the soundness and zero-knowledge
properties of the adopted proof system, respectively the overdraft-safety
and privacy security properties [12]. The overdraft-safety definition
ensures that an adversary cannot withdraw more money than it has
from an account. The definition of privacy ensures that no information
is leaked to an adversary about the payments of honest users. Given the
advantages of the model discussed above, we follow the direction of
account-based CT protocols. Moreover, we treat the ZK-proofs as non-
blackbox, since in our analysis the security requirements are closely
tied to the security properties of the proof system.

1.3. New directions of CT protocols: multi-transfer transactions

A new direction of CT protocols, from which we develop our central
contribution, is the definition of a new payment method in which it
is possible to simultaneously spend multiple amounts and update the
balances of multiple payees within a single transaction. We identify
such a payment model with the name of multi-transfer. A concept of
‘‘redistribution of wealth’’ was previously introduced in the work of
Quisquis [11] and exhibits similarities to the multi-transfer model: a
transaction takes place between a set of participants who can move
coins to many recipients, on behalf of the authorization of the ‘‘true’’
sender. Other works, although based on the traditional payment model,
propose the multi-transfer as a future extension and argue that this new
payment system could be used to reduce the number of transactions
submitted by users [12,16,29]. However, accommodating multiple pay-
ees in a confidential transaction presents several challenges in terms of
both scalability and security. In the following, we highlight the main

challenges of a multi-transfer model in CT settings:

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

1

p
o
b
w
t
(
i
c
b
a
v
i
o
t
f
t
c

p
f
m
s
g
h
s
c
i
b
m
t
t
w
w
(
i
p
s
p
p
s
p
w
t

1

b
c
t
g
p
m
o
t
s

2

(
o
g
u
m
t
t
𝑥

E
𝑦
k
n
f
k
c

• Most of the cost of a confidential transaction comes from the ZK-
proofs. Traditional CTs provide one or more ZK-proofs, e.g., one
for each statement, for a single transfer. Having multiple payees
could increase the number of ZK-proofs within the transaction.
This leads to higher blockchain space when the proofs are stored
in blocks, and higher fees when the proofs are verified by ledger
maintainers. To address these issues, we propose a method to
reduce costs in account-based privacy solutions. In particular,
the transaction fees can be amortized by performing multiple
transfers in a single transaction equipped with an aggregate ZK-
proof. Hence, by proving the validity of multiple transfers within
one proof, the cost that a transaction would have for a single
transfer is now spread across multiple transfers. Moreover, this
also reduces the number of transactions to be validated on-chain
and saves blockchain space.

• The choice of the balance model imposes a limit on the number
of transfers that can be made in a single transaction. In UTXO
model we have the worst flexibility, since increasing the number
of inputs of a transaction results in a significant decrease in per-
formance. This because the statements to prove behind a transfer
are strictly close to the underlying blockchain mechanisms, e.g., it
is not know how to prove efficiently multiple Merkle paths [16].
In contrast, the account model is more flexible and the only
limit on the number of transfers is imposed by the maximum gas
consumption of a transaction.

• The choice of the zero-knowledge proof system determines overall
performance. In particular, the verification time and the proof size
of an aggregate ZK-proof grow with the number of transfers and,
therefore, with the size of the statements for which the proof is
constructed. This is the case of trustless ZK-proofs, which offer
security benefits due to weaker assumptions but come at the
cost of lower performance. Our choice of trustless ZK-proofs is
still optimal in the case of multi-transfer, but could be improved
thanks to some amortization strategies, especially on verification
time. We do not cover such optimization in this paper, but we
provide a discussion in Section 9.

• Moving from the single receiver payment model to the multi-
transfer model is not a trivial task from a security perspective.
Privacy solutions design specialized zero-knowledge proof sys-
tems for static statements that need to be extended. This process
could cause the violation of the security of the ZK-proof. Further-
more, extending the payment model introduces the potential risk
of compromising the security of the high-level protocol. In our
multi-transfer scheme we are careful to comply with the security
definitions of the reference protocol and the proof system.

.4. Our contribution

In this paper we propose ZeroMT, a new multi-transfer private
ayment scheme for CT protocols. Our methodology covers both the-
retical and practical aspects. From a theoretical point of view, non-
lackbox zero-knowledge proofs are employed and designed to comply
ith the fundamental security requirements in the case of multi-

ransfer. The bridge between low-level (ZK-proofs) and high-level
cryptographic scheme) security is built on the basis of rigorous def-
nitions and theorems. We end up with a generalized and secure
ryptographic scheme for multi-transfer, suitable for account-based
lockchain and that can be easily integrated into CT protocols. From
practical point of view, our methodology is supported by the de-

elopment of a library, that is modular and implements both the
nteractive and non-interactive zero-knowledge protocols underlying
ur ZK-proofs. The library also combines the several modules in order
o implement the multi-transfer scheme. Moreover, the multi-transfer
inds many applications in complex smart contract scenarios where
ransactions involve more than just two users. We present real-world
ase studies in Section 8.
3

In summary, for the benefits of the account model discussed in the
revious sections, our starting point is Zether [12], which we move
rom the traditional payment model to a model in which there are
ultiple payees in one transaction. Hence, we design the multi-transfer

cheme based on the absence of trusted setup and standard crypto-
raphic assumptions, and we show that overdraft-safety and privacy
old in the extended model. We also remark that proving and verifying
tatements for multiple transfers within a single transaction is more
onvenient compared to proving and verifying statements for each
ndividual transfer separately. In other words, we construct our proof
ased on zero-knowledge relations suitable for proving the validity of
ultiple transfers in one proof. This enriches the CT protocols with

he new property of aggregation, i.e., batch verification of multiple
ransfers from a single aggregate proof. As part of our contribution,
e implement ZeroMT using arkworks Rust libraries [30]. Finally,
e provide concrete evaluations in terms of ZK-proof performance

proof size, prover and verifier time) and transaction costs. This paper
s the extension of our two previous works [29,31]: in the first, we
resent the notion of multi-transfer from a concrete case study; in the
econd, we initiate the design of our multi-transfer ZK-proof. These
apers have been enhanced in the following way: we define the com-
lete cryptographic scheme of the multi-transfer; we provide rigorous
ecurity definitions that bridge the cryptographic scheme with the ZK-
roof and prove them; we improve the evaluation and comparison
ith concurrent works; we release a modular and open-source library,

hrough which we evaluate the proposed scheme.

.5. Organization

The paper is organized as follows: Section 2 gives the cryptographic
ackground; Section 3 provides a summary of the main Zether’s con-
epts; Section 4 introduces the Multi-Transfer payment mechanism,
he related cryptographic scheme and security definitions; Section 5
oes deep on the interactive zero-knowledge proof system; Section 6
resents related work and comparison; Section 7 outlines the imple-
entation and evaluation of our system along with a comparison

f concurrent works; Section 8 elaborates applications of the multi-
ransfer scheme; Section 9 outlines the limitations of the multi-transfer
cheme; Section 10 are the conclusions and future directions.

. Preliminaries

In what follows, PPT denotes probabilistic polynomial-time, 𝜆 ∈ N
denotes the security parameter, and 𝑠

$
←←←←←←←←←← indicates a random variable

𝑠 uniformly sampled from the set .

2.1. ElGamal homomorphic encryption

 is a group-generation function that takes 1𝜆 as input and produces
G, 𝑝, 𝑔), where G describes a cyclic group, 𝑝 (prime number) is the order
f the group (with bit-length 𝑝 = 𝜆) and 𝑔 ∈ G is a group element
enerator. ElGamal encryption is a public key cryptosystem that is secure
nder the Decisional Diffie–Hellman (DDH) assumption [32]. Infor-
ally, the DDH problem corresponds to the inability of any adversary

o distinguish a uniform group element ℎ′ = 𝑔𝑧 from another element of
he form ℎ = 𝑔𝑥⋅𝑦 given the tuple (G, 𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦), for uniformly chosen
, 𝑦, 𝑧 ∈ Z𝑝.

Considering groups where the DDH problem is intractable, the
lGamal encryption scheme has the public parameters (G, 𝑝, 𝑔, 𝑦), where
is the public key of the form 𝑦 = 𝑔𝑥, for a uniformly chosen private

ey 𝑥 from the set of inverses Z⋆𝑝 of Z𝑝. Let 𝑟 be a uniformly random
umber chosen in Z⋆𝑝 , the ciphertext for a message 𝑚 is derived as
ollows: 𝐸𝑛𝑐𝑦(𝑚) = (𝐶𝐿, 𝐶𝑅) = (𝑚 ⋅ 𝑦𝑟, 𝑔𝑟). Only if the private key 𝑥 is
nown, it is possible to compute 𝐶𝑥𝑅 = (𝑔𝑟)𝑥 = 𝑦𝑟, and then decrypt the
iphertext using the inverse such that 𝑚 = 𝐶 ⋅ (𝑦𝑟)−1.
𝐿

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

C

m

In our paper, we use the specific instance of the ElGamal scheme
of Zether [12]. In particular, the message to be encrypted is a value
𝑎 ∈ Z𝑝, which is transformed into a group element by calculating 𝑔𝑎.

onsequently, the encryption of that value is 𝐸𝑛𝑐𝑦(𝑎) = (𝐶𝐿, 𝐶𝑅) =
(𝑔𝑎 ⋅ 𝑦𝑟, 𝑔𝑟). Moreover, this makes ElGamal encryption additively homo-
orphic. Given two distinct values 𝑎 and 𝑎′, encrypting them under the

same public key 𝑦 and respectively under the randomness 𝑟 and 𝑟′, we
have the two ciphertexts (𝐶𝐿 = 𝑔𝑎 ⋅𝑦𝑟, 𝐶𝑅 = 𝑔𝑟), and (𝐶 ′

𝐿 = 𝑔𝑎′ ⋅𝑦𝑟′ , 𝐶 ′
𝑅 =

𝑔𝑟′). By applying the operation (𝐶𝐿, 𝐶𝑅)⋅(𝐶 ′
𝐿, 𝐶

′
𝑅), it is possible to derive

the ciphertext associated with 𝑎 + 𝑎′.

2.2. Zero-knowledge proofs

Let be a polynomial-time decidable relation = {(𝜎, 𝑥,𝑤)}, for a
common reference string 𝜎, some instances 𝑥 and witnesses 𝑤, and
the corresponding NP language such that = {𝑥 | ∃𝑤 ∶ (𝜎, 𝑥,𝑤) ∈ }.
In an interactive proof, a prover engages in a two-party protocol with
a verifier . The goal is for to convince that an instance 𝑥 belongs
to the language according to the specified relation . We posit a
triple of PPT algorithms 𝛱 = (Setup, ,) where:

Setup: a PPT algorithm that on input 𝜆 security parameter, generates the
reference string 𝜎 ← Setup(1𝜆). Here, we consider 𝜎 a common random
string without a trapdoor and can be generated with random oracles.

Prover: is a PPT algorithm that on input (𝜎, 𝑥,𝑤), for a tuple of
instances and witnesses (𝑥,𝑤) ∈ , outputs a cryptographic proof 𝜋.

Verifier: is a PPT algorithm that on input (𝜎, 𝑥, 𝜋) outputs 0 or 1,
namely it rejects or accepts the ZK-proof 𝜋.

In the context of 𝛱 , an interactive proof involves a series of mes-
sage exchanges between and , forming a transcript. Based on this
transcript, can either accept or reject the conversation. A proof is
considered zero-knowledge when it discloses no information other than
the validity of the statements being proved. An interactive proof for 𝛱
is Special Honest-Verifier Zero-Knowledge (SHVZK) if it has the following
properties:

Definition 2.1 (Perfect Completeness [33]). If the prover follows the
protocol then the verifier will accept with probability 1.

Definition 2.2 (Special Soundness [33]). There exists a polynomial-time
algorithm , called extractor, which is given as input a pair of accepting
transcripts (𝛼, 𝑐, 𝜔) and (𝛼, 𝑐′, 𝜔′) with 𝛼 the first prover’s message, 𝑐 ≠ 𝑐′

two distinct verifier’s challenges, 𝜔 and 𝜔′ the final prover’s messages,
and it always computes a witness 𝑤 satisfying (𝑥,𝑤) ∈ .

The extractor is allowed to rewind the protocol between and
 in such a way that after the prover sends the first message 𝛼, it
restarts the protocol with a new challenge 𝑐′, and extracts the witness.
This implies that we have a proof of knowledge for the witness 𝑤,
demonstrating that (𝑥,𝑤) ∈ .

Definition 2.3 (Spacial Honest-Verifier Zero-Knowledge [33]). There
must be a PPT simulator that takes as input the public instances
and the verifier’s internal randomness, and outputs transcripts such
that the distribution over transcripts generated by is identical to the
distribution over the transcripts produced by the honest verifier and
prover.

In a public-coin SHVZK protocol, all the messages sent by the ver-
ifier to the prover are sampled uniformly at random, hence they are
independent of the prover’s messages. The verifier’s random choices
(challenges) are made public.

Definition 2.4 (𝛴-protocol). A 𝛴-protocol is a 3-round public-coin
interactive proof.
4

𝛴-protocols are commonly expected to have the properties of per-
fect completeness, special soundness and special honest-verifier zero-
knowledge. The 3-round structure allows the possibility to integrate
an SHVZK interactive 𝛴-protocol with other interactive proofs. More-
over, using the Fiat–Shamir heuristic [34], it is possible to convert an
interactive zero-knowledge proof into a non-interactive zero-knowledge
proof (NIZK). For a 𝛴-protocol with messages (𝛼, 𝑐, 𝜔), an honest prover
replaces the verifier’s challenge 𝑐 with a random oracle. The non-
interactive version inherits the security properties of the interactive
protocol. In practice, the Fiat–Shamir transformation is implemented by
replacing the verifier’s challenges in the interactive proof with the hash
of messages from previous interactions with the current challenge. By
hashing messages that are valid as a signature, the transformation can
turn a public-coin interactive proof into a signature scheme [35,36].

3. Background on Zether

In this section, we summarize the basics of Zether [12]. Zether’s
CT protocol is built for account-based blockchain and ensures com-
patibility with Ethereum as well as other smart contract platforms.
The payment mechanism comprises a setup algorithm, user-accessible
algorithms, and the Zether Smart Contract (ZSC). The setup generates
the public parameters for the Zether proof systems, called 𝛴-Bullets,
and the signature scheme, both based on trustless subroutines. After the
setup, the global parameters for the smart contract are initialized and
the ZSC is deployed. This smart contract keeps track of all the Zether
accounts and their respective encrypted balances. Zether accounts are
identified by their ElGamal public key 𝑦 ∈ G in the smart contract. Such
accounts are generated using the CreateAddress user algorithm,
which derives a randomly sampled private key 𝑠𝑘

$
← Z𝑝 and the

respective public key 𝑦 = 𝑔𝑠𝑘, where 𝑔 is a generator of the group G.
A Zether balance for a user with public key 𝑦 is stored in ZSC in the
form of ElGamal encryption (𝐶𝐿 = 𝑔𝑏𝑦𝑟, 𝐶𝑅 = 𝑔𝑟), where 𝑏 is the current
balance value and 𝑟

$
← Z𝑝 the randomness used in the encryption.

Accounts can interact with the ZSC through their public key, to fund
other accounts, transfer currency or obtain their balance. To do so,
accounts have access to the following user algorithms: (i) Fund, by
which a user can transfer some ETH to the account having public key
𝑦. The ETH amount is converted into ZTH amount that is (homomor-
phically) added to the encrypted 𝑦’s balance; (ii) Burn, by which a
user having public key 𝑦 requests the entire associated balance in ETH.
A conversion is made from ZTH to ETH; (iii) Transfer, by which an
account with public key 𝑦 confidentially transfers a quantity of ZTH to a
recipient account with public key �̄�; (iv) Lock, by which a user requests
to lock an account to an Ethereum address; (v) Unlock, by which a
user requests to unlock an account having a public key 𝑦. Each user
algorithm produces a raw transaction, denoted with txfund, txburn, txtrans,
txlock and txunlock respectively, that can be submitted directly to the
ZSC by the user. For each of them, the ZSC implements a function that
verifies the ZK-proof according to specific statements associated with
the transaction. Once the transaction has been processed, the function
outputs with success or failure, and in the case of success, the ZSC
applies the changes to the state of the accounts.

