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Abstract

Differentially Private Stochastic Gradient Descent (DP‐
SGD) is a prime method for training machine learning

models with rigorous privacy guarantees. Since its birth,

DP‐SGD has gained popularity and has been widely

adopted in both academic and industrial research. One

well‐known challenge when using DP‐SGD is how to

improve utility while maintaining privacy. To this end,

recently we have seen several proposals that clip the

gradients with adaptive thresholds rather than a fixed

one. Although each proposal comes with some theoreti-

cal justification, the theories often rely on strong

assumptions and are not compatible with each other. It

is hard to know whether they are good in practice and

how good they are. In this paper, we investigate adaptive

clipping in DP‐SGD from an empirical perspective. With

extensive experiments, we were able to gain some fresh

insights and proposed two new adaptive clipping

strategies based on them. We cross‐compared the existing

methods and our new strategies experimentally. Results

showed that our strategies did provide a substantial

improvement in model accuracy, and outperformed the

state‐of‐the‐art adaptive clipping methods consistently.
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1 | INTRODUCTION

Neural networks have been widely applied in various domains, such as image classification,1,2

natural language processing,3–5 speech recognition,6–9 and recommendation systems.10–12

However, recent researches13–16 have shown that neural network models may leak or
memorize their training data, which raises privacy concerns when training with sensitive data.
In addition, the leakage of sensitive information such as model gradients caused by malicious
adversarial attacks17–19 on neural networks is also worrying. Differential privacy20 has become
the de facto standard for protecting an individual's privacy in machine learning, and it has been
widely used in various scenarios.21,22 When the neural network model satisfies the differential
privacy in the training process, it can ensure that the model will not overdisclose any sensitive
information. Following the seminal paper,23 there has been significant work on the
Differentially Private Stochastic Gradient Descent (DP‐SGD), which can be used to train
privacy‐preserving neural networks.

DP‐SGD can provide effective protection for sensitive data, but at a cost. The accuracy of
differentially private machine learning models is always lower than that of nonprivate learning.
The loss of utility seems inevitable, given the construction of DP‐SGD. At a high level, DP‐SGD
extends SGD with gradient clipping and Gaussian perturbation. When given a minbatch, DP‐
SGD first calculates the per‐sample gradient, g x( )i , and then clips the ℓ2‐norm of the g x( )i
through formula ∕ ∕ g x g x C( ) max(1, ( ) )i i 2 (Line 6 in Abadi et al.,23 Algorithm 1). We can see
that the norm will be large (proportional to the number of model parameters), especially for
some complex neural networks with multiple layers, clipping will bring a great influence. The
“smaller” clipped gradients are easily overwhelmed by the added noise, which leads to the
decrease of model utility.

In this paper, we report interesting insights gained empirically, regarding adaptive gradient
clipping in DP‐SGD. We started from DP‐SGD with a constant clipping threshold, to verify the
folklore (but has never been proven theoretically or empirically) that a constant clipping
threshold is not a good choice. Then we developed a greedy algorithm that searches for the
optimal clipping thresholds in each training epoch. The clipping thresholds found by the greedy
algorithm are compared with those found/calculated by existing adaptive clipping methods.
The comparison highlights some limitations of existing methods, and also provides intuitions
for better designs. We then proposed two simple strategies, utilizing the greedy algorithm and
transferability, to adaptively adjust clipping thresholds. We conducted extensive experiments,
and the results show that our strategies achieved the best performance consistently, despite
their simplicity. The main contributions of this paper are summarized as follows:

• We report interesting insights gained empirically, regarding adaptive gradient clipping in
DP‐SGD. And verify the folklore that a constant gradient clipping threshold is not a good
choice, which will affect the model convergence and reduce the model utility.

• We developed a greedy algorithm to find the optimal clipping threshold for each epoch, and
compared the gradient clipping threshold found by it with the thresholds found by other
existing adaptive methods, pointing out some limitations of these methods.

• We proposed two methods for adaptively selecting gradient clipping thresholds for DP‐SGD:
Transfer and Decay. The results show that our strategies achieved the best performance
consistently.