Front-running and replay attacks. Front-running situations occur
when a sort of race condition is not handled. For example, suppose
Alice wants to withdraw her balance with a Burn transaction. She
needs to submit the txburn transaction with a ZK-proof that the current
encrypted balance is well-formed with respect to her public key. How-
ever, suppose that a txtrans transaction of another user Bob, who wants
to transfer some ZTH to Alice, gets processed before txburn. In the event
of a change in the ciphertext, Alice’s transaction will be rejected due
to the resulting invalidity of the ZK-proof. A similar situation can also
be encountered for Transfer transactions. Zether solves the front-
running by introducing pending state for incoming transfers, epochs and
rollover mechanisms. All incoming transfers for an account are placed

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

b
t
g
o
r

a
w

e
𝐶
t

v
s
t

4

s
t
s
b
w
k
t
p
p

4

w
F
t
s
t
a
t
p
t
I
o

n
m
i
p
o
n
s
b

in a pending state and subsequently incorporated into the account
at each epoch. The epoch length is chosen so that any transfer or
burn transaction can be processed before the account changes state.
The rollover mechanism is triggered by one account every time this
account sends a message to the ZSC. At this moment, the ZSC ensures
that all pending transfers since the last rollover of that account are
finalized and funds are available for spending. Zether accounts are
decoupled from Ethereum addresses since they have their own public
keys. Hence, replay attack protection cannot rely on native Ethereum
support. Moreover, an attacker can steal the ZK-proofs and put them
into new transactions. To prevent any kind of replay attack, Zether
associates a nonce with every Zether account. An account forming a
new transaction must sign the last nonce which will be incremented
when the transaction is processed.

Zether transfer method. Consider a scenario where a sender intends to
confidentially transfer a certain amount, denoted with 𝑏⋆, of ZTH from
an account associated with the public key 𝑦 to a recipient account with
the public key �̄�. To initiate the transfer process, the sender encrypts the
desired transfer amount 𝑏⋆ using both the public key 𝑦 of the sender’s
account and the public key �̄� of the recipient’s account. This encryption
generates the ciphertexts (𝐶 = 𝑔𝑏⋆ ⋅ 𝑦𝑟, 𝐷) and (�̄� = 𝑔𝑏⋆ ⋅ �̄�𝑟, 𝐷), where
oth ciphertexts share the same randomness and 𝐷 = 𝑔𝑟. To apply the
ransfers, the ZSC should add (𝐶−1, 𝐷−1) and (�̄�, 𝐷) with homomorphic
roup operations to the 𝑦’s balance and �̄�’s balance respectively. The
utgoing transfer for the �̄� is inserted in a pending state for front-
unning reasons. Let denote with (𝐶𝐿𝑛, 𝐶𝑅𝑛) the remaining balance

of 𝑦 after deducting the transfer amount 𝑏⋆ from the actual balance
(𝐶𝐿, 𝐶𝑅). The sender along with the txtrans transaction should provide

ZK-proof proving: (i) the knowledge of the secret key 𝑠𝑘 associated
ith the public key 𝑦 = 𝑔𝑠𝑘; (ii) the knowledge of the randomness 𝑟

such that 𝐷 = 𝑔𝑟; (iii) that the ciphertexts (𝐶,𝐷) and (�̄�, 𝐷) encrypt an
qual amount 𝑏∗ and are well-formed; (iv) the balance cannot overdraft:
𝐿𝑛 = 𝑔�̂� ⋅ 𝐶𝑠𝑘𝑅𝑛, where �̂� is the remaining balance value; (v) that both

he transfer amount 𝑏⋆ and the remaining balance �̂� are not negative.
These statements are used to construct the ZK-proof, which will be

erified by the ZSC, for the validity of a single transfer. In the next
ection, we introduce revised statements for the validity of multiple
ransfers (in a single transaction) to multiple payees.

. ZeroMT: Multi-transfer payment mechanism

In this section, we present our new payment mechanism in CT
ettings, in which multiple payees are considered in a single transac-
ion. The aim is to design a Multi-Transfer scheme in which a payer
ubmits a single transaction with the effect of multiple confidential
alance updates. For proving the validity of a multi-transfer transaction
ithout revealing transfer amounts and balances, we design a zero-
nowledge proof system (presented in Section 5) for statements behind
he multi-transfer. Here, the goals are to preserve the security and
rivacy properties of the original Zether payment mechanism and to
rovide a way of reducing transaction verification costs.

.1. Differences between ZeroMT and Zether

ZeroMT can be seen as an extension of the Zether transfer method,
ith the aim of reducing the transaction costs on the public blockchain.
or this purpose, ZeroMT introduces an amortization strategy where the
ransaction costs can be reduced by performing multiple transfers in a
ingle transaction equipped with an aggregate ZK-proof. Hence, the cost
hat a private transaction would have for a single transfer is now spread
cross multiple transfers. We identify such a payment mechanism with
he name of multi-transfer, a generalization of traditional one-to-one
ayments into a novel one-to-many payment model. We also remark
hat Zether cannot be directly used to make multi-transfer transactions.
ndeed, the only way to do that with Zether is by carrying out one-to-
ne transfers separately. This because Zether 𝛴-Bullets proof system is
5

ot designed for multi-transfer ZK-relations, where there can be state-
ents over multiple encrypted and range values for one ZK-proof. This

s where our ZeroMT proof system differs substantially: we obtain a ZK-
roof for multi-transfer ZK-relations using the aggregation techniques
f Bulletproofs and 𝛴-protocols theory; Zether, on the other hand, does
ot support any type of aggregation. To better clarify this point, con-
ider the following example for range proofs (a similar observation can
e argued for ZK-proofs built with 𝛴-protocols). Range proofs are used

to prove that transfer amounts and the sender’s remaining balance are
non-negative, e.g., for some value 𝑣 ∈ [0,𝑀𝐴𝑋] where MAX is an upper
bound of the form 2𝑛 and 𝑛 is the bit length of 𝑣. It turns out that a single
range proof for the aggregation of 𝑚 values is more efficient than having
separate range proofs for each of the 𝑚 values. Indeed, considering
two values 𝑣1, 𝑣2 within 64-bit ranges, and group elements and scalars
each represented by 32 bytes, then two separate transactions would
require a total of 2 × 672 = 1344 bytes for range proofs. In contrast,
using aggregation, a single transaction has a more efficient range proof,
totaling only 736 bytes. While Zether does not natively support one-to-
many transactions, ZeroMT is compatible with one-to-one transactions
without any modification or incurring additional overhead. This ease
of scaling to the traditional payment model is due to the dynamic
and modular design of the ZeroMT proof system that underpins the
multi-transfer scheme. Therefore, users have the flexibility to decide,
depending on the context in which they operate, whether to perform
one-to-one or one-to-many transactions. For instance, it is preferable
to aggregate transfers for multiple recipients in scenarios such as multi-
party off-chain protocols (see Section 8). This results in cost savings for
transactions and provides atomicity to the batch of aggregate transfers.

4.2. Multi-transfer zero-knowledge relation

The intuition behind the concept of multi-transfer is shown in Fig. 1
and presented below. Each involved party 𝑖 owns an ElGamal public
key 𝑦𝑖 and a balance that is encrypted in the form 𝑏[𝑦𝑖] = (𝐶𝐿, 𝐶𝑅) =
(𝑔𝑏𝑖 ⋅ 𝑦𝑟𝑖 , 𝑔

𝑟). The actual value of the balance can only be accessed
by the owner of the secret key 𝑠𝑘𝑖 from which 𝑦𝑖 is derived. In the
following, we differentiate the payer’s public key from those of the
payees by denoting them with �̄�. In order to transfer amounts to each
of the designated 𝑛 payees, the payer should encrypt each amount
𝐚 = (𝑎1,… , 𝑎𝑛) under both her/his public key 𝑦 and the public keys
�̄� = (�̄�1,… , �̄�𝑛) of the payees. As a result, the payer obtains two lists of
ciphertexts: 𝐂 = (𝐶1,… , 𝐶𝑛) and �̄� = (�̄�1,… , �̄�𝑛), where for each 𝑖 ∈
[1, 𝑛], 𝐶𝑖 = 𝑔𝑎𝑖𝑦𝑟 is the encryption of the amount 𝑎𝑖 under 𝑦, �̄�𝑖 = 𝑔𝑎𝑖 �̄�𝑟𝑖
is the encryption of the amount 𝑎𝑖 under �̄�𝑖, and 𝑟

$
← Z∗

𝑝 . Moreover,
each element 𝐶𝑖 and �̄�𝑖 is coupled with the same random part 𝐷 = 𝑔𝑟.
Note that, the sum of all 𝑎𝑖 amounts will be debited from the payer,
while each 𝑎𝑖 amount will be credited to the corresponding �̄�𝑖 payee.
Let denote �̂� the remaining balance of the payer after the deduction
of the transfer amounts in 𝐚, and with (𝐶𝐿𝑛, 𝐶𝑅𝑛) the corresponding
encryption. In order to prove the validity of many transfers at once,
the payer should provide a ZK-proof to prove:
(i) the knowledge of the secret key 𝑠𝑘 such that 𝑔𝑠𝑘 = 𝑦 corresponds to
the public key used in the encryption;
(ii) the knowledge of the randomness 𝑟 such that 𝑔𝑟 = 𝐷 is the random
component of the encryption;
(iii) that the balance cannot be overdraft:

𝐶𝐿𝑛 = 𝑔�̂� ⋅ 𝐶𝑠𝑘𝑅𝑛,

where 𝐶𝐿𝑛 = 𝐶𝐿∕
∏𝑛

𝑖=1 𝐶𝑖 and 𝐶𝑅𝑛 = 𝐶𝑅∕
∏𝑛

𝑖=1𝐷;
(iv) that each ciphertext (𝐶1...𝐶𝑛, 𝐷) and (𝐶1...𝐶𝑛, 𝐷) encrypts an equal
amount 𝑎𝑖 at the same index 𝑖 ∈ [1, 𝑛] and is well-formed;
(v) that each individual amount (𝑎1,… , 𝑎𝑛) and the balance �̂�, after
deducting these amounts, are not negative.

The conjunction of the above statements forms (informally) the

multi-transfer zero-knowledge relation that we denote with 𝑚𝑢𝑙𝑡𝑖. In

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.
Fig. 1. Multi-transfer concept. The payer (a) runs a user program (acting as a prover) to create a multi-transfer transaction (TX). This transaction allows the payer to transfer
money privately to payees (b) and (c). The ZK-proof 𝜋 is also generated to prove the statements behind the multi-transfer relation. The balance admin (e.g. a smart contract acting
as a verifier) verifies the ZK-proof 𝜋 and updates the balances of all the users with the right amounts.
Section 5, we treat zero-knowledge relations formally as a set of
instances 𝐱 = (𝑥1,… , 𝑥𝑛), witnesses 𝐰 = (𝑤1,… , 𝑤𝑚) and algebraic
statements for which 𝑓 (𝐱,𝐰) is true, expressed with the notation:

 ∶ {(𝐱;𝐰) ∶ 𝑓 (𝐱,𝐰)}

to specify how a ZK-proof is constructed and highlight that the elements
in 𝐱 are public while those in 𝐰 are only known to the prover.

4.3. Multi-transfer scheme

We now present our Multi-Transfer (MT) scheme. In our design, we
focus on transfers and ignore the existence of epochs, as well as pending
state and rollover mechanisms. One reason is to simplify the presenta-
tion of our scheme, a second reason is that a multi-transfer transaction
does not alter the mechanisms to overcome front-running and replay
attack situations. On the contrary, our scheme modifies the underlying
ZK-proof of Zether, therefore we must consider the overdraft-safety and
privacy security properties. We define a Multi-Transfer scheme as a
triple of PPT algorithms 𝛱𝑀𝑇 = (𝚂𝚎𝚝𝚞𝚙, 𝙼𝚞𝚕𝚝𝚒𝚃𝚛𝚊𝚗𝚜, 𝚅𝚎𝚛𝚒𝚏𝚢):

• 𝜎 ← 𝚂𝚎𝚝𝚞𝚙(1𝜆). Setup takes as input the security parameter (in
unary representation), internally runs a group-generation algo-
rithm (1𝜆) for the public parameters of the encryption scheme,
as well as generates the parameters for the NIZK scheme. All
the public parameters are identified under the common string 𝜎,
shared by all algorithms but which we consider implicit.

• txmulti ∶= (𝑦, �̄�,𝐂, �̄�, 𝐷, 𝜋) ← 𝙼𝚞𝚕𝚝𝚒𝚃𝚛𝚊𝚗𝚜(𝑦, �̄�, 𝑠𝑘, 𝐚, �̂�). Multi-
Trans generates a multi-transfer transaction, given as inputs the
public keys (of the payer) 𝑦 and (of the destination accounts) �̄�,
the secret key for which 𝑔𝑠𝑘 = 𝑦, the transfer amounts 𝐚 and the
balance that will be deducted equal to �̂�.

• 0∕1 ← 𝚅𝚎𝚛𝚒𝚏𝚢(txmulti). Verify verifies the multi-transfer trans-
action txmulti. In particular, it verifies the ZK-proof 𝜋 against
the multi-transfer relation. If 𝜋 is valid, Verify sets 𝑏[𝑦] =
𝑏[𝑦]◦(𝐶−1

𝑡𝑜𝑡 , 𝐷
−1) and 𝑏[�̄�𝑖] = 𝑏[�̄�𝑖]◦(�̄�𝑖, 𝐷) for each 𝑖 ∈ [1, 𝑛], where

𝑏[𝑦] is the payer current balance and 𝑏[�̄�𝑖] the balance of the 𝑖th
recipient.

The 𝛱𝑀𝑇 scheme comes with an oracle smart contract 𝑆𝐶 which
maintains a table of accounts 𝑏[] representing the global state, and also
calls 𝚅𝚎𝚛𝚒𝚏𝚢 on every received txmulti transaction. The overall scheme
is summarized below.
6

Multi-Transfer payment scheme: 𝛱𝑀𝑇

Setup

INPUTS: security parameter 𝜆

1. 𝜎𝑔 ← (1𝜆)

2. 𝜎𝑛𝑖𝑧𝑘 ← Setup𝑛𝑖𝑧𝑘(1𝜆)

3. Let 𝜎 = (𝜎𝑔 , 𝜎𝑛𝑖𝑧𝑘)

4. Initialize a global state 𝑏[] ∶ G → G2

5. Initialize the oracle 𝑆𝐶 with parameters 𝜎, 𝑏[],MAX

MultiTrans

INPUTS:

- public key of the sender 𝑦

- public keys of the receivers �̄� = (�̄�1, ..., �̄�𝑛)

- private key of the sender 𝑠𝑘

- transfer amounts 𝐚 = (𝑎1, ..., 𝑎𝑛)

- sender remaining balance �̂�

OUTPUTS: txmulti

1. Let (𝐶𝐿, 𝐶𝑅) = 𝑏[𝑦]

2. Set 𝑟
$
←←←←←←←←←← Z𝑝

3. Set 𝐶𝑖 = 𝑔𝑎𝑖𝑦𝑟 ∀𝑖 ∈ [𝑛]

4. Set �̄�𝑖 = 𝑔𝑎𝑖 �̄�𝑟 ∀𝑖 ∈ [𝑛]

5. Set 𝐷 = 𝑔𝑟

6. Set 𝑤 = (𝐚, �̂�, 𝑠𝑘, 𝑟)

7. Let 𝐂 = (𝐶1, ..., 𝐶𝑛)

8. Let �̄� = (�̄�1, ..., �̄�𝑛)

9. 𝜋 = Provenizk (𝑚𝑢𝑙𝑡𝑖[𝐶𝐿, 𝐶𝑅, 𝑦, �̄�,𝐂, �̄�, 𝑔, 𝐷;𝑤])

Verify

INPUTS: txmulti

OUTPUTS: 0/1 (rejects or accepts)

1. Let (𝐶 ,𝐶) = 𝑏[𝑦]
𝐿 𝑅

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

s
p
a

O
a
s
𝑡
𝐲
c
w
𝑡
𝐂
i
𝑏
m

(

n
w

2. Set 𝐶𝑡𝑜𝑡 =
∏𝑛

𝑖=1 𝐶𝑖

3. Require: Verifynizk (𝑚𝑢𝑙𝑡𝑖[𝐶𝐿, 𝐶𝑅, 𝑦, �̄�,𝐂, �̄�, 𝑔, 𝐷], 𝜋) = 1; other-

wise: return 0

4. 𝑏[𝑦] = 𝑏[𝑦]◦(𝐶−1
𝑡𝑜𝑡 , 𝐷

−1)

5. For each 𝑖 ∈ [1, 𝑛] set 𝑏[�̄�𝑖] = 𝑏[�̄�𝑖]◦(�̄�𝑖, 𝐷)

6. return 1

Here, the ZK-proof 𝜋 appears in a NIZK version through the triple
(Setup𝑛𝑖𝑧𝑘,Prove𝑛𝑖𝑧𝑘,Verify𝑛𝑖𝑧𝑘), and the MultiTrans algorithm as-
sumes the role of the prover, while the Verify algorithm takes the role
of the verifier. The NIZK argument satisfies the relation 𝑚𝑢𝑙𝑡𝑖 defined
in Section 4, where (𝐶𝐿, 𝐶𝑅, 𝑦, �̄�,𝐂, �̄�, 𝑔, 𝐷) are the public instances and
(𝐚, �̂�, 𝑠𝑘, 𝑟) the witnesses. Moreover, 𝑚𝑢𝑙𝑡𝑖 expresses the range proof
statements, which we use to prove that each amount in 𝐚 and the
balance �̂� are within the range [0,MAX], where MAX is an upper limit
fixed in Setup.