• We conducted extensive experiments on a variety of data sets, in particular we conduct
experiments on the Imagenet data set, which to our knowledge is the first to do so, previous
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similar work has only been done on small data sets. We also experiment and compare various
other adaptive clipping methods, and draw some conclusions to help understand adaptive
gradient clipping in DP‐SGD.

The rest of this paper is structured as follows. In Section 2, we summarize the existing
methods for improving the utility of DP‐SGD models. In Section 3, we give some definitions
and overview. In Section 4, we analyze some problems in DP‐SGD clipping through
experiments and introduce the framework of our propose methods. In Section 5, we describe
the experimental setup and results. Finally, we conclude in Section 6.

2 | RELATED WORK

Abadi et al.23 first proposed DP‐SGD, which has become a de facto training method for
differentially private machine learning models. However, as pointed out by many papers,24–28 it
is difficult to balance the trade‐off between privacy and utility when using DP‐SGD. Recently,
Papernot et al.29 showed that using bounded activation functions (the tempered sigmoids) can
lead to better utility than using unbounded ones in DP‐SGD training. They use this method to
achieve the best performance among the fixed clipping threshold schemes. This change is on
the networks rather than the DP‐SGD algorithm. There are two other types of ways to improve
the utility of DP‐SGD, as described below.

2.1 | Adaptive clipping in DP‐SGD

A major algorithmic approach to improving utility when using DP‐SGD is by setting the clipping
threshold adaptively during the training process. The earliest method was proposed by van der
Veen et al.,30 which sets the threshold based on the differentially private mean ℓ2‐norm of the
previous batch. However, it has been shown that this method does not perform well, and the
additional privacy budget for DP‐mean calculation could have a negative impact on utility. Another

early work in this field is Yu et al.31 They use a linear decay function C =t
C

min(2, 1 + )
t

T

to set the

threshold Ct at the tth training round (T is the total round). The decay function is independent of
the training data, thus does not consume any additional privacy budget. AdaClip32 is a per‐
coordinate adaptive clipping method. It does not change the ℓ2 clipping threshold, but adaptively
scales the gradient coordinate‐wisely. This effectively changes the per coordinate threshold. More
recently, Andrew et al.33 proposed a new method for federated learning, which can also be applied
to nonfederated training. The method sets threshold by tracking a specified quantile of the gradient
norm distribution. The quantile tracking is differentially private, but only assumes a small privacy
budget. Another recent work is Du et al.34 They use a near‐linear decay function C ρ= ( )t c

− t
T to set

the threshold. In addition, they also adjust the noise scaler adaptively.

2.2 | Reduce gradient dimension

Another approach for improving the utility when using DP‐SGD is by reducing the
dimensionality of gradients. The observation is that the intensity of the added noise scales
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linearly with the gradients dimension. Hence the gradients will be overwhelmed by the added
noise if the dimensionality is large. Gondara et al.35 reduce the dimensionality of the gradient
by looking for a subnetwork, based on the lottery ticket hypothesis,36 and then use DP‐SGD to
train the subnetwork. Zhou et al.37 proposed Projected DP‐SGD that performs noise reduction
by projecting the noisy gradients to a low‐dimensional subspace, which is given by the top
gradient eigenspace on a small public data set. Yu et al.38 extend the work of Zhou et al.37 They
proposed a Gradient Embedding Perturbation algorithm to reduce the gradient dimension.
Tramer and Boneh39 used a public function (ScatterNet) for feature extraction, so that the
model trained with DP‐SGD using the features can be simplified and much smaller.
These approaches are quite different from adaptive clipping, so we do not compare with them
in the paper. We should mention that the adaptive threshold approach can actually be applied
in training the dimension‐reduced models produced by some of those methods of Gondara
et al.35 and Tramer and Boneh.39

3 | PRELIMINARIES

3.1 | Differential privacy

Differential privacy20 provides a formal privacy definition, with the intuition that a randomized
algorithm behaves similarly on “similar” input data sets.