4.4. Security requirements

We now show how the Multi-Transfer scheme has no effect on the
security of Zether. In what follows, we consider the challenger,
the adversary and the oracle smart contract, as entities involved in
security experiments. The capabilities of any in our experiments are
listed below: (i) it has the view of all transactions to the oracle and
state changes performed by the oracle; (ii) it can instruct to submit
transactions with certain inputs and then send the transactions to ;
(iii) it can submit direct transactions to ; (iv) it does not have the
ecret keys of corrupted parties, but it can specify the corresponding
ublic keys; (v) it can query the oracle to update the state of the
ccounts and also to withdraw from an account.

verdraft-safety. The overdraft-safety security definition states that
n adversary cannot withdraw more money than it has. We con-
ider the case of MultiTrans, in which creates the transactions
𝑥𝑚𝑢𝑙𝑡𝑖 and subsequently tries to withdraw from corrupted accounts. Let
𝐢 = (𝑦1,… , 𝑦𝑛) the set of public keys involved in the transactions,
ontaining both not corrupted and corrupted keys (the latter indicated
ith C ⊂ S). Let (𝐶𝐿,𝑖, 𝐶𝑅,𝑖) the state of each account involved, before
𝑥𝑚𝑢𝑙𝑡𝑖 is processed. Let the ciphertexts of the transfer amounts be
= (𝐶1...𝐶𝑛, 𝐷) and 𝜋 the ZK-proof for 𝑡𝑥𝑚𝑢𝑙𝑡𝑖. First, queries to

nitiate withdrawals from these accounts, thereby obtaining quantities
1,… , 𝑏𝑛. Then, if the 𝑡𝑥𝑚𝑢𝑙𝑡𝑖 transaction is handled by Verify there
ust be ciphertexts (𝐶𝑗 , 𝐷) that encrypt an amount 𝑎 under 𝑦𝑗 ∈ C

and ciphertexts (𝐶𝑘, 𝐷) that encrypt an amount 𝑎 under 𝑦𝑘 ∈ S \C,
for some 𝑗 ≠ 𝑘. For the state of corrupted accounts, it must hold that
𝐶𝐿,𝑖∕

∏

𝐶𝑗 = 𝑔�̂� ⋅ (𝐶𝑅,𝑖∕
∏

𝐷)𝑠𝑘 for some 𝑗 and a non-negative quantity
�̂� (because of the soundness property of the ZK-proof). Now, when
 makes the withdraw query on each 𝑦𝑖 again, the 𝑦𝑗 account state
can be (𝐶𝐿,𝑖, 𝐶𝑅,𝑖)◦((

∏

𝐶𝑗)−1, 𝐷−1) or (𝐶𝐿,𝑖, 𝐶𝑅,𝑖), based on whether state
changes have been applied. By Zether’s design, this withdraw query will
not take effect in the same epoch of the transfer query (due to the nonce
of the transaction). Thus, in the next epoch the state changes of 𝑡𝑥𝑚𝑢𝑙𝑡𝑖
will be applied, and the withdraw will return 𝑏𝑗 − 𝑎. Therefore, we can
see that the soundness of the ZK-proof together with the nonce mecha-
nisms are used to enforce the overdraft-safety. This indicates that in the
event of an adversary successfully compromising the soundness of the
proof system, the adversary will gain a non-negligible advantage in the
overdraft-safety experiment described above. We can better formulate
this event from the definition of soundness 2.2 in the following:

Definition 4.1 (Overdraft-Safety of Multi-Transfer Scheme). We say that
𝛱𝑀𝑇 has overdraft-safety security if there exists a polynomial-time
extractor for which, for every PPT adversary , the advantage of
7

breaking the soundness of the ZK-proof is negligible. g
In particular, is given as input the common random string 𝜎 of
the NIZK scheme, and outputs the public parameters 𝑥 and a pair of
accepting transcripts whose challenges are distinct. The extractor is
given the public parameters and the transcripts, and outputs a witness
𝑤. This implies the adversary succeeds by convincing Verify of false
statements.

Privacy. The privacy security definition states that no information is
leaked to an adversary about the transactions of honest users. A
Multi-Transfer transaction 𝑡𝑥𝑚𝑢𝑙𝑡𝑖 consists of the sender’s public key 𝑦,
the list of recipients’ public keys �̄�, two lists of ElGamal ciphertexts
𝐂 and �̄�, a blinding value 𝐷 and a ZK-proof 𝜋. Now, we modify
the Zether’s privacy experiment in the case of Multi-Transfer. In such
experiment, every adversary sends two publicly consistent transfer
queries to the challenger . Two queries are consistent if they have the
same public parameters and are jointly consistent with the ’s view.
In the latter, both transfer queries have the same set of public keys and
if one of the recipients is corrupted in this set, both queries have the
same recipient and the same amount. If either of these consistencies
is not met, the experiment aborts. Otherwise, selects a uniformly
random bit 𝑏 ← {0, 1} and executes the (1 − 𝑏)th query. Finally,
outputs a bit 𝑏′ as a guess for 𝑏. The adversary succeeds in the privacy
experiment if 𝑏′ = 𝑏 with an advantage non-negligibly better then 1∕2.
Considering that every ciphertext in 𝐂 and �̄� is indistinguishable from
the encryption of random messages and that 𝑦 and every element in �̄�
is indistinguishable from random element under DDH assumption, the
advantage of is defined by the advantage it would have in breaking
the zero-knowledge property of the proof 𝜋. Hence, we give the security
definition of privacy with respect to the zero-knowledge Definition 2.3
in the following:

Definition 4.2 (Privacy of Multi-Transfer Scheme). We say that 𝛱𝑀𝑇
has privacy security (or equivalently it is private) if there exists a PPT
simulator for which, for every PPT adversary , the advantage to
distinguish between the simulated transcript and the real transcript of
the honest proof is at most negligibly better then 1/2.

In particular, is given as input the common random string 𝜎 of
the NIZK scheme, and outputs an instance-witness pair (𝑥,𝑤) such that
𝜎, 𝑥,𝑤) ∈ , as well as the verifier’s internal randomness. Then,

outputs a real or simulated transcript based on the tossing of a random
bit 𝑏← {0, 1}. The adversary is given the transcript and outputs 𝑏′ as
a guess for 𝑏. The output of the experiment is 1 if the two bits are equal.
Since the security of the NIZK scheme inherits that of the interactive
version, in constructing the security proofs we reduce the adversary
 into an adversary attacking the soundness and the zero-knowledge
property of the interactive scheme, as discussed in Appendix C.

4.5. Further attacks

In the previous section, we have seen that our multi-transfer scheme
is resistant to over-spending attacks w.r.t. the overdraft-safety property
and to eavesdropping attacks w.r.t. the privacy property of our scheme.
Here, we discuss some other well-known attacks in blockchain contexts.

Replay attacks and double-spending. Replay attacks occur when
a malicious user attempts to execute a new transaction using a stolen
ZK-proof. In the multi-transfer scheme, where ZK-proofs are handled
in the NIZK version, an attacker could obtain a ZK-proof from honest
users and have the new transaction processed ahead of them. This could
result in users losing funds or even spending the same balance twice
(double-spending attack). To prevent these attacks we can adopt nonces
as in traditional account-based blockchains, which are still valid in the
case of multi-transfer transactions. Indeed, the last nonce associated
with an account can be provided with the transaction txmulti. Then, the
once value will be validated against such account and incremented
hen the transaction is processed. Double-spending attacks are miti-

ated not only by nonces but also by adopting pending transfers and

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

t
r
t

v
o
c
r
a
m
f
p
t
I
g
s

5

s
g
w

v
i

t
p
a
𝑐
t
t
t
F
[
i

p
r
𝑉
e
v
p
v
i
c
u
c

5

I
a
𝑚
e
s

⟨

a

𝐚

w

c
u
t
t
b

𝑡

rollover mechanisms as in Zether. With these mechanisms, two distinct
transactions txmulti have effect only with respect to their balance state.
In other words, a txmulti does not alter the state of an account until the
state changes from the previous txmulti have been applied. Therefore,
he corresponding ZK-proof is verified against the new state. If for some
eason the nonce or the ZK-proof is invalid, none of the transfers within
he txmulti will be executed.
Scalability attacks. Different types of attacks that can be de-

ised concern those that slow down or compromise the availability
f blockchain services. For instance, a Denial-of-Service (DoS) attack
an prevent legitimate user requests, even temporarily exhausting the
esources of blockchain nodes [37]. In general, these kind of attacks
re usually done when the cost of mounting the attack is very low. To
itigate such attacks, countermeasures such as increasing transaction

ees and limiting transaction sizes have been proposed. In our case, we
oint out that the multi-transfer scheme cannot be useful for attacks of
his type when, for example, the scheme is deployed in a smart contract.
ndeed, a transaction with a high volume of transfers could exceed the
as limit or incur high fees, thus such constraints prevent or discourage
calability attacks.

. Multi-transfer zero-knowledge proof system

In this section, we outline the zero-knowledge interactive proof
ystem for our Multi-Transfer scheme. The system leverages the aggre-
ate Range Proof (RP) from Bulletproofs theory [13] in combination
ith several 𝛴-Protocols, exploiting the adaptations of 𝛴-Bullets [12].

With the aggregate RP, we generate one proof for 𝑚 = 𝑛 + 1 range
alues, where 𝑛 are the values of the transfer amounts and one value
s the balance after the transfer. With several 𝛴-Protocols we prove

the statements concerning the DLOG relations over the two lists of
ciphertexts 𝐂 and �̄�. The adaptations in 𝛴-Bullets [12] suggest how
to work with the ElGamal encryption as a substitute for Pedersen com-
mitments in the RP system. The Inner Product Argument (IPA) protocol
of Bulletproofs comes with logarithmic-sized proofs, this property along
with the trustless is inherited in our ZK-proof. Moreover, a logarithmic-
sized proof also helps in aggregation efficiency, given that the size of
the relations over our proof grows with the number of transfers. We end
up with an interactive ZK-proof that is generalized for many transfers,
suitable for homomorphic cryptosystems like Zether and is SHVZK. The
section is organized as follows: we review the Bulletproofs notations
and theory; we show how we use the aggregate RP and the adaptations
for the ElGamal encryption; finally, we outline the 𝛴-protocols for the
rest of our ZK relations.

5.1. Bulletproofs review

In the Table 1, we summarize the notations we use in our proof
system from the original Bulletproofs paper (for a complete description
see section 2.3 of [13]):

Bulletproofs is a zero-knowledge argument system with which a
prover can convince a verifier that a value 𝑣 resides in a range from
zero to 2𝑛−1, with 𝑛 the range domain, without revealing the value 𝑣.
In the final stage of the RP protocol, an IPA is employed on pre-defined
vectors 𝐥 and 𝐫 to prove that their inner product ⟨𝐥, 𝐫⟩ equals a specific
𝑡. From this, it is possible to conclude that 𝑣 ∈ [0, 2𝑛 − 1]. Prior steps to
he IPA protocol proceed as follows. From bit decomposition of 𝑣, the
rover generates vectors 𝐚𝐿, 𝐚𝑅, for which it holds that ⟨𝟐𝑛, 𝐚𝐿⟩ = 𝑣
nd 𝐚𝐿 − 𝟏𝑛 = 𝐚𝑅, blinding vectors 𝐬𝐿, 𝐬𝑅, and commitments 𝐴 =
𝑜𝑚𝑚𝑖𝑡(𝐚𝐿, 𝐚𝑅) and 𝑆 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝐬𝐿, 𝐬𝑅). The prover then sends 𝐴,𝑆 to
he verifier. After the verifier sends 𝑦, 𝑧 challenges, the prover defines
he polynomial 𝑡(𝑋) =

∑𝑑
𝑖=0 𝑡𝑖𝑋

𝑖, where 𝑑 = 2 is the degree, by taking
he inner-product of the pre-defined vector polynomials 𝑙(𝑋), 𝑟(𝑋).
rom 𝑡(𝑋), the prover generates commitments 𝑇𝑖 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑡𝑖) for 𝑖 ∈
1, 2], and sends them to the verifier (note that the zero coefficient
s not committed). Upon receiving 𝑥 challenge from the verifier, the
8

t

Table 1
Bulletproofs notations.
Z𝑝 Ring of integers modulo prime number 𝑝.

G Cyclic group of prime order 𝑝.

𝑔 and ℎ Two distinct generators of the group G.

𝑉 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣) = 𝑔𝑣 ⋅ ℎ𝛾 Pedersen commitment for 𝑣 ∈ Z𝑝 using a
random blinding factor 𝛾.

v = (𝑣1 ,… , 𝑣𝑛) ∈ Z𝑛𝑝 Vector of dimension 𝑛 with elements in Z𝑝.

⟨𝐯1 , 𝐯2⟩ =
∑𝑛
𝑖=1 𝑣1,𝑖 ⋅ 𝑣2,𝑖 ∈ Z𝑝 Inner-product between vectors of dimension 𝑛.

𝐯1◦𝐯2 =
(𝑣1,1 ⋅ 𝑣2,1 ,… , 𝑣1,𝑛 ⋅ 𝑣2,𝑛) ∈ Z𝑛𝑝

Hadamard-product between vectors of size 𝑛.

𝑉 = 𝐠v =
∏𝑛

𝑖=1 𝑔
𝑣𝑖
𝑖 Pedersen vector commitment to v ∈ Z𝑛𝑝, with

g = (𝑔1 ,… , 𝑔𝑛) ∈ G𝑛 vector of generators.

s[∶𝑘] = (𝑠1 ,… , 𝑠𝑘) ∈ F𝑘
𝐬[𝑘∶] = (𝑠𝑘+1 ,… , 𝑠𝑛) ∈ F𝑛−𝑘

Vector slice operations.

𝑝(𝑋) ∈ Z𝑛𝑝[𝑋] Vector polynomial 𝑝(𝑋) =
∑𝑑
𝑖=0 𝐩𝐢𝑋

𝑖, with
𝑑 the polynomial degree and 𝐩𝐢 ∈ Z𝑛𝑝.

Table 2
Bulletproofs protocol
messages.