Definition 1. A randomized mechanism   : n d satisfies ( δϵ, )‐differential
privacy if for any two data sets   ∈, ′ n differing by a single element and for any
set of possible output   Range( ):

     ∈ ∈ e δPr[ ( ) ] Pr[ ( ′) ] + .ϵ (1)

In the above, ϵ is the privacy budget, a parameter that controls the trade‐off between the
utility and privacy protection of the differential privacy algorithm. Smaller ϵ usually
means better privacy but also worse utility. The additive term δ, is a small probability that
the output distributions differ more than the ϵ bound, and the value of δ is typically
chosen to be smaller than 1/| |.

Definition 2. Given a query  f : n d, the global sensitivity Δf is defined as

 
 

f fΔ = max | ( ) − ( ′)|.f
, ′ (2)

The global sensitivity measures the maximum possible change in f ( ) when one record
in the data set changes.

Theorem 1. For a query function  f : n d with sensitivity Δf , the Gaussian
Mechanism that adds noise generated from the Gaussian distribution  σ(0, )2 to the

output of f satisfies ( δϵ, )‐differential privacy, where ∈δϵ, (0, 1) and σ ∕ δ2 ln(1.25 )Δ

ϵ

f .
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3.2 | Gradient clipping in DP‐SGD

DP‐SGD23 is a useful optimization technique for learning a model f under differential privacy
constraints, the detailed procedure can be found in Appendix A. DP‐SGD randomly draws a
mini‐batch of training examples, computes the gradients, clip them, then applies the Gaussian
mechanism to the gradients. To bound the ℓ2‐sensitivity, a fixed‐threshold  is used to clip the
per‐example gradient. More formally, given the gradient g on an example and a threshold  ,
gradient clipping does the following:






  



g g

g
clip( ) = min 1, .

2
(3)

On the basis of the clipped gradients, DP‐SGD crafts a randomized gradient g̃ through
computing the average over the clipped gradients and adding noise whose scale is defined by 
and σε, where σε is noise scaler to satisfy ( δϵ, )‐DP.

  
∈







g

B
g σ˜ =

1
clip( ) + (0, ( ) ) .

i B
i ε

[ ]

2 (4)

However, the clipping operation can create a substantial bias in the update direction,40

which will prevent the model from converging in the worst case. Therefore, the selection
of clipping threshold is particularly important, as it determines the scale of gradient
clipping and Gaussian noise addition. Song et al.41 showed that if the clipping norm is set
smaller than the optimal, even by a constant factor, the excess empirical risk for convex
empirical risk minimization can increase from  ∕n(1 ) to Ω(1) in DP‐SGD, where n is the
number of data samples.

3.3 | Greedy algorithm

The greedy algorithm is a mathematical process that looks for simple, easy‐to‐implement
solutions to complex, multistep problems by deciding which next step will provide the most
obvious benefit. It builds up a solution piece by piece, always choosing the next piece that offers
the most obvious and immediate benefit. Therefore, the problems where choosing locally
optimal also leads to global solution are the best fit for Greedy. There are many works42–44 that
use greedy algorithm to optimize the problem. In this paper, we also develop a greedy
algorithm to iteratively find the optimal clipping threshold under each epoch in DP‐SGD
training. Our problem is expressed as

f C CGreedy( , ) optimal .t t−1 (5)

In the tth epoch of training, we iterate the gradient clipping threshold of C until model ft−1
achieves the best performance on a certain C. Then this gradient clipping threshold C is
optimal under the current epoch.
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4 | ADAPTIVE CLIPPING THRESHOLD

4.1 | DP‐SGD with constant clipping threshold

In the original paper and most implementations, the DP‐SGD algorithm uses a fixed clipping
threshold throughout the training process. Although intuitively an adaptive threshold is better than a
fixed one, there is no convincing analysis or evidence so far to support that. In a nonprivate setting,
the gradient norm almost always decreases in the number of training epochs. However, in DP‐SGD
the trend of gradient norm is less clear because of the clipping operation and the noises added. Hence
it is hard to know what is the impact of using a fixed clipping threshold on training, especially in later
epochs. To gain the intuition, we measured the ℓ2 norm of the per‐sample (CIFAR‐10) gradient before
clipping in each epoch, and took the median to plot Figure 1A. In the experiment, we used fixed
thresholds 0.6, 1.0, and 1.5. We also measured the training loss accordingly, and show the result in
Figure 1B. There are a few interesting observations: (1) there is a ramp‐up in the gradient norm in
early epochs; (2) the gradient norm then decreases after the ramp‐up period, at a larger rate when
using a smaller clipping threshold. (3) The training loss decreases sharply during the ramp‐up period;
(4) after the ramp‐up period, the training loss decreases at a mild rate at first, then goes up eventually;
(5) a larger threshold allows the training loss to decrease faster at early epochs, and a smaller clipping
threshold allows the training loss to reach a lower point.

For the phenomenon that the gradient norm would gradually decrease in DP‐SGD training
observed in the above experiment, we further provide a theoretical analysis, as shown below:

Theorem 2. Suppose model ↦f : m is a twice differentiable strictly convex function.

Consider a function g f x f x x x x x H x x= ( ) + ( )( − ) + ( − ) ( − )k k k k
T

k−1 −1 −1
1

2 −1 −1 that is

the second‐order Taylor approximation of f around xk−1. Let H HΩ = T , for ∈x x,k k
m

−1 ,
if f x| ( )| > 0k−1 2

2 , and  x x α f x N δ n= − ( ( ) + ( , ))k k k−1 −1 , then there exists an α > 0

such that with probability
∕


 


 






1 − exp −

λ f x δtr(Ω ) − 2 | Ω | (tr(Ω) − | ( ) | ) − tr(Ω )

|Ω|

2
k

2
2 min −1 2

2 2

2
, the

inequality   g x g x| ( )| | ( )|k k2
2

−1 2
2 holds.

Proof. Since f is twice differentiable, we have

FIGURE 1 Trend of (A) L2 norm of the gradient and (B) training loss, fixed C = 0.5, 1.0, and 1.5, and
ϵ = 6.0 (data set CIFAR‐10) [Color figure can be viewed at wileyonlinelibrary.com]
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⊤

 ( )

f x f x f x x x x x

H x x o x x

( ) = ( ) + ( − 1)( − ) +
1

2
( − )

( − ) + | − |

k k k k

k k

−1 −1 −1

−1 −1 2
2

(6)

holds for sufficiently small x x| − |k−1 2. Because f is strictly convex, then the Hessian
matrix H is symmetric and positive definite.

With noisy gradient descent

 x x α f x N d m= − ( ( ) + ( , ),k k k−1 −1 (7)

then the gradient at xk is





  
 

f x f x αH f x δ m

I αH f x αH δ m

( ) = ( ) − ( ( ) + ( , ))

= ( − ) ( ) − ( , ).

k k k

m k

−1 −1

−1
(8)

Hence we have     f x I αH f x αH δ m| ( )| | − | | ( )| + | ( , )|k m k2 2 −1 2 2. Let
λ λ, > 0min max denote the minimum and maximum eigenvalue of H , respectively, when
α
λ

1

max
, the l2 matrix norm I αH| − |m 2 is equal to αλ1 − min. It implies that

⩾   f x x α λ f x H N δ m| ( )| − | (( − 1)| ( | ( )| − | ( , )| ).k k k2 2 min −1 2 2 (9)

Now consider the (probabilistic) bound of H δ m| ( , )|2, which is equivalent to
 δ H m| (1.0, )|2. Since H HΩ = T , according to the tail bounds on ℓ2‐norm of

multivariate Gaussian variables,1 we actually have

  






H m tr tr t t t| (1.0, )| (Ω) + 2 (Ω ) + 2|Ω| exp(− ).2

2 2
2 (10)

Therefore, when  λ f x| ( )| tr(Ω)kmin −1 2 , the inequality λ f x| ( )| −kmin −1 2

 H δ m| ( , )| 02 holds, with the probability at least (1 − exp −

∕

 






λ f x δtr(Ω ) − 2 | Ω | (tr(Ω) − | ( ) | ) − tr(Ω )

|Ω|

2
k

2
2 min −1 2

2 2

2
.