Prover Verifier

𝐴,𝑆→

← 𝑦,𝑧
𝑇1 , 𝑇2 →

← 𝑥
𝜏𝑥 , 𝜇, 𝑡, l, r→

verify

prover evaluates the polynomial 𝑡(𝑥) = 𝑡 at point 𝑥. Given the public
arameters (𝑔, ℎ, 𝑉) for this argument, where 𝑉 = 𝑔𝑣ℎ𝛾 commits to the
ange value 𝑣, the verifier can compute the zero coefficient by using

and the challenges. Finally, the prover sends 𝑡 and 𝑙(𝑥) = 𝐥, 𝑟(𝑥) = 𝐫
valuations along with other blinding factors (𝜏𝑥, 𝜇). With these, the
erifier checks the public 𝑉 , the commitments 𝐴, 𝑆 and that the inner-
roduct ⟨𝐥, 𝐫⟩ = 𝑡 is valid. The messages exchanged between prover and
erifier in the Bulletproofs protocol are shown in the Table 2. However,
n the last step, the prover sends the vectors 𝐥 and 𝐫, resulting in a linear
ommunication cost. With these two vectors becoming witnesses and
sing the IPA protocol, the RP can get a logarithmic communication
ost in 𝑛 (bits of the range).

.2. Integrating aggregate RP in our proof

We use an aggregate RP to create one proof for 𝑚 range values.
n particular, we construct a range proof for the 𝑎1,… , 𝑎𝑗 transfer
mounts for some integer 𝑗 and the balance value �̂�, having in total
= 𝑗 + 1 range values. Based on the binary decomposition of �̂� and

ach 𝑎1,… , 𝑎𝑗 , the prover begins by creating the two vectors 𝐚𝐋 and 𝐚𝐑
uch that:

𝟐𝑛, 𝐚𝐿[∶𝑛]⟩ = �̂� and ⟨𝟐𝑛, 𝐚𝐿[(𝑘−1)⋅𝑛∶𝑘⋅𝑛]⟩ = 𝑎𝑘−1, ∀𝑘 ∈ [2, 𝑚]

nd

𝑅 = 𝐚𝐿 − 𝟏𝑚⋅𝑛 ∈ {0,−1}𝑚⋅𝑛

here 𝑛 is the bit length of the range values.
Hence, the prover creates 𝐴 = 𝐠𝐚𝐿𝐡𝐚𝑅ℎ𝛼 ∈ G and 𝑆 = 𝐠𝐬𝐿𝐡𝐬𝑅ℎ𝜌 ∈ G

ommitments, with 𝐠 and 𝐡 vectors of generators, and the term ℎ ∈ G
sed as a blinding generator with 𝛼 and 𝜌 random values. Moreover,
he prover modifies the vectors of blinding terms 𝐬𝐿 and 𝐬𝑅 such that
hey stay in Z𝑚⋅𝑛𝑝 . The range proof proceeds as described in Section 5.1;
elow we outline the cascading changes derived from the aggregate RP.

The vector polynomials 𝑙(𝑋) and 𝑟(𝑋), which are used to derive
(𝑋), are modified to stay in Z𝑚⋅𝑛𝑝 [𝑋]. As before, the prover commits
o 𝑡(𝑋) generating 𝑇 = 𝑔𝑡1,2ℎ𝜏1,2 commitments, where 𝜏 , 𝜏 ∈ Z are
1,2 1 2 𝑝

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

p
f

d
T
p
e
o
i

4

uniformly random values. After the verifier sends its challenge 𝑥, the
rover evaluates at 𝑥 the polynomial 𝑡(𝑥) = 𝑡, and generates the blinding
actors 𝜏𝑥 for 𝑡 and 𝜇 for 𝐴,𝑆 commitments.

From this point, instead of verifying the public commitment 𝑉 as
escribed in Section 5.1, we adopt a similar strategy of 𝛴-Bullets [12].
his is because the verifier’s equality involves an additive homomor-
hism, which is not applicable when ElGamal ciphertexts are not
ncrypted with the same key. The strategy suggests proving the opening
f the polynomial commitment, which is the witness 𝜏𝑥 in the equality
nvolving 𝑇1,2 commitments. We can do this with a 𝛴-Protocol that

satisfies the following zero-knowledge relation:

𝐴𝑔𝑔𝑅𝑃 ∶ {(𝑔, ℎ ∈ G, 𝑦, 𝑧, 𝜓(𝑦, 𝑧), 𝑡 ∈ Z𝑝; �̂� ∈ Z𝑝, 𝐚 ∈ Z𝑚−1𝑝 , 𝜏𝑥 ∈ Z𝑝) ∶

𝑔𝑡−�̂�⋅𝑧
2−

∑𝑚−1
𝑖=1 𝑎𝑖⋅𝑧𝑖+2−𝜓(𝑦,𝑧)ℎ𝜏𝑥 = 𝑇1,2}

(1)

where 𝑦 and 𝑧 are the challenges of the verifier discussed in Section 5.1,
and 𝜓(𝑦, 𝑧) is a function from the aggregate RP dependent on these
challenges and can be calculated independently by the verifier.

The prover and verifier engage an argument of knowledge for
relation (1); we denote this argument with 𝛴𝐴𝑔𝑔𝑅𝑃 . Therefore, the
prover generates the uniformly random scalars 𝑘𝑏𝑎 and 𝑘𝜏 and computes
𝐴𝑡 = 𝑔−𝑘𝑏𝑎ℎ𝑘𝜏 . Afterwards, the prover transmits 𝐴𝑡, 𝜇 and 𝑡 to the
verifier. Once the verifier’s challenge 𝑐 is received, the prover calculates

𝑠𝑏𝑎 = 𝑘𝑏𝑎 + 𝑐 ⋅ (�̂� ⋅ 𝑧2 +
𝑚−1
∑

𝑖=1
𝑎𝑖 ⋅ 𝑧

2+𝑖) ∈ Z𝑝

and

𝑠𝜏 = 𝑘𝜏 + 𝑐 ⋅ 𝜏𝑥 ∈ Z𝑝,

which the prover then sends to the verifier.
These values are then used by the verifier in the proof check given

by the expression:

𝑔(𝑡−𝜓(𝑦,𝑧))⋅𝑐−𝑠𝑏𝑎 ⋅ ℎ𝑠𝜏
?
= 𝐴𝑡 ⋅ (𝑇 𝑥1 ⋅ 𝑇 𝑥

2

2)𝑐 .

The full aggregate range proof between the prover and the verifier
 is shown in the interactive protocol below; the protocol is given by
the conjunction aggregate RP ∧ 𝛴𝐴𝑔𝑔𝑅𝑃 .

Protocol 1: Aggregate RP ∧ 𝛴𝐴𝑔𝑔𝑅𝑃 interactive protocol

1: computes
2: 𝐚𝐿 ∈ {0, 1}𝑚⋅𝑛 s.t.
3: ⟨𝟐𝑛, 𝐚𝐿[∶𝑛]⟩ = �̂� and
4: for all 𝑘 ∈ [2, 𝑚] ∶
5: ⟨2𝑛, 𝐚𝐿[(𝑘−1)⋅𝑛∶𝑘⋅𝑛]⟩ = 𝑎𝑘−1
6: end for
7: a𝑅 = a𝐿 − 1𝑚⋅𝑛

8: 𝛼, 𝜌
$
←←←←←←←←←← Z𝑝

9: 𝐴← ℎ𝛼ga𝐿ha𝑅

10: s𝐿, s𝑅
$
←←←←←←←←←← Z𝑚⋅𝑛𝑝

11: 𝑆 ← ℎ𝜌gs𝐿hs𝑅

12: end
13: → ∶ 𝐴,𝑆

14: → ∶ 𝑦, 𝑧
$
←←←←←←←←←← Z∗

𝑝

15: computes
16: 𝑙(𝑋) ∶= 𝑙𝑙 + 𝑙𝑟 ⋅𝑋 ∈ Z𝑚⋅𝑛𝑝 [𝑋]
17: 𝑟(𝑋) ∶= 𝑟𝑙 + 𝑟𝑟 ⋅𝑋 ∈ Z𝑚⋅𝑛𝑝 [𝑋]
18: 𝑙𝑙 ← 𝐚𝐿 − 𝑧𝟏𝑛⋅𝑚

19: 𝑙 ← 𝐬
9

𝑟 𝐿
20: 𝑟𝑙 ← 𝐲𝑛⋅𝑚◦(𝐚𝑅 + 𝑧𝟏𝑛⋅𝑚) +
∑𝑚
𝑘=1 𝑧

𝑘+1 ⋅ (𝟎𝑛⋅(𝑘−1)||𝟐𝑛||𝟎𝑛⋅(𝑚−𝑘))
21: 𝑟𝑟 ← 𝐲𝑛⋅𝑚◦𝐬𝑅
22: 𝑡(𝑋) ∶=

∑𝑑
𝑖=0 𝑡𝑖𝑋

𝑖 ∈ Z𝑝[𝑋], where 𝑑 = 2 and 𝑡(𝑋) = ⟨𝑙(𝑋), 𝑟(𝑋)⟩
23: 𝜏1, 𝜏2

$
←←←←←←←←←← Z𝑝

24: 𝑇1,2 = 𝑔𝑡1,2ℎ𝜏1,2

25: end
26: → ∶ 𝑇1, 𝑇2
27: → ∶ 𝑥

$
←←←←←←←←←← Z∗

𝑝

28: computes
29: l = 𝑙(𝑥) ∈ Z𝑚⋅𝑛𝑝

30: r = 𝑟(𝑥) ∈ Z𝑚⋅𝑛𝑝

31: 𝑡 = ⟨l, r⟩ ∈ Z𝑝
32: 𝜏𝑥 = 𝜏1 ⋅ 𝑥 + 𝜏2 ⋅ 𝑥2 ∈ Z𝑝
33: 𝜇 = 𝛼 + 𝜌 ⋅ 𝑥 ∈ Z𝑝
34: 𝑘𝑏𝑎, 𝑘𝜏

$
←←←←←←←←←← Z𝑝 ⊳ begin 𝛴-Protocol

35: 𝐴𝑡 = 𝑔−𝑘𝑏𝑎ℎ𝑘𝜏

36: end
37: → ∶ 𝑡, 𝜇,𝐴𝑡
38: → ∶ 𝑐

$
←←←←←←←←←← Z𝑝

39: computes
40: 𝑠𝑏𝑎 = 𝑐 ⋅ (�̂� ⋅ 𝑧2 +

∑𝑛
𝑖=1 𝑎𝑖 ⋅ 𝑧

2+𝑖) + 𝑘𝑏𝑎
41: 𝑠𝜏 = 𝑐 ⋅ 𝜏𝑥 + 𝑘𝜏
42: end
43: → ∶ 𝑠𝑏𝑎, 𝑠𝜏
44: requires
45: 𝜓(𝑦, 𝑧) = (𝑧 − 𝑧2) ⋅ ⟨1𝑚⋅𝑛,y𝑚⋅𝑛⟩ −∑𝑚

𝑗=1 𝑧
2+𝑗 ⋅ ⟨1𝑛,2𝑛⟩

46: 𝑔(𝑡−𝜓(𝑦,𝑧))⋅𝑐−𝑠𝑏𝑎 ⋅ ℎ𝑠𝜏
?
= 𝐴𝑡 ⋅ (𝑇 𝑥1 ⋅ 𝑇 𝑥22)𝑐

7: end

Theorem 5.1. Aggregate RP ∧ 𝛴𝐴𝑔𝑔𝑅𝑃 is a public-coin (perfectly) special
honest-verifier argument of knowledge of the relation 𝐴𝑔𝑔𝑅𝑃 (1).

This proof appears in Appendix A.
To conclude the range proof, it remains to verify that ⟨𝐥, 𝐫⟩ = 𝑡.

Therefore, our aggregate range proof proceeds with the inner product
argument protocol, the full description of which is referred to [13]. As
specified in the paper, the following modified inputs are now given to
the IPA between and : (𝐠,𝐡, 𝐶, 𝑡; 𝐥, 𝐫), where

𝐡 = (ℎ1, ℎ
𝑦−1
2 , ℎ𝑦

−2

3 ,… , ℎ𝑦
−𝑚⋅𝑛+1
𝑚⋅𝑛)

and

𝐶 = 𝐴𝑆𝑥 ⋅ 𝐠−𝑧 ⋅ ℎ−𝜇 ⋅ 𝐡𝐲𝑚⋅𝑛⋅𝑧 ⋅
𝑚
∏

𝑗=1
𝐡𝟐𝑛⋅𝑧1+𝑗[(𝑗−1)⋅𝑛∶𝑗⋅𝑛].

Moreover, we use the multi-exponentiation technique on the verifier for
further optimization.

5.3. 𝛴-protocol for multiple transfers

In this section, we outline the remaining part of our ZK-proof for
the multi-transfer transaction presented in Section 4. In particular, we
design a 𝛴-Protocol satisfying the zero-knowledge relation:

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

6

b
o
t
f
t

s
p
v
s
p
o

p
t
u
t
i
i
o
r
A
m
r
i
g
a

e
p
a

𝑀𝑢𝑙𝑡𝑖𝑇 𝑟𝑎𝑛𝑠 ∶ {(𝐶𝐿, 𝐶𝑅, 𝐷, 𝑔, 𝑦 ∈ G, 𝐂, �̄�, �̄� ∈ G𝑚−1; 𝐚 ∈ Z𝑚−1𝑝 ,

�̂�, 𝑠𝑘, 𝑟 ∈ Z𝑝) ∶

(𝐶𝑖 = 𝑔𝑎𝑖𝑦𝑟 ∧ �̄�𝑖 = 𝑔𝑎𝑖 �̄�𝑟𝑖 ∧𝐷 = 𝑔𝑟)𝑚−1𝑖=1 ∧

𝐶𝐿 ⋅ (
𝑚−1
∏

𝑖=1
𝐶𝑖)−1 = 𝑔�̂� ⋅ (𝐶𝑅 ⋅ (

𝑚−1
∏

𝑖=1
𝐷)−1)𝑠𝑘 ∧

𝑦 = 𝑔𝑠𝑘}

(2)

The relation outlines the algebraic statements over the two lists 𝐂
and �̄� of homomorphic encryptions and the statements relating to the
knowledge of secrets. In summary, the prover proves (i) that each
element in both the 𝐂 and �̄� lists is a correct encryption corresponding
to the 𝑖th element in the list 𝐚 of amounts to transfer, (ii) that the
remaining balance (𝐶𝐿, 𝐶𝑅) cannot overdraft, i.e., corresponds to a non-
negative value �̂�, after the deduction of the transfer amounts, (iii) the
knowledge of the secret key 𝑠𝑘 associated with the public key 𝑦 and the
knowledge of the randomness 𝑟 used in the encryption.

Hence, the prover and verifier engage in an interactive proof,
satisfying the relation 𝑀𝑢𝑙𝑡𝑖𝑇 𝑟𝑎𝑛𝑠 (2), shown in the following protocol.

Protocol 2: 𝛴𝑀𝑢𝑙𝑡𝑖𝑇 𝑟𝑎𝑛𝑠 interactive protocol

1: computes:
2: 𝑘𝑠𝑘, 𝑘𝑟, 𝑘𝑏𝑎

$
← Z𝑝

3: 𝐴𝑦 = 𝑔𝑘𝑠𝑘 ∈ G
4: 𝐴𝐷 = 𝑔𝑘𝑟 ∈ G
5: 𝐴𝑏𝑎 = ((𝐶𝑅∕

∏𝑚−1
𝑖=1 𝐷)𝑧2 ⋅

∏𝑚−1
𝑖=1 𝐷

𝑧𝑖+2)𝑘𝑠𝑘 ⋅ 𝑔𝑘𝑏𝑎 ∈ G
6: 𝐴�̄� =

∏𝑚−1
𝑖=1 (𝑦 ⋅ �̄�

−1
𝑖)𝑘𝑟 ∈ G

7: end
8: → ∶ 𝐴𝑦, 𝐴𝐷, 𝐴𝑏𝑎, 𝐴�̄�

9: → ∶ 𝑐
$
← Z𝑝

10: computes:
11: 𝑠𝑠𝑘 = 𝑐 ⋅ 𝑠𝑘 + 𝑘𝑠𝑘 ∈ Z𝑝
12: 𝑠𝑟 = 𝑐 ⋅ 𝑟 + 𝑘𝑟 ∈ Z𝑝
13: 𝑠𝑏𝑎 = 𝑐 ⋅ (�̂�𝑧2 +

∑𝑚−1
𝑖=1 (𝑎𝑖𝑧

𝑖+2)) + 𝑘𝑏𝑎 ∈ Z𝑝
14: end
15: → ∶ 𝑠𝑏𝑎, 𝑠𝑠𝑘, 𝑠𝑟
16: requires:
17: 𝑔𝑠𝑠𝑘

?
= 𝐴𝑦𝑦𝑐

18: 𝑔𝑠𝑟
?
= 𝐴𝐷𝐷𝑐

19: 𝑔𝑠𝑏𝑎 ((𝐶𝑅
∏𝑚−1
𝑖=1 𝐷

)𝑧2 ⋅
∏𝑚−1

𝑖=1 𝐷
𝑧2+𝑖)𝑠𝑠𝑘

?
= 𝐴𝑏𝑎((

𝐶𝐿
∏𝑚−1
𝑖=1 𝐶𝑖

)𝑧2 ⋅
∏𝑚−1

𝑖=1 𝐶
𝑧2+𝑖
𝑖)𝑐

20:
∏𝑚−1

𝑖=1 (𝑦 ⋅ �̄�
−1
𝑖)𝑠𝑟

?
= 𝐴�̄� ⋅ (

∏𝑚−1
𝑖=1 𝐶𝑖∕�̄�𝑖)

𝑐

21: end

Theorem 5.2. 𝛴𝑀𝑢𝑙𝑡𝑖𝑇 𝑟𝑎𝑛𝑠 is a public-coin (perfectly) special honest-
verifier argument of knowledge of the relation 𝑀𝑢𝑙𝑡𝑖𝑇 𝑟𝑎𝑛𝑠 (2).

This proof appears in Appendix B.

. Related work and comparison

MimbleWimble [7] proposes improvements to the original UTXO-
ased Bitcoin platform, such as smaller transaction history and a degree
f secrecy for transactions. Instead of directly inserting values into a
ransaction, Pedersen commitments are built upon multiple blinding
actors. A range proof system is theorized in order to ensure that all
10

he amounts that are exchanged during transactions are non-negative.
However, one range proof is provided for each spending coin com-
mitment, and aggregation of range proofs is left as an open problem.
Moreover, while it is possible to spend many coins in one transaction,
it is not clear how to make a multi-transfer transaction.

Zerocash [8] enhances the privacy of Bitcoin’s UTXO model. In
Zerocash the value of a coin is mixed together with the address of
its owner using nested commitments. The transaction for spending the
coins provides a zk-SNARK proof, built on an arithmetic circuit for a
specific NP statement. Despite the constant-size proofs which confer
succinctness, Zerocash is not completely trustless. Furthermore, a multi-
transfer transaction in Zerocash requires an increase in the complexity
of the circuit, resulting in decreased performances for the generation
and verification of the ZK-proofs.

Lelantus [9] offers a private payment mechanism based on the
UTXO model. Coin values need to be minted in double-blinded Pedersen
commitments in order to be spent. The spend transaction includes 𝛴
proofs to prove that the user knows all the private data related to
the commitments. A JoinSplit transaction enables a user to merge,
plit or redeem coins and requires the generation of range proofs to
rove that the output commitments are associated with non-negative
alues. Despite ZK-proof batching techniques and the possibility to
pend multiple coins, a transaction must be provided with separate
roofs (𝛴 and range proofs) for each coin; this results in significant
verhead when funds to be spent increase.

Monero [10] is a private cryptocurrency based on the RingCT
rotocol [38], where the origin, destination and amounts of a UTXO
ransaction are kept hidden. In particular, the sender combines her/his
nspent coins with a set of addresses (not related to each other) and
heir unspent outputs. Each of the output values in the transaction
s concealed with a Pedersen commitment. Then, a commitment to zero
s formed by subtracting the total input commitments from the total
utput commitments. This commitment is used by the sender within a
ing structure to prove ownership of the coins she/he intends to spend.
t the base, there is the MLSAG [38] ring signature scheme, used to
ake the actual signer indistinguishable in a set of public keys. Finally,

ange proofs are used to prove that the outputs of a transaction are
n the range of admissible values. Monero suffers from the continuous
rowth of UTXO set size and weak anonymity due to the reuse of
ddresses.

Quisquis [11] aims at solving the drawbacks of Zerocash and Mon-
ro. In particular, a compact UTXO set is provided by replacing the
ublic keys of the sender with those of the recipients at each trans-
ction. Moreover, updatable public keys (UPKs) are used to update the

public keys while the secret key is left unchanged. With this method,
an address is only stored twice in the blockchain, when it is consumed
as an input or it is generated as an output of a transaction. Confidential
transfers are made with the use of commitments with which balances
and transfer amounts are hidden. Then, those commitments are em-
ployed in constructing a zero-knowledge proof of knowledge, relying
on DLOG assumptions and using groups in which the DDH problem is
intractable. Moreover, Quisquis does not rely on a trusted setup and
has great support for multi-transfer transactions. However, Quisquis
lacks prevention of front-running situations, which could cause honest
transactions to fail.

Zether [12] is the first privacy-preserving payment system based
on the account model. Confidential transactions are accompanied with
trustless thanks to the 𝛴-Bullets proof system. This allows proving
that transfer amounts and balances are non-negatives and that the
encryption is correct. Zether also provides a smart contract protocol
where the account balances are kept encrypted and homomorphically
updated at each epoch. The Zether smart contract also provides user-
accessible functions for depositing, transferring, and withdrawing funds
to and from accounts and guarantees replay attacks and front-running
protection. Basic Zether does not have anonymity, i.e. the sender and
receiver are linkable in a transaction, and the multi-transfer transac-

tion is discussed only informally. Moreover, Zether does not natively

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

t
o
d
a
B
w

s
g

7

u
G
t
i
a
A
f
O
t
t
t
u
f
T
m
e

Table 3
Comparison of CT solutions. HE denotes homomorphic encryption. SC means whether the privacy solution supports smart contracts or not. Anonymity means whether the
unlinkability between sender/recipient is guaranteed. Multi-Transfer means whether the protocol supports multiple transfers within a single transaction.

Name Model ZK techniques SC Trustless Succinctness Anon. Multi-Trans.

MimbleWimble UTXO HE and Range proofs No No No Yes No
Zerocash UTXO zk-SNARK No No Yes Yes No
Lelantus UTXO Bulletproofs and Schnorr proofs No Yes No Yes No
Monero UTXO RingCT No Yes No No No
Quisquis Hybrid HE, UPKs and Bulletproofs No Yes No Yes Yes
Zether Account HE and 𝛴-Bullets Yes Yes No No No
Anon. Zether Account HE, 𝛴-Bullets and many-out-of-many Yes Yes No Yes No
ZETH Hybrid zk-SNARK Yes No Yes Yes No
BlockMaze Account zk-SNARK Yes No Yes Yes No
Our work Account HE, Agg. Bulletproofs and 𝛴-protocols Yes Yes No No Yes
support aggregation of proofs in transactions and batch verification
for multiple transfers. An anonymous version of Zether is given in
the work [28], which improves the Basic Zether with the many-out-
of-many cryptographic primitive. This primitive is used to create an
anonymity set, ensuring the unlinkability of the sender and receiver in
a transaction. However, Anonymous Zether is restricted to the single
sender/receiver payment model.

ZETH [16] offers a private payment mechanism by adapting the
Zerocash system on top of Ethereum. The main feature is a mixing
smart contract that enables the user to mint and pour an amount of
zethNotes. A transaction between a sender and multiple recipients is
based on the expense of an amount of previously minted notes and the
creation of new notes and associated commitments, inserted in a Merkle
tree. Double spending on spent notes is avoided with the generation of
serial numbers. A zk-SNARK proof is provided by a sender to ensure
that the transaction is well-balanced. Furthermore, each note is also
encrypted before being sent to its recipient. Although the possibility to
do multiple payments in a single transaction, there is no efficient way
to check multiple Merkle paths as input notes increase.

BlockMaze [15] is a private payment system in the account model.
Each address has both a zero-knowledge balance (ZK-balance) and a
plaintext balance. A secure commitment is used for the ZK-balance
and a private computation circuit for creating the transfer method. The
ransfer is performed in a two-step procedure to achieve unlinkability
f sender/receiver addresses: the sender create a ZK-transaction to
eposit funds and the receiver provides a ZK-proof to receive funds. The
dopted zk-SNARKs inherit the trusted setup of Zerocash. Moreover,
lockMaze does not support the transfer of funds to multiple recipients
ithin a single transaction.

A comparison between the CT solutions is shown in Table 3. Our
olution benefits from trustless and multi-transfer support, but does not
uarantee the unlinkability of sender/receiver address.

. Implementation and evaluation

In this section, we present our implementation and concrete eval-
ation of ZeroMT. The source code written in Rust can be found on
itHub [39] and utilizes merlin [40] and arkworks [30] ecosys-

ems. These libraries provide a Fiat–Shamir heuristic for building non-
nteractive proof systems through the STROBE-based transcript [41]
nd the arithmetic behind elliptic curve points and finite field elements.
rkworks also provides serialization mechanisms to convert scalar

ield elements and elliptic curve points into their byte representation.
ur implementation is modular and allows us to identify which are

he expensive components of the cryptographic scheme. It turns out
hat ZK-proofs are the most expensive components, hence we evaluate
hem in terms of proving time, verifying time and proof sizes. We
se serialization in an uncompressed form which requires 64 bytes
or an elliptic curve point and 32 bytes for a scalar field element.
here is also an overhead of 8 bytes for serializing a vector object’s
emory reference from the Rust libraries. We use the Barreto–Naehrig

lliptic curve known as BN-254 since it is the choice of Zether’s smart
11
Table 4
Evaluation of multi-transfer ZK-proof. Range Proof refers to the implementation
of Protocol 1 in Section 5.2. 𝛴-Proof refers to the implementation of Protocol 2 in
Section 5.3. Total is the total cost considering the MultiExp IPA.

m Range proof MultiExp. IPA 𝛴-Proofs Total

Prover times (ms)

2 189 772 6 967
4 372 1 509 10 1 891
8 737 3 002 14 3 753

16 1477 5 930 24 7 431
32 3023 11 778 43 14 844
64 6049 23 921 82 30 052

Verifier times (ms)

2 5 331 12 348
4 5 663 18 686
8 6 1 296 27 1 329

16 8 2 571 47 2 626
32 14 5 157 88 5 259
64 24 10 275 161 10 460

Proof sizes (bytes)

2 448 848 416 1 712
4 448 976 416 1 840
8 448 1 104 416 1 968

16 448 1 232 416 2 096
32 448 1 360 416 2 224
64 448 1 488 416 2 352

contract. In Table 4, we report our benchmarks for different prover and
verifier executions and proof sizes, considering the 𝑛 = 32-bit range
domain and varying the number 𝑚 of aggregate transfers, from 2 up to
64 values. Fig. 2 shows the prover and verifier times when the number
of transfers increases. For range proofs, we implement aggregate RP and
the multi-exponentiation technique on the IPA verifier. The benchmarks
are executed on a 2.6 GHz 6 cores CPU machine running the Rust
compiler and with 16 GB RAM. From the evaluations in Table 4, it can
be seen that the IPA component significantly weighs on the total results
of our ZK-proof. The overall size of our ZK-proof is of 928+128⋅𝑙𝑜𝑔2(𝑚⋅𝑛)
bytes, considering that there are 2 G𝑙𝑜𝑔2(𝑚⋅𝑛) elements at each MultiExp
IPA round, which is in line with the asymptotic proof size of (𝑙𝑜𝑔(𝑛⋅𝑚))
from the theoretical result.

Comparison with concurrent works. Comparing our solution with
other works is difficult due to the different balance models (UTXO, Hy-
brid or Account), ZK techniques, programming languages and transac-
tion parameters. Here, we consider the concurrent works that are clos-
est to our transaction scheme and balance model, such as Quisquis [11]
and Anonymous Zether [28]. Unfortunately, basic Zether [12] does
not provide any implementation and the measurements present in the
paper are not comparable. Quisquis and Anonymous Zether rely on
hybrid and account model respectively and share with us the batching
techniques of Bulletproofs. Now, the comparison strictly depends on the
transaction parameters.

Quisquis utilizes compressed group and field elements (33 and 32

bytes respectively) which reduce transaction and proof size. Quisquis

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.
Fig. 2. Execution times when the number of transfers increases.
Table 5
Comparison with concurrent works. 𝑛 denotes the bit-range domain (for a value
𝑣 ∈ [0, 2𝑛 − 1]). 𝑁 denotes the number of participants in a transaction. 𝑚 denotes
the number of aggregate values.

tx cost (ms) tx cost (Big-) tx cost (bytes)

Prover Verifier Proof size tx size Proof size tx size

QuisQuis 471 71,6 𝑙𝑜𝑔(𝑛) 𝑁 + 𝑙𝑜𝑔(𝑛) 13 408 26 060
Anon. Zether 2478 152 𝑙𝑜𝑔(𝑁) 𝑁 3776 6148
Our work (ZeroMT) 7431 2626 𝑙𝑜𝑔(𝑛 ⋅ 𝑚) 𝑁 2096 5104

considers a number of 𝑁 = 16 participants in one transaction, of
which we have 1 sender, 3 receivers and 12 randomly selected accounts
for the anonymity set. Quisquis also considers a 64 bit-range domain,
which inflates transaction costs. Anonymous Zether uses uncompressed
group and field elements like in our work. The range domain is set to
32 bit-range, and the proof aggregates a fixed number of 𝑚 = 2 range
values. The number of participants considered in Anonymous Zether
is also 𝑁 = 16. In our work, to be better aligned in the comparison,
we consider a number of participants of 𝑁 = 16, of which we have
1 sender and 15 recipients, with 𝑚 = 16 aggregate values under 32
bit-range domain. The comparison is shown in Table 5.

8. ZeroMT applications

In this section, we discuss the instantiation of our multi-transfer
scheme in real-world scenarios, specifically the smart lock and IoT/Mec
continuous payments case studies. Therefore, we highlight how ZeroMT
enhances both privacy and scalability in these contexts.

Smart lock case study. A simple real-world case study of the smart
lock and eBike rental service is presented in [29]. The protocol fol-
lows a client/server paradigm where, after a sequence of interactions
performed off-chain between clients and servers, a final transaction
is assembled by the client and sent to the blockchain (e.g. via smart
contract). In this settings, a User (client) can initiate a rental service
by requesting the opening of a smart lock. Then, upon concluding the
service, the client settles the rental fees for the duration of the service
with both the Service Providers and the Insurance (servers). The smart
lock protocol is clearly executed off-chain before the payments towards
multiple recipients can start. The blockchain serves as a means of en-
suring the integrity of the client’s data and facilitating balance transfers
between the parties. However, due to the openness of the blockchain,
there are some considerations for the privacy of clients and servers.
Trivial solutions to safeguard privacy could consider excluding clients
from blockchain payments or refraining from storing their identity
within the smart contract. However, these approaches pose challenges
in deterring dishonest behavior or automating dispute resolution. For
servers instead, there is the risk of revealing balances and financial
12
details of their services to competitors. The confidentiality and zero-
knowledge properties of ZeroMT can be leveraged to enable private
transactions. Indeed, transactions do not disclose their amounts and
the balance values of the parties involved. Furthermore, it is evident
that issuing separate transactions at the end of the off-chain protocol
results in inefficient work from the main-chain. By exploiting the multi-
transfer feature of ZeroMT, the client can aggregate multiple transfers
in a single transaction. Therefore, the multi-transfer scheme can be
integrated together with the smart lock protocol as follows. A Setup is
executed to initialize and deploy the smart contract into the blockchain
network. Any registered Users within the smart contract can execute
the Fund method to add funds to their balance. At any time, Users
execute the smart lock protocol to request the rental service. At the end
of the smart lock session, Users run on their devices the MultiTrans
method in order to finalize payments to multiple recipients, i.e., the
Service Providers and the Insurance. The MultiTrans method gener-
ates the multi-transfer transaction that is sent to the Verify method of
the smart contract. Verify executes the verification of the ZK-proof,
and in case of success, a redistribution of balances of all participants
takes place.