Combining the results in the previous two paragraphs, we have the conclusion (when
α
λ

1

max
and  λ f x| ( )| tr(Ω)kmin −1 2 ). □

As Theorem 2 implied, when the scaled gradients norm λ f x| ( )|kmin −1 2 is relatively large or
the Gaussian deviation δ 0, the norm of gradients g x| ( )|k 2

2 in the next step decreases with
certain.

From the above, we can see a fixed clipping threshold is not ideal, the norm of the gradient
is changing all the time during training. Heuristically, we can deduce the following: (1) at the
early stage, a larger clipping threshold allows faster convergence since it allows more changes
to be incorporated into the model updates, and (2) at the later stage, a smaller clipping
threshold allows the model to converge to a better one since the noise magnitude is scaled
based on the threshold, and a smaller threshold prevents overshadowing noise.
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4.2 | Optimal clipping threshold

In Section 4.1, we have shown that a fixed threshold is not good, and the rough ideas of setting
thresholds at different training stages. Existing adaptive clipping methods in the litera-
ture31,33,34 are proposed based on similar motivations, but the ways they choose the clipping
threshold and the threshold chosen in practice differ significantly. Since the adaptive threshold
could affect the model utility greatly, a question arises naturally: How good are the thresholds
chosen by those methods?

Due to the lack of theories, currently there is no theoretically sound framework for
analyzing, evaluating, and comparing those methods. Hence, we do so empirically by designing
a greedy algorithm to find the optimal clipping thresholds. The algorithm is shown in
Algorithm 1. In each epoch t , to find the threshold that offers the best utility, we start from a
very small initial threshold C, then increase it to search for the one that gives the best test
accuracy. In each iteration of the while loop, we train the model with DP‐SGD for 1 epoch
(starting from θt−1). If the test accuracy is better than the current best, we store the current test
accuracy, threshold, and model parameters, then increaseC by d for the next iteration. Because
of the stochastic nature of DP‐SGD, we allow the search to continue even if increasing C causes
a decrease in the test accuracy, as long as the decrease is no more than a predefined threshold
S. The loop ends if the test accuracy decreases sharply. The algorithm then outputs the model
parameter with the all‐time‐best test accuracy (to be used to find t+1 and θt+1), and the
corresponding best threshold t.

We ran the greedy algorithm on four different data sets: MNIST, Fashion‐MNIST,
CIFAR‐10, and Imagenette. We also ran the adaptive clipping methods proposed in Yu et al.,31

Andrew et al.,33 and Du et al.34* We recorded the optimal thresholds found by the greedy
algorithm, and the thresholds found by the other methods. We show three sets of results in
Figures 2–4 (the result of Imagenette data set can be found in Appendix E). In these figures, the
orange line plots the optimal thresholds found by the greedy algorithm, and the green line is
the trendline fitted using the discrete optimal threshold points. The thresholds chosen by
Andrew et al.33 are significantly larger than the other two, so it is plotted separately in the

FIGURE 2 Comparison of gradient clipping thresholds with different adaptive methods for fixed privacy budget
ϵ = (A) 1.2, (B) 2.93, and (C) 4.5 on MNIST data set [Color figure can be viewed at wileyonlinelibrary.com]
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three subfigures in the second row of each figure. Note the thresholds chosen by all the
previous three methods depend much on hyperparameters. The thresholds we report for each
method in Figures 2 and 4 across different data sets are those that achieved the best test
accuracy but with different hyperparameters.

As we can see in these figures, the magnitude of the optimal thresholds in general is
decreasing, albeit oscillating (orange line). The methods in Yu et al.31 and Du et al.34 choose
thresholds by a linear or a near‐linear decay function with an initial value. The thresholds
chosen by these two methods with the best performing hyperparameters are very close in value,
and the decreasing trend is similar to the optimal ones found by the greedy algorithm. Also we
can see that the trendline of the optimal thresholds decreases fast in the early epochs, then
becomes plateaued. This however is not captured by the decay functions used in Yu et al.31 and