IoT/MEC multiple continuous payments. Another case study where
ZeroMT could enhance scalability is presented in [42]. Here, the high-
frequency of data exchange among Internet of Things (IoT) and Mobile
Edge Computing (MEC) devices leads to continuous payments when
the IoT/MEC system is integrated with the blockchain. Given also
the adoption of ZK-proofs, this integration becomes more challenging.
The scenario IoT/MEC and blockchain is represented following the
data Buyer/Seller paradigm. Thus, an IoT device (Seller) collects data,
which are then sent to the Edge node (Buyer). The IoT device sells its
data at a predetermined cost and, upon receiving the data, the Edge
node submits a transaction on the blockchain to make the requested
payment. Considering the frequency of data exchanges, the Edge node
will continuously issue payments. Therefore, the work in [42] focuses
on minimizing the number of transactions that need to be verified
by the blockchain. However, their solution is limited to a one-to-one
Seller/Buyer relationship, even though it is quite plausible to envision
an Edge node purchasing data from multiple IoT devices. In that case,
to further reduce the number of transactions and the computational
overhead from the ZK-proofs, the multi-transfer scheme can be adopted
as follows. Rather than collecting data from a single IoT device, the
Edge node makes data requests to multiple IoT devices. After gathering
all the data, the Edge node assembles and submits a multi-transfer
transaction to the blockchain to finalize the payments towards multiple
Sellers/IoT devices.

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

h
l
p
a
m
a
m
t

1

C
p
a
T
t
b
i
T
t

t
t
a
i
m
s
t
c
a
7
y
s
m
f
h
g
6

S

(
𝑤
d

9. Limitations and discussions

In this section, we discuss the limitations and potential mitigations
of our ZeroMT multi-transfer scheme.

Downside of the Inner-Product argument. The IPA protocol, orig-
inally conceived in Bulletproofs, reveals an important limitation. On
both sides of the prover and verifier, 𝑙𝑜𝑔2(𝑛) rounds are executed, where
𝑛 is the size of the vector sent each round equal to a power of two. While
this characteristic is not an issue in the original design, it becomes
more significant when applied. In our multi-transfer proof system, the
dimension of the input vector is 𝑚⋅𝑛, where 𝑚 is the number of transfers
to each recipient plus one (the sender balance value), and 𝑛 the range
domain. According to the design of Bulletproofs, such 𝑚 ⋅ 𝑛 must be a
power of two. As a consequence, this limitation is reflected in the value
of 𝑚, meaning that our multi-transfer scheme cannot effectively support
transfers towards an arbitrary number of recipients; rather, the number
of recipients (plus one) is equal to the power of two. Given a scenario
in which a party wants to make an arbitrary number of transfers 𝑎, a
trivial solution could be to additionally transfer padding zero amounts
𝑝 such that ∃ 𝑡 ∈ N ∶ 𝑎 + 𝑝 = 2𝑡 − 1. This mitigation does not affect
the multi-transfer proof system. The range proof and the IPA can still
generate valid proofs since each padding amount 𝑝 is non-negative and
does not modify the sender remaining balance �̂�. When it comes to
𝛴-protocols, since the added padding values are equal to zero, their
corresponding ciphertexts also have a value of zero, thus satisfying the
verifier’s overdraft-safety equation.

ZK-proof verification time. Despite the logarithmic-sized proofs, it
turns out that the IPA subroutine significantly weighs on the whole ZK-
proof verification time. Indeed, the verifier logic of the IPA involves
a linear-time operation. Nonetheless the drawback of non-succinct
verification, our ZK-proof is still optimal to amortize costs. However,
we could significantly optimize the verification costs by following a
similar strategy of [21], where an amortized succinctness is proposed
introducing accumulators. With this method, the costly operations are
batched and performed outside the verifier logic. In particular, the
linear-time work of the verifier is deferred in a single step at the
end of the proof. At each intermediate step, instead, the verifier does
the succinct work. Applying this technique to the IPA, the verifier
asymptotically results in a logarithmic cost barring the single linear
time check. Additionally, the accumulator serves as a means of batching
multiple proofs, and the linear time check can be performed once for
an entire batch. Effectively, the cost of a non-succinct proof can be
amortized over many proofs.

Unlinkability vs. traceability. Our multi-transfer scheme does not
ide the link between sender and receiver in a transaction, i.e., the un-
inkability of addresses. Although it seems a limitation, our purpose for
rivacy is confidentiality only. This because we believe that the trace-
bility of transactions is an important property of the blockchain that
ust be preserved. Anyway, hiding the link between multiple parties of
multi-transfer is a challenging task. In that direction, the many-out-of-
any [28] primitive could potentially be integrated into our ZK-proof,

hereby forming an anonymity set within the multi-transfer scheme.

0. Conclusion and future work

ZeroMT is a new multi-transfer private payment mechanism for
T protocols. In summary, ZeroMT enriches account-based private
ayments with the following features: (i) Multi-Transfer : a single trans-
ction can make private transfers to multiple receivers; (ii) Confidential
ransactions: transactions do not reveal sender/receiver balances and
he transfer amounts; (iii) Zero-Knowledge: transaction secrets cannot
e disclosed in the verification process; (iv) Non-Interactive: single
nteraction from prover to the verifier of transaction statements; (v)
rustless: no additional trust is required from the ZK-proof or trusted
13

hird-party; (vi) Aggregation: an aggregate proof can be constructed for 𝑤
he validity of multiple transfers. ZeroMT relies on homomorphic cryp-
ographic primitives and it is suitable for account-based blockchains
nd smart contract protocols. The concept of multi-transfer can be of
nterest for applications such as multi-party off-chain protocols and
ultiple continuous payments. Benefits are also shown in terms of

calability of CT protocols. For example, in platforms such as Ethereum
hat charge gas fees, executing the Zether transfer requires 7188k gas
onsumption for a single transfer. In contrast, with ZeroMT we are
ble to execute up to 15 aggregate transfers with a gas cost of around
183k (the estimate is made with the EIP-1108 [43] and the Ethereum
ellow paper, and refers to the costs of addition and multiplication of
calar and curve points, exponentiation and so on, when the Verify
ethod is executed in a smart contract). Moreover, the costs are mainly

or generating and verifying the ZK-proof and the question arises of
ow convenient is the aggregate proof of multiple transfers. Indeed,
enerating an aggregate proof for multiple transfers (comprising 2 to
4 transfers) takes approximately 37, 58% and 54, 84% less time com-

pared to generating separate proofs for each transfer taken together.
Similarly, verifying an aggregate proof takes 37, 46% to 58, 14% less time
compared to verifying separate proofs. Moreover, the aggregate proof
size is significantly smaller, ranging from 63, 97% to 97, 77% reduction
compared to the combined size of all proofs. Future work is aimed at
optimizing the IPA subroutine of the ZK-proof, as it may significantly
reduce costs.

CRediT authorship contribution statement

Emanuele Scala: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing. Changyu Dong:
Supervision, Writing – review & editing. Flavio Corradini: Supervision.
Leonardo Mostarda: Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Proof of Theorem 5.1

The Aggregate RP has perfect completeness, special soundness and
perfect special honest verifier zero-knowledge from Theorem 2 of [13].
We now show that our 𝛴𝐴𝑔𝑔𝑅𝑃 is an argument of knowledge of the
relation (1).

Perfect completeness follows from equality 46 of Protocol 1. For
simplicity we do not consider the challenges coming from Bulletproofs
inherited in 𝜏𝑥. If 𝐴𝑡 = 𝑔−𝑘𝑏𝑎ℎ𝑘𝜏 , 𝑠𝑏𝑎 = 𝑘𝑏𝑎 + 𝑐(�̂�𝑧2 +

∑𝑛
𝑖=1 𝑎𝑖𝑧

𝑖+2) and
𝑠𝜏 = 𝑘𝜏 + 𝑐𝜏𝑥 then:

𝑔𝑐(𝑡−𝜓(𝑦,𝑧))−𝑠𝑏𝑎 ⋅ ℎ𝑠𝜏

= 𝑔−𝑘𝑏𝑎 ⋅ ℎ𝑘𝜏 ⋅ 𝑔𝑐(𝑡−𝜓(𝑦,𝑧)) ⋅ 𝑔𝑐(−�̂�𝑧
2−

∑𝑛
𝑖=1 𝑎𝑖𝑧

𝑖+2) ⋅ ℎ𝑐𝜏𝑥

= 𝐴𝑡 ⋅ (𝑔
(𝑡−𝜓(𝑦,𝑧))−�̂�𝑧2−

∑𝑛
𝑖=1 𝑎𝑖𝑧

𝑖+2
⋅ ℎ𝜏𝑥)𝑐

= 𝐴𝑡 ⋅ 𝑇
𝑐
1,2

o the verifier accepts the transcript (𝐴𝑡, 𝑐, (𝑠𝑏𝑎, 𝑠𝜏)).
For special soundness, suppose two accepting transcripts

𝐴𝑡, 𝑐, (𝑠𝑏𝑎, 𝑠𝜏)) and (𝐴𝑡, 𝑐′, (𝑠′𝑏𝑎, 𝑠
′
𝜏)) with 𝑐 ≠ 𝑐′, we show that witnesses

𝑏𝑎 and 𝑤𝜏 can be extracted from these two transcripts. Let (𝑐 − 𝑐′)−1

enote the multiplicative inverse of (𝑐 − 𝑐′) mod |Z𝑝| and define:
′ ′ −1
𝑏𝑎 = (𝑠𝑏𝑎 − 𝑠𝑏𝑎) ⋅ (𝑐 − 𝑐)

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

S

s
a

(

𝑔

𝑔

S

𝐴

𝐴

C

H

𝑠

t

C
𝑐
𝑔
𝐴

𝐴

𝐴

t

H
m

(
w
i
(
(
f
t

𝑔

𝑤𝜏 = (𝑠𝜏 − 𝑠′𝜏) ⋅ (𝑐 − 𝑐
′)−1

Since (𝐴𝑡, 𝑐, (𝑠𝑏𝑎, 𝑠𝜏)) and (𝐴𝑡, 𝑐′, (𝑠′𝑏𝑎, 𝑠
′
𝜏)) are both accepting transcripts,

it holds that:

𝑔𝑐⋅𝑡−𝑠𝑏𝑎 ⋅ ℎ𝑠𝜏 = 𝐴𝑡𝑇
𝑐
1,2

𝑔𝑐
′⋅𝑡−𝑠′𝑏𝑎 ⋅ ℎ𝑠

′
𝜏 = 𝐴𝑡𝑇

𝑐′
1,2

where 𝑡 = 𝑡 − 𝜓(𝑦, 𝑧). From the definition of 𝐴𝑡 and 𝑇1,2 we have:

𝐴𝑡 ⋅ 𝑇
𝑐
1,2 = 𝑔−𝑘𝑏𝑎ℎ𝑘𝜏 ⋅ (𝑔𝑡−�̂�⋅𝑧

2−
∑𝑛
𝑖=1 𝑎𝑖⋅𝑧

2+𝑖
ℎ𝜏𝑥)𝑐

= 𝑔𝑐⋅𝑡−𝑘𝑏𝑎−𝑐⋅(�̂�⋅𝑧
2+

∑𝑛
𝑖=1 𝑎𝑖⋅𝑧

2+𝑖)ℎ𝑘𝜏+𝑐𝜏𝑥 = 𝑔𝑐⋅𝑡−𝑠𝑏𝑎ℎ𝑠𝜏

Similarly, for the second equality:

𝐴𝑡 ⋅ 𝑇
𝑐′
1,2 = 𝑔𝑐

′⋅𝑡−𝑘𝑏𝑎−𝑐′⋅(�̂�⋅𝑧2+
∑𝑛
𝑖=1 𝑎𝑖⋅𝑧

2+𝑖)ℎ𝑘𝜏+𝑐
′𝜏𝑥 = 𝑔𝑐

′⋅𝑡−𝑠′𝑏𝑎ℎ𝑠
′
𝜏

Together, these equations imply that:
𝑔𝑐⋅𝑡−𝑠𝑏𝑎ℎ𝑠𝜏

𝑔𝑐
′⋅𝑡−𝑠′𝑏𝑎ℎ𝑠′𝜏

= 𝑔𝑡(𝑐−𝑐
′)−(𝑠𝑏𝑎−𝑠′𝑏𝑎)ℎ𝑠𝜏−𝑠

′
𝜏

= 𝑔𝑡(𝑐−𝑐
′)−(�̂�⋅𝑧2+

∑𝑛
𝑖=1 𝑎𝑖⋅𝑧

2+𝑖)(𝑐−𝑐′)ℎ𝜏𝑥(𝑐−𝑐
′)

Solving two linear equations we deduce:

�̂� ⋅ 𝑧2 +
𝑛
∑

𝑖=1
𝑎𝑖 ⋅ 𝑧

2+𝑖 = (𝑠𝑏𝑎 − 𝑠′𝑏𝑎)(𝑐 − 𝑐
′)−1 = 𝑤𝑏𝑎

𝜏𝑥 = (𝑠𝜏 − 𝑠′𝜏)(𝑐 − 𝑐
′)−1 = 𝑤𝜏 .

For perfect special honest verifier zero-knowledge, we show that
there exists a PPT simulator that can simulate verifying transcripts
without the knowledge of the witness and can produce a distribution
over transcripts identical to the distribution produced by the honest
verifier and prover. The simulator is given the public instances (𝑔, ℎ, 𝑡, 𝛿)
and uses the verifier’s randomness 𝑥, 𝑦 and 𝑧. The simulator computes
a random challenge 𝑐

$
←←←←←←←←←← Z𝑝 and random 𝑠𝑏𝑎, 𝑠𝜏

$
←←←←←←←←←← Z𝑝. The simulator

then computes 𝑇1,2
$
←←←←←←←←←← G and

𝐴𝑡 = 𝑔𝑐(𝑡−𝜓(𝑦,𝑧)) ⋅ ℎ𝑠𝜏 ⋅ (𝑇 𝑥1 ⋅ 𝑇 𝑥
2

2)−𝑐 ⋅ 𝑔−𝑠𝑏𝑎

and produces an accepting transcript (𝐴𝑡, 𝑐, (𝑠𝑏𝑎, 𝑠𝜏)). Given that 𝑐, 𝑠𝑏𝑎
and 𝑠𝜏 are uniformly random elements generated by , and so 𝐴𝑡 ∈𝑅 G
is a random group element, this means they are identically distributed
as in the honest protocol.

Appendix B. Proof of Theorem 5.2

Perfect completeness follows from the fact that if the prover follows
the protocol, the verifier always accepts. Hence, we show that the
equalities 17, 18, 19, and 20 of Protocol 2 are correct. For 17 and 18,
the protocol is complete if 𝐴𝑦 = 𝑔𝑘𝑠𝑘 and 𝑠𝑠𝑘 = 𝑘𝑠𝑘 + 𝑐𝑠𝑘 are honestly
generated by the prover, then

𝑔𝑠𝑠𝑘 = 𝑔𝑘𝑠𝑘 ⋅ 𝑔𝑐𝑠𝑘 = 𝑔𝑘𝑠𝑘 ⋅ (𝑔𝑠𝑘)𝑐 = 𝐴𝑦𝑦
𝑐

similarly, if 𝐴𝐷 = 𝑔𝑘𝑟 and 𝑠𝑟 = 𝑘𝑟 + 𝑐𝑟 then

𝑔𝑠𝑟 = 𝑔𝑘𝑟 ⋅ 𝑔𝑐𝑟 = 𝑔𝑘𝑟 ⋅ (𝑔𝑟)𝑐 = 𝐴𝐷𝐷
𝑐

So the verifier accepts the transcripts (𝐴𝑦, 𝑐, 𝑠𝑠𝑘) and (𝐴𝐷, 𝑐, 𝑠𝑟) respec-
tively.