FIGURE 3 Comparison of gradient clipping thresholds with different adaptive methods for fixed privacy
budget ϵ = (A) 1.5, (B) 2.7, and (C) 4.5 on Fashion‐MNIST data set [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Comparison of gradient clipping thresholds with different adaptive methods for fixed privacy
budget ϵ = (A) 3.0, (B) 6.78, and (C) 7.53 on CIFAR‐10 data set [Color figure can be viewed at
wileyonlinelibrary.com]
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Du et al.34 Looking ahead, this may be the main reason these two methods perform worse than
our decay function suggested in Section 4.3. On the other hand, the shape of the thresholds
curve by Andrew et al.33 is very dissimilar to the green line, and the values deviate significantly
from the optimal ones, especially in early epochs. This is understandable because this method
hooks the thresholds with a particular quantile of the gradient's ℓ2 norm. If we look again at
Figure 1A, and compare it with the lower plot in Figures 2C–4C, we can see the correlation
clearly. This actually reflects a common misunderstanding when using DP‐SGD, that is we
should set the clipping threshold close to the gradient's norm to preserve information as much
as possible. This intuition works when clipping gradient in plain SGD. However in DP‐SGD,
noise is added after clipping and the standard deviation of the noise scales with the clipping
threshold. Hence a large threshold means adding too much noise, and that outweighs the
benefit of the extra amount of information.

4.3 | Strategies for setting adaptive threshold

On the basis of the results in Section 4.2, we now propose two simple strategies for setting adaptive
thresholds in DP‐SGD. As we mentioned in Section 1, one difficulty of adaptive clipping in DP‐SGD
comes from the privacy requirement. To ensure the thresholds are privacy‐preserving, in Andrew
et al.,33 the threshold selection algorithm is differentially private (but needs to consume an
additional privacy budget); in Yu et al.31 and Du et al.,34 the thresholds are calculated by a decay
function independent of the training data (but the hyperparameters can affect the utility greatly).
While both of our proposed strategies could avoid these shortcomings.

4.3.1 | Transfer gradient clipping threshold

The first strategy we propose is based on the observation that the threshold values can be
similar across data sets when using the same network architecture. In Figure 5, the same

FIGURE 5 Comparison of gradient clipping thresholds found by different adaptive methods. (A) MNIST,
(B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at wileyonlinelibrary.com]
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architecture is used when training with MNIST and Fashion‐MNIST, also the same architecture
for CIFAR‐10 and CIFAR‐100. We can see that in data sets using the same model architecture,
the optimal gradient clipping thresholds found by the greedy algorithm are very similar in
terms of the range of starting thresholds and the downward trend. This similarity suggests that
we can utilize transferability: use a public data set, find the optimal thresholds using the greedy
algorithm (Algorithm 1), then transfer those when training using a private data set. Since the
thresholds are estimated using public data, this method does not consume an additional privacy
budget. Also, the threshold decisions are better informed than calculated with blindly guessed
hyperparameters as in Yu et al.31 and Du et al.34

Algorithm 1 Greedy threshold finding

Input: Training data set Dr , test data set Dt, model parameters θt−1 at the end of epoch t , batch size m,
learning rate ηt , noise scale σ , accuracy threshold S, step size d.

Output: Optimal clipping threshold t for epoch t , and model parameters θt .

1: Set  C A C A θ 0= 0.01, = 0, = , = , =t

2: while  − A S do

3: Take a random batch Bt with the size m

4: Compute Gradients

5: for each ∈i Bt, compute   θx Lg x( ) ( , )i θ t it −1t−1

6: Clip Gradients

7: ∕  ( )x xg g( ) ( ) max 1,t i t i
x

C

g ( )t i 2

8: Add Noise

9:  ( )g x σ Cg I( ) + (0, )t m i t i
1 2 2

10: Descent

11:  θ θ η g−t t t−1

12: Test θ to obtain test accuracy A

13: if A > then

14:  A C θ θ= , = , =t t

15: end if

16: C C d= +

17: end while

18: Output t and θt

4.3.2 | Decay gradient clipping threshold

The above strategy, due to the multiple training iterations in the greedy algorithm, is
computationally expensive. Therefore, we design a training strategy with an adaptive decay
gradient threshold. This strategy is more efficient. It is similar to Yu et al.31 and Du et al.,34 by
using a predefined decay function. However, from our experiments, the decay functions they
propose are not the best fit. We choose to use a simple nonlinear function:

C
C

t
a C t= , where 0 < 1, , > 0.t a

0
0 (11)
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In the above,Ct is the threshold for the tth epoch,C0 is the initial threshold, and a is a parameter
controlling the curvature. There are two hyperparameters that need to be set properly. The first is
the initial threshold C0. From the results in Figure 5, the optimal starting threshold varies across
data sets/network architectures, and it is unlikely that there exists a universally good value for all
settings. Moreover, from Figure 6, we can see that the initial threshold has a significant impact on
model utility for all decay strategies. However, in Yu et al.31 and Du et al.,34 there is no indication of
how to choose the initial threshold properly. To decide the initial threshold, we can utilize
transferability again. This time, we only run the greedy algorithm for the first epoch on a public data
set, then use the result as the initial threshold for training with the private data set. The second
hyperparameter we need to decide is a. The intuition is that a good a should make the threshold
curve match roughly the green trendline in Figure 5. In our experiments, we use a = 0.5 based on
our experience. The value of a is robust to variation (to some extent), as we can see in Table 1.

5 | EVALUATION OF OUR STRATEGIES

In this section, we report performance evaluation results of our adaptive clipping strategies. To
establish the baseline, we measured the performance of nonprivate SGD, and the fixed‐
threshold DP‐SGD. For the fixed‐threshold DP‐SGD, we tested two variants: the original DP‐
SGD23 and DP‐SGD with the tempered sigmoid activation function.29 The latter is the state‐of‐
the‐art for DP‐SGD training with a fixed threshold. We compared our strategies against four
state‐of‐the‐art adaptive clipping methods.31–34

5.1 | Experimental setup

5.1.1 | Data sets

The performance evaluation was performed on four widely used data sets: MNIST, Fashion‐
MNIST, CIFAR‐10, and Imagenette. The default training/testing split was used. More details of
the data sets can be found below. To obtain clipping thresholds through transferability, we use

FIGURE 6 Model accuracy of the three methods with different initial clipping thresholds C (ϵ = 3.0, data set
CIFAR‐10). (A) Yu et al.,31 (B) Du et al.,34 and (C) Decay (ours). [Color figure can be viewed at wileyonlinelibrary.com]
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MNIST for Fashion‐MNIST and vice versa, we also use CIFAR‐100 (transfer to CIFAR‐10) and
images of other 10 classes from ImageNet (transfer to Imagenette—see Appendix C).

• MNIST: This is a data set of 60,000 28 × 28 grayscale images of the 10 digits, along with a test
set of 10,000 images.

• Fashion‐MNIST: This is a data set of Zalando's article images—consisting of a training set of
60,000 examples and a test set of 10,000 examples. Each example is a 28 × 28 grayscale image,
associated with a label from 10 classes.

• CIFAR‐10: This is a subset of the Tiny Images data set and consists of 60,000 32 × 32 color
images in 10 classes, with 6000 images per class. There are 50,000 training images and 10,000
test images.

• Imagenette: This is a subset of 10 easily classified classes from Imagenet (tench, English
springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball,
and parachute). For details see Appendix C.

5.1.2 | Hardware and software

All experiments were conducted on a personal workstation with an Intel Xeon Gold 6248R
3.00 GHz CPU, an NVIDIA Tesla V100S‐PCIE‐32GB GPU and 128 GB memory. We
implemented all algorithms on top of Opacus2.

5.1.3 | Network and training details

For each of MNIST, Fashion‐MNIST, and CIFAR‐10 data sets, we used the same CNNs as in
Papernot et al.29 For Imagenette, we used Alexnet. The detailed setting of the network
structures can be found in Appendix B. As for training details, for the greedy algorithm
(Algorithm 1), the hyperparameters C (starting threshold), d (step size), and S (accuracy
threshold) were 0.05, 0.01, and 0.02, respectively, for the first three data sets. For Imagenette,
the hyperparameters of the greedy algorithm are C d S= 2.0, = 0.5, = 0.06. For our decay
strategy, we run the greedy algorithm for the first epoch five times and take the average of the
optimal thresholds as the initial threshold. For other adaptive clipping methods that require
hyperparameter tuning, we ran the experiments either with hyperparameters recommended by
the authors (if available), or with different hyperparameter combinations then report the best
results.