For equality 19, the protocol is complete if 𝐴𝑏𝑎 = ((𝐶𝑅
∏𝑛
𝑖=1 𝐷

)𝑧2 ⋅
∏𝑛

𝑖=1𝐷
𝑧𝑖+2)𝑘𝑠𝑘 ⋅ 𝑔𝑘𝑏𝑎 , 𝑠𝑏𝑎 = 𝑘𝑏𝑎 + 𝑐(�̂�𝑧2 +

∑𝑛
𝑖=1 𝑎𝑖𝑧

2+𝑖) and 𝑠𝑠𝑘 = 𝑘𝑠𝑘 + 𝑐𝑠𝑘
then:

𝑔𝑠𝑏𝑎
⎡

⎢

⎢

⎣

(

𝐶𝑅
∏𝑛

𝑖=1𝐷

)𝑧2

⋅
𝑛
∏

𝑖=1
𝐷𝑧𝑖+2

⎤

⎥

⎥

⎦

𝑠𝑠𝑘

= 𝑔𝑘𝑏𝑎 ⋅
⎡

⎢

⎢

⎣

(

𝐶𝑅
∏𝑛

𝑖=1𝐷

)𝑧2

⋅
𝑛
∏

𝑖=1
𝐷𝑧𝑖+2

⎤

⎥

⎥

⎦

𝑘𝑠𝑘

⋅

[

𝑔�̂�𝑧
2
⋅

𝑛
∏

𝑔𝑎𝑖𝑧
𝑖+2

]𝑐

⋅
⎡

⎢

⎢

(

𝐶𝑅
∏𝑛 𝐷

)𝑧2

⋅
𝑛
∏

𝐷𝑧𝑖+2
⎤

⎥

⎥

𝑐⋅𝑠𝑘
14

𝑖=1
⎣

𝑖=1 𝑖=1
⎦

= 𝐴𝑏𝑎 ⋅

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝑔�̂�
(

𝐶𝑅
∏𝑛

𝑖=1𝐷

)𝑠𝑘
⎞

⎟

⎟

⎠

𝑧2

⋅

(𝑛
∏

𝑖=1
𝑔𝑎𝑖 ⋅𝐷𝑠𝑘

)𝑧𝑖+2⎤
⎥

⎥

⎥

⎦

𝑐

= 𝐴𝑏𝑎 ⋅
⎡

⎢

⎢

⎣

(

𝐶𝐿
∏𝑛

𝑖=1 𝐶𝑖

)𝑧2

⋅
𝑛
∏

𝑖=1
𝐶𝑧

𝑖+2
𝑖

⎤

⎥

⎥

⎦

𝑐

So, we conclude that the verifier accepts the transcript (𝐴𝑏𝑎, 𝑐, (𝑠𝑏𝑎, 𝑠𝑠𝑘)).
For equality 20, If 𝐴�̄� =

∏𝑛
𝑖=1(𝑦 ⋅ �̄�

−1
𝑖)𝑘𝑟 and 𝑠𝑟 = 𝑘𝑟 + 𝑐𝑟 then:

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠𝑟

=
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟 ⋅

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑐𝑟 = 𝐴�̄� ⋅

𝑛
∏

𝑖=1

(

𝑔𝑎𝑖𝑦𝑟

𝑔𝑎𝑖 �̄�𝑟𝑖

)𝑐

= 𝐴�̄� ⋅
𝑛
∏

𝑖=1

(

𝐶𝑖
�̄�𝑖

)𝑐

o, the verifier accepts the transcript (𝐴�̄�, 𝑐, 𝑠𝑟).
We now show that Protocol 2 is proof of knowledge, thus special

oundness holds for the above equalities. For equality 17, suppose two
ccepting transcripts (𝐴𝑦, 𝑐, 𝑠𝑠𝑘) and (𝐴𝑦, 𝑐′, 𝑠′𝑠𝑘) with 𝑐 ≠ 𝑐′, we show

that the witness 𝑤𝑠𝑘 can be extracted in polynomial time from these
two transcripts. Let (𝑐−𝑐′)−1 denote the multiplicative inverse of (𝑐−𝑐′)
mod |Z𝑝| and define 𝑤𝑠𝑘 = (𝑠𝑠𝑘 − 𝑠′𝑠𝑘) ⋅ (𝑐 − 𝑐

′)−1. Since (𝐴𝑦, 𝑐, 𝑠𝑠𝑘) and
𝐴𝑦, 𝑐′, 𝑠′𝑠𝑘) are both accepting transcripts, it holds that:
𝑠𝑠𝑘 = 𝐴𝑦𝑦

𝑐

𝑠′𝑠𝑘 = 𝐴𝑦𝑦
𝑐′

ay that 𝐴𝑦 = 𝑔𝑘𝑠𝑘 and 𝑦 = 𝑔𝑠𝑘

𝑦 ⋅ 𝑦
𝑐 = 𝑔𝑘𝑠𝑘 ⋅ 𝑔𝑐𝑠𝑘 = 𝑔𝑘𝑠𝑘+𝑐𝑠𝑘 = 𝑔𝑠𝑠𝑘

𝑦 ⋅ 𝑦
𝑐′ = 𝑔𝑘𝑠𝑘 ⋅ 𝑔𝑐

′𝑠𝑘 = 𝑔𝑘𝑠𝑘+𝑐
′𝑠𝑘 = 𝑔𝑠

′
𝑠𝑘

ombining together we have:
𝑔𝑠𝑠𝑘

𝑔𝑠
′
𝑠𝑘

= 𝑔𝑘𝑠𝑘+𝑐𝑠𝑘−𝑘𝑠𝑘−𝑐
′𝑠𝑘 = 𝑔𝑠𝑘(𝑐−𝑐

′) = 𝑔𝑠𝑠𝑘−𝑠
′
𝑠𝑘

ence 𝑠𝑘(𝑐 − 𝑐′) ≡ 𝑠𝑠𝑘 − 𝑠′𝑠𝑘 𝑚𝑜𝑑 |Z𝑝| implies that

𝑘 ≡ (𝑠𝑠𝑘 − 𝑠′𝑠𝑘) ⋅ (𝑐 − 𝑐
′)−1 𝑚𝑜𝑑 |Z𝑝| = 𝑤𝑠𝑘

hat is 𝑔𝑠𝑘 = 𝑔𝑤𝑠𝑘 meaning that 𝑤𝑠𝑘 is a witness.
With a similar procedure we can prove the same for equality 18.

onsidering two accepting transcripts (𝐴𝐷, 𝑐, 𝑠𝑟) and (𝐴𝐷, 𝑐′, 𝑠′𝑟) with
≠ 𝑐′, we want to extract a witness 𝑤𝑟 = (𝑠𝑟−𝑠′𝑟) ⋅(𝑐−𝑐

′)−1. It holds that
𝑠𝑟 = 𝐴𝐷𝐷𝑐 and 𝑔𝑠′𝑟 = 𝐴𝐷𝐷𝑐′ both are accepted by the verifier. Since
𝐷 = 𝑔𝑘𝑟 and 𝐷 = 𝑔𝑟 we have

𝐷 ⋅𝐷𝑐 = 𝑔𝑘𝑟 ⋅ 𝑔𝑐𝑟 = 𝑔𝑘𝑟+𝑐𝑟 = 𝑔𝑠𝑟

𝐷 ⋅𝐷𝑐′ = 𝑔𝑘𝑟 ⋅ 𝑔𝑐
′𝑟 = 𝑔𝑘𝑟+𝑐

′𝑟 = 𝑔𝑠
′
𝑟

hat together imply
𝑔𝑠𝑟

𝑔𝑠′𝑟
= 𝑔𝑟(𝑐−𝑐

′) = 𝑔𝑠𝑟−𝑠
′
𝑟

ence we can conclude that 𝑟 ≡ (𝑠𝑟 − 𝑠′𝑟) ⋅ (𝑐 − 𝑐′)−1 𝑚𝑜𝑑 |Z𝑝| = 𝑤𝑟,
eaning that 𝑤𝑟 is a witness.

Special soundness for equality 19 holds the same way. Suppose
𝐴𝑏𝑎, 𝑐, (𝑠𝑏𝑎, 𝑠𝑠𝑘)) and (𝐴𝑏𝑎, 𝑐′, (𝑠′𝑏𝑎, 𝑠

′
𝑠𝑘)) both are accepting transcripts

ith 𝑐 ≠ 𝑐′. We show that witnesses 𝑤𝑏𝑎 and 𝑤𝑠𝑘 can be extracted
n polynomial time. Let (𝑐 − 𝑐′)−1 be the multiplicative inverse of
𝑐 − 𝑐′) 𝑚𝑜𝑑 |Z𝑝| and define: 𝑤𝑏𝑎 = (𝑠𝑏𝑎 − 𝑠′𝑏𝑎)(𝑐 − 𝑐′)−1 and 𝑤𝑠𝑘 =
𝑠𝑠𝑘 − 𝑠′𝑠𝑘)(𝑐 − 𝑐′)−1. For simplicity, here we rename the 𝑧2 terms as
ollows: 𝐶𝑅

∏𝑛
𝑖=1 𝐷

= 𝐶𝑅𝑛 and 𝐶𝐿
∏𝑛
𝑖=1 𝐶𝑖

= 𝐶𝐿𝑛. Considering the accepting
ranscripts it holds that:

𝑠𝑏𝑎

(

𝐶𝑧
2

𝑅𝑛 ⋅
𝑛
∏

𝐷𝑧2+𝑖
)𝑠𝑠𝑘

= 𝐴𝑏𝑎

(

𝐶𝑧
2

𝐿𝑛 ⋅
𝑛
∏

𝐶𝑧
2+𝑖
𝑖

)𝑐
𝑖=1 𝑖=1

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

𝑏

𝐴

S

𝐴

t

H

𝑟

m

k
i
𝑧
t
p
c

𝐴

𝐴

𝐴

𝐴

a

a
t
i

A

n
h
e
e

𝑃

w
⟨

a

v
H
l
o
i
a
c

f
T

𝑔𝑠
′
𝑏𝑎

(

𝐶𝑧
2

𝑅𝑛 ⋅
𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑠′𝑠𝑘
= 𝐴𝑏𝑎

(

𝐶𝑧
2

𝐿𝑛 ⋅
𝑛
∏

𝑖=1
𝐶𝑧

2+𝑖
𝑖

)𝑐′

Given that 𝐴𝑏𝑎 = (𝐶𝑧2𝑅𝑛 ⋅
∏𝑛

𝑖=1𝐷
𝑧2+𝑖)𝑘𝑠𝑘 ⋅ 𝑔𝑘𝑏𝑎 , 𝐶𝐿𝑛 = 𝑔�̂�𝐶𝑠𝑘𝑅𝑛, 𝑦 = 𝑔𝑠𝑘 and

𝐷 = 𝑔𝑟 we have:

𝐴𝑏𝑎

(

𝐶𝑧2
𝐿𝑛 ⋅

𝑛
∏

𝑖=1
𝐶𝑧2+𝑖
𝑖

)𝑐

=

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑘𝑠𝑘

⋅ 𝑔𝑘𝑏𝑎 ⋅

(

𝐶𝑧2
𝐿𝑛 ⋅

𝑛
∏

𝑖=1
𝐶𝑧2+𝑖
𝑖

)𝑐

=

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑘𝑠𝑘

⋅ 𝑔𝑘𝑏𝑎 ⋅

(

𝑔�̂�𝑧2 ⋅ 𝐶𝑠𝑘⋅𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝑔𝑎𝑖𝑧2+𝑖 ⋅

𝑛
∏

𝑖=1
𝐷𝑠𝑘⋅𝑧2+𝑖

)𝑐

=

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑘𝑠𝑘

⋅ 𝑔𝑘𝑏𝑎 ⋅

(

𝑔�̂�𝑧2 ⋅
𝑛

∏

𝑖=1
𝑔𝑎𝑖𝑧2+𝑖

)𝑐

⋅

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑠𝑘⋅𝑐

=

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑘𝑠𝑘+𝑐𝑠𝑘

⋅ 𝑔𝑘𝑏𝑎+𝑐(�̂�𝑧2+
∑𝑛
𝑖=1 𝑎𝑖𝑧

2+𝑖) =

(

𝐶𝑧2
𝑅𝑛 ⋅

𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑠𝑠𝑘

⋅ 𝑔𝑠𝑏𝑎

With a similar procedure, we can obtain:

𝐴𝑏𝑎

(

𝐶𝑧
2

𝐿𝑛 ⋅
𝑛
∏

𝑖=1
𝐶𝑧

2+𝑖
𝑖

)𝑐′

=

(

𝐶𝑧
2

𝑅𝑛 ⋅
𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)𝑠′𝑠𝑘
⋅ 𝑔𝑠

′
𝑏𝑎

These equalities together imply:
(

𝐶𝑧2𝑅𝑛 ⋅
∏𝑛

𝑖=1𝐷
𝑧2+𝑖

)𝑠𝑠𝑘
⋅ 𝑔𝑠𝑏𝑎

(

𝐶𝑧2𝑅𝑛 ⋅
∏𝑛

𝑖=1𝐷𝑧2+𝑖
)𝑠′𝑠𝑘 ⋅ 𝑔𝑠

′
𝑏𝑎

=

(

𝐶𝑧
2

𝑅𝑛 ⋅
𝑛
∏

𝑖=1
𝐷𝑧2+𝑖

)(𝑐−𝑐′)⋅𝑠𝑘

⋅ 𝑔(𝑐−𝑐
′)⋅(�̂�𝑧2+

∑𝑛
𝑖=1 𝑎𝑖𝑧

2+𝑖)

Hence, we deduce that:

𝑠𝑘 ≡ (𝑠𝑠𝑘 − 𝑠′𝑠𝑘)(𝑐 − 𝑐
′)−1 𝑚𝑜𝑑 |Z𝑝| = 𝑤𝑠𝑘

̂𝑧2 +
𝑛
∑

𝑖=1
𝑎𝑖𝑧

2+𝑖 ≡ (𝑠𝑏𝑎 − 𝑠′𝑏𝑎)(𝑐 − 𝑐
′)−1 𝑚𝑜𝑑 |Z𝑝| = 𝑤𝑏𝑎

Finally, special soundness is given for equality 20. Suppose two
accepting transcripts (𝐴�̄�, 𝑐, 𝑠𝑟) and (𝐴�̄�, 𝑐′, 𝑠′𝑟) with 𝑐 ≠ 𝑐′, we build an
extractor for witness 𝑤𝑟 = (𝑠𝑟 − 𝑠′𝑟) ⋅ (𝑐 − 𝑐

′)−1. From the two accepted
transcripts we have:
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠𝑟 = 𝐴�̄� ⋅ (

𝑛
∏

𝑖=1
𝐶𝑖∕�̄�𝑖)𝑐

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠

′
𝑟 = 𝐴�̄� ⋅ (

𝑛
∏

𝑖=1
𝐶𝑖∕�̄�𝑖)𝑐

′

Given 𝐴�̄� =
∏𝑛

𝑖=1(𝑦 ⋅ �̄�
−1
𝑖)𝑘𝑟 and ∏𝑛

𝑖=1
𝐶𝑖
�̄�𝑖

=
∏𝑛

𝑖=1
𝑔𝑎𝑖 𝑦𝑟

𝑔𝑎𝑖 �̄�𝑟𝑖
we have:

�̄� ⋅ (
𝑛
∏

𝑖=1
𝐶𝑖∕�̄�𝑖)𝑐 =

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟 ⋅

𝑛
∏

𝑖=1
(𝑦𝑟 ⋅ �̄�−𝑟𝑖)𝑐 =

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟 ⋅

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑐𝑟

=
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟+𝑐𝑟 =

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠𝑟

imilarly, for the second equality we have:

�̄� ⋅ (
𝑛
∏

𝐶𝑖∕�̄�𝑖)𝑐
′
=

𝑛
∏

(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟+𝑐
′𝑟 =

𝑛
∏

(𝑦 ⋅ �̄�−1𝑖)𝑠
′
𝑟

15

𝑖=1 𝑖=1 𝑖=1
e

hat together imply:
∏𝑛

𝑖=1(𝑦 ⋅ �̄�
−1
𝑖)𝑠𝑟

∏𝑛
𝑖=1(𝑦 ⋅ �̄�

−1
𝑖)𝑠′𝑟

=

𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑘𝑟+𝑐𝑟−𝑘𝑟−𝑐

′𝑟 =
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)(𝑐−𝑐

′)𝑟 =
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠𝑟−𝑠

′
𝑟

ence, (𝑐 − 𝑐′)𝑟 ≡ 𝑠𝑟 − 𝑠′𝑟 𝑚𝑜𝑑 |Z𝑝| implies that:

≡ (𝑠𝑟 − 𝑠′𝑟)(𝑐 − 𝑐
′)−1 𝑚𝑜𝑑 |Z𝑝| = 𝑤𝑟

eaning 𝑤𝑟 is a witness.
We now show that Protocol 2 is perfect special honest verifier zero-

nowledge. There exists a PPT simulator which is given the public
nstances (𝑦, �̄�, 𝐶𝐿, 𝐶𝑅,𝐂, �̄�, 𝐷, 𝑔) and the verifier’s internal randomness
. Without the knowledge of the witness, the simulator produces a valid
ranscript with an identical, or indistinguishable, distribution to that
roduced in the honest protocol. Hence, the simulator computes the
hallenge 𝑐

$
←←←←←←←←←← Z𝑝 and 𝑠𝑠𝑘, 𝑠𝑟, 𝑠𝑏𝑎

$
←←←←←←←←←← Z𝑝. For simplicity, we substitute

𝐶𝑅
∏𝑛
𝑖=1 𝐷

= 𝐶𝑅𝑛 and 𝐶𝐿
∏𝑛
𝑖=1 𝐶𝑖

= 𝐶𝐿𝑛, then the simulator computes:

𝑦 = 𝑔𝑠𝑠𝑘 ⋅ 𝑦−𝑐 ∈𝑅 G

𝐷 = 𝑔𝑠𝑟 ⋅𝐷−𝑐 ∈𝑅 G

𝑏𝑎 = 𝑔𝑠𝑏𝑎 ⋅ (𝐶𝑧
2

𝐿𝑛 ⋅
𝑛
∏

𝑖=1
𝐶𝑧

𝑖+2
𝑖)−𝑐 ⋅ (𝐶𝑧

2

𝑅𝑛 ⋅
𝑛
∏

𝑖=1
𝐷𝑧𝑖+2)𝑠𝑠𝑘 ∈𝑅 G

�̄� =
𝑛
∏

𝑖=1
(𝑦 ⋅ �̄�−1𝑖)𝑠𝑟 ⋅

𝑛
∏

𝑖=1
(𝐶𝑖∕�̄�𝑖)−𝑐 ∈𝑅 G

nd sends to the verifier 𝐴𝑦, 𝐴𝐷, 𝐴𝑏𝑎, 𝐴�̄�, 𝑐, 𝑠𝑠𝑘, 𝑠𝑟, 𝑠𝑏𝑎.
Given that 𝑔,𝐷, 𝑦 and �̄� are random group elements and that 𝑐, 𝑠𝑠𝑘, 𝑠𝑟

nd 𝑠𝑏𝑎 are uniformly random challenges generated by , this implies
hat each 𝐴 is a random group element ∈𝑅 G. This means they are
dentically distributed as in the honest protocol.

ppendix C. Overdraft safety and privacy

In the light of Theorems 5.1 and 5.2 we can say that from the sound-
ess of our ZK-proof in interactive form, the Multi-Transfer scheme
as overdraft-safety security. In particular, from the existence of the
xtractor , the advantage of every adversary in the following
xperiment is negligible:

𝑟

⎡

⎢

⎢

⎢

⎣

𝜎 ← 𝚂𝚎𝚝𝚞𝚙(1𝜆), (𝑥, 𝑡𝑟, 𝑡𝑟′) ← (𝜎),

𝑤← (𝜎, 𝑡𝑟, 𝑡𝑟′) ∶

⟨(𝜎, 𝑥,𝑤),(𝜎, 𝑥)⟩ = 1, (𝑥,𝑤) ∉ .

⎤

⎥

⎥

⎥

⎦

≤ 𝚗𝚎𝚐𝚕(𝜆)

here 𝑡𝑟, 𝑡𝑟′ are two accepting transcripts with distinct challenges,
(.),(.)⟩ is an interactive proof between adversary and verifier
nd negl is a negligible function in the security parameter 𝜆.

We could also continue further reductions, until we define an ad-
ersary’s advantage on all the underlying assumptions (e.g., DLOG).
owever, our modifications are minimal, and such a strategy would

ead to a complex proof similar to [28]. Moreover, in our definition
f soundness we use the ‘‘rewind technique’’ for 3-round protocols. As
n [13], a more general multi-round protocol technique can be adopted,
nd subsequently conducted via the ‘‘forking lemma’’. However, in our
ase it is not strictly necessary, since we only integrate 𝛴-protocols.

Finally, still in the light of Theorems 5.1 and 5.2 we can say that
rom the zero-knowledge of our ZK-proof in interactive form, the Multi-
ransfer scheme has the property of privacy. In particular, from the

xistence of the simulator , the advantage of every adversary in

Journal of Information Security and Applications 83 (2024) 103794E. Scala et al.

W

the following experiment is defined:

𝑃𝑟

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎 ← 𝚂𝚎𝚝𝚞𝚙(1𝜆), (𝑥,𝑤, 𝜇) ← (𝜎),

𝑡𝑟0 ← ⟨(𝜎, 𝑥,𝑤),(𝜎, 𝑥)⟩, 𝑡𝑟1 ← (𝜎, 𝑥, 𝜇),

𝑏
$
←←←←←←←←←← {0, 1}; 𝑏′ ∈ {0, 1} ← (𝑡𝑟𝑏) ∶

𝑏′ = 𝑏, (𝑥,𝑤) ∈

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1
2
+ 𝚗𝚎𝚐𝚕(𝜆)

ith, 𝜇 the verifier’s internal randomness, ⟨(.),(.)⟩ the real transcript
of the honest interactive proof between prover and verifier and
negl a negligible function in the security parameter 𝜆.

References

[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot; 2019.

[2] Buterin V, et al. A next-generation smart contract and decentralized application
platform.

[3] Chan W, Olmsted A. Ethereum transaction graph analysis. In: 2017 12th
international conference for internet technology and secured transactions. ICITST,
IEEE; 2017, p. 498–500.

[4] Fleder M, Kester MS, Pillai S. Bitcoin transaction graph analysis. 2015, arXiv
preprint arXiv:1502.01657.

[5] Ron D, Shamir A. Quantitative analysis of the full bitcoin transaction graph. In:
International conference on financial cryptography and data security. Springer;
2013, p. 6–24.

[6] Androulaki E, Karame GO, Roeschlin M, Scherer T, Capkun S. Evaluating
user privacy in bitcoin. In: Financial cryptography and data security: 17th
international conference, FC 2013, okinawa, Japan, April 1-5, 2013, revised
selected papers 17. Springer; 2013, p. 34–51.

[7] Poelstra A. Mimblewimble. 2016.
[8] Sasson EB, Chiesa A, Garman C, Green M, Miers I, Tromer E, Virza M. Zerocash:

Decentralized anonymous payments from bitcoin. In: 2014 IEEE symposium on
security and privacy. IEEE; 2014, p. 459–74.

[9] Jivanyan A. Lelantus: Towards confidentiality and anonymity of blockchain trans-
actions from standard assumptions. IACR Cryptol ePrint Arch 2019;2019:373.

[10] Alonso KM, et al. Zero to monero. 2020.
[11] Fauzi P, Meiklejohn S, Mercer R, Orlandi C. Quisquis: A new design for

anonymous cryptocurrencies. In: International conference on the theory and
application of cryptology and information security. Springer; 2019, p. 649–78.

[12] Bünz B, Agrawal S, Zamani M, Boneh D. Zether: Towards privacy in a smart
contract world. In: International conference on financial cryptography and data
security. Springer; 2020, p. 423–43.

[13] Bünz B, Bootle J, Boneh D, Poelstra A, Wuille P, Maxwell G. Bulletproofs: Short
proofs for confidential transactions and more. In: 2018 IEEE symposium on
security and privacy. SP, IEEE; 2018, p. 315–34.

[14] Hao F. Schnorr non-interactive zero-knowledge proof. Technical report, 2017.
[15] Guan Z, Wan Z, Yang Y, Zhou Y, Huang B. Blockmaze: An efficient

privacy-preserving account-model blockchain based on zk-SNARKs. IEEE Trans
Dependable Secure Comput 2020.

[16] Rondelet A, Zajac M. Zeth: On integrating zerocash on ethereum. 2019, arXiv
preprint arXiv:1904.00905.

[17] Blum M, Feldman P, Micali S. Non-interactive zero-knowledge and its applica-
tions. In: Providing sound foundations for cryptography: on the work of shafi
goldwasser and silvio micali. 2019, p. 329–49.

[18] Ben-Sasson E, Chiesa A, Green M, Tromer E, Virza M. Secure sampling of public
parameters for succinct zero knowledge proofs. In: 2015 IEEE symposium on
security and privacy. IEEE; 2015, p. 287–304.
16
[19] Groth J. On the size of pairing-based non-interactive arguments. In: Annual inter-
national conference on the theory and applications of cryptographic techniques.
Springer; 2016, p. 305–26.

[20] Bootle J, Cerulli A, Chaidos P, Groth J, Petit C. Efficient zero-knowledge argu-
ments for arithmetic circuits in the discrete log setting. In: Annual international
conference on the theory and applications of cryptographic techniques. Springer;
2016, p. 327–57.

[21] Bowe S, Grigg J, Hopwood D. Recursive proof composition without a trusted
setup. Cryptol ePrint Arch 2019.

[22] Bünz B, Chiesa A, Mishra P, Spooner N. Proof-carrying data from accumulation
schemes. Cryptol ePrint Arch 2020.

[23] Xiong AL, Chen B, Zhang Z, Bünz B, Fisch B, Krell F, Camacho P. VERI-ZEXE:
Decentralized private computation with universal setup. Cryptol ePrint Arch
2022.

[24] Daza V, Ràfols C, Zacharakis A. Updateable inner product argument with
logarithmic verifier and applications. In: IACR international conference on
public-key cryptography. Springer; 2020, p. 527–57.

[25] Bünz B, Maller M, Mishra P, Tyagi N, Vesely P. Proofs for inner pairing products
and applications. In: International conference on the theory and application of
cryptology and information security. Springer; 2021, p. 65–97.

[26] Lee J. Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In: Theory of cryptography conference. Springer; 2021,
p. 1–34.

[27] Scala E, Mostarda L. Range proofs with constant size and trustless setup. In:
International conference on advanced information networking and applications.
Springer; 2023, p. 301–10.

[28] Diamond BE. Many-out-of-many proofs and applications to anonymous zether.
In: 2021 IEEE symposium on security and privacy. SP, IEEE; 2021, p. 1800–17.

[29] Corradini F, Mostarda L, Scala E. ZeroMT: Multi-transfer protocol for en-
abling privacy in off-chain payments. In: International conference on advanced
information networking and applications. Springer; 2022, p. 611–23.

[30] arkworks-rs. arkworks.
[31] Scala E, Dong C, Corradini F, Mostarda L. Zero-knowledge multi-transfer based on

range proofs and homomorphic encryption. In: Advanced information networking
and applications: proceedings of the 37th international conference on advanced
information networking and applications (AINA-2023), volume 2. Springer; 2023,
p. 461–72.

[32] Katz J, Lindell Y. Introduction to modern cryptography. CRC Press; 2020.
[33] Thaler J, et al. Proofs, arguments, and zero-knowledge. Found Trends Priv Secur

2022;4(2–4):117–660.
[34] Fiat A, Shamir A. How to prove yourself: Practical solutions to identification

and signature problems. In: Conference on the theory and application of
cryptographic techniques. Springer; 1986, p. 186–94.

[35] Abdalla M, An JH, Bellare M, Namprempre C. From identification to signa-
tures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In: International conference on the theory and applications of
cryptographic techniques. Springer; 2002, p. 418–33.

[36] Attema T, Fehr S, Klooß M. Fiat-shamir transformation of multi-round interactive
proofs. In: Theory of cryptography: 20th international conference, TCC 2022,
chicago, IL, USA, November 7–10, 2022, proceedings, part i. Springer; 2022, p.
113–42.

[37] Raikwar M, Gligoroski D. DoS attacks on blockchain ecosystem. In: European
conference on parallel processing. Springer; 2021, p. 230–42.

[38] Noether S, Mackenzie A, et al. Ring confidential transactions. Ledger
2016;1:1–18.

[39] EmanueleSc. ZeroMT.
[40] zkcrypto. Merlin: composable proof transcripts for public-coin arguments of

knowledge.
[41] Strobe protocol framework.
[42] Boo E, Kim J, Ko J. LiteZKP: Lightening zero-knowledge proof-based blockchains

for IoT and edge platforms. IEEE Syst J 2021;16(1):112–23.
[43] Cardozo AS, Williamson Z. Eip-1108: Reduce alt bn128 precompile gas costs.

Ethereum Improv Propos 2018;(1108).

http://refhub.elsevier.com/S2214-2126(24)00097-8/sb1
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb1
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb1
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb3
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb3
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb3
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb3
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb3
http://arxiv.org/abs/1502.01657
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb5
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb5
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb5
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb5
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb5
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb6
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb7
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb8
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb8
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb8
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb8
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb8
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb9
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb9
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb9
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb10
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb11
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb11
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb11
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb11
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb11
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb12
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb12
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb12
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb12
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb12
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb13
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb13
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb13
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb13
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb13
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb14
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb15
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb15
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb15
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb15
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb15
http://arxiv.org/abs/1904.00905
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb17
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb17
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb17
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb17
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb17
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb18
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb18
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb18
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb18
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb18
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb19
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb19
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb19
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb19
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb19
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb20
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb21
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb21
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb21
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb22
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb22
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb22
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb23
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb23
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb23
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb23
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb23
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb24
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb24
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb24
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb24
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb24
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb25
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb25
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb25
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb25
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb25
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb26
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb26
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb26
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb26
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb26
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb27
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb27
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb27
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb27
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb27
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb28
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb28
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb28
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb29
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb29
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb29
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb29
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb29
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb31
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb32
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb33
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb33
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb33
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb34
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb34
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb34
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb34
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb34
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb35
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb36
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb37
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb37
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb37
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb38
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb38
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb38
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb42
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb42
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb42
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb43
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb43
http://refhub.elsevier.com/S2214-2126(24)00097-8/sb43

	ZeroMT: Towards Multi-Transfer transactions with privacy for account-based blockchain
	Introduction
	Limitations derived from ZK-proofs of CT protocols
	Limitations and security requirements of CT protocols
	New directions of CT protocols: multi-transfer transactions
	Our contribution
	Organization

	Preliminaries
	ElGamal homomorphic encryption
	Zero-knowledge Proofs

	Background on Zether
	ZeroMT: Multi-Transfer Payment Mechanism
	Differences between ZeroMT and Zether
	Multi-Transfer Zero-Knowledge Relation
	Multi-Transfer scheme
	Security requirements
	Further attacks

	Multi-transfer Zero-knowledge Proof System
	Bulletproofs review
	Integrating aggregate RP in our proof
	Σ-protocol for multiple transfers

	Related Work and Comparison
	Implementation and Evaluation
	ZeroMT applications
	Limitations and discussions
	Conclusion and Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Proof of Theorem 5.1
	Appendix B. Proof of Theorem 5.2
	Appendix C. Overdraft safety and Privacy
	References