TABLE 1 Model accuracy of the decay strategy with different a, privacy budget ϵ = 2.93, 2.7, 7.53, and 130.5
for the four data sets

a= 0.3 a= 0.4 a= 0.5 a= 0.6

MNIST 96.9 ± 0.0 97.3 ± 0.1 97.7 ± 0.1 97.4 ± 0.0

Fashion‐MNIST 86.4 ± 0.3 86.2 ± 0.2 87.1 ± 0.1 86.2 ± 0.2

CIFAR‐10 66.9 ± 0.2 67.3 ± 0.2 68.2 ± 0.0 67.4 ± 0.4

Imagenette 62.6 ± 0.3 62.3 ± 0.4 64.0 ± 0.1 63.7 ± 0.5
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5.1.4 | Hyperparameter settings

In this paper, we set the batch size of all experiments of the MNIST, Fashion‐MNIST, and
CIFAR‐10 data sets to 1024 and the learning rate to 1, and for the Imagenette data set, we set
these two hyperparameters to 64 and 0.01.

Other hyperparameters include (due to space limit, Tables D1–D4 can be found in
Appendix D):

• The fixed clipping thresholds (used by Abadi et al.23 and Papernot et al.29) for the
experiments that produced the results in Table 2. They are listed in Table D1. Those used for
the experiments that produced the results in Table 3 are listed in Table D3.

• The initial clipping thresholds (used by Yu et al.31 and Du et al.34) for the experiments that
produced the results in Table 2. They are also listed in Table D1. Those used for the
experiments that produced the results in Table 3 are listed in Table D3.

• For Pichapati et al.,32 we set two hyperparameters β = 0.91 and β = 0.992 as recommended
by the authors. For the other two hyperparameters h h,1 2, the values that gave the best results
for Tables 2 and 3 are listed in Tables D2 and D4, respectively.

• For Andrew et al.,33 a hyperparameter ηc was set to 0.2 as recommended by the authors. For
another hyperparameter γ , the values that gave the best results for Tables 2 and 3 are listed in
Tables D2 and D4, respectively.

TABLE 2 Performance comparison under different privacy budgets ϵ

ϵ

Abadi
et al.23

Papernot
et al.29 Yu et al.31

Pichapati
et al.32

Andrew
et al.33 Du et al.34

Transfer
(ours)

Decay
(ours)

MNIST

1.2 95.0 ± 0.1 95.5 ± 0.2 95.1 ± 0.1 75.8 ± 0.4 93.4 ± 0.3 94.4 ± 0.2 96.0 ± 0.1 96.2± 0.1

2.93 97.2 ± 0.1 97.6 ± 0.1 96.7 ± 0.0 83.9 ± 0.4 94.0 ± 0.1 96.6 ± 0.1 98.1± 0.1 97.7 ± 0.1

4.5 97.2 ± 0.2 97.8 ± 0.1 96.9 ± 0.1 87.0 ± 0.4 96.8 ± 0.1 97.2 ± 0.1 98.2± 0.0 98.1 ± 0.0

Fashion‐MNIST

1.5 82.7 ± 0.3 83.9 ± 0.2 84.0 ± 0.2 69.6 ± 0.2 80.9 ± 0.5 84.4 ± 0.1 84.3 ± 0.1 84.7± 0.3

2.7 85.2 ± 0.2 86.2 ± 0.1 86.0 ± 0.1 71.8 ± 0.4 85.6 ± 0.3 86.1 ± 0.1 86.6 ± 0.0 87.7± 0.1

4.5 86.0 ± 0.3 87.4 ± 0.1 86.3 ± 0.2 75.5 ± 0.3 86.2 ± 0.1 87.1 ± 0.2 87.7± 0.1 87.5 ± 0.1

CIFAR‐10

3.0 55.0 ± 0.2 60.5 ± 0.3 59.1 ± 0.3 27.6 ± 0.5 54.7 ± 0.3 60.1 ± 0.3 63.1± 0.3 62.1 ± 0.1

6.78 61.2 ± 0.3 64.6 ± 0.2 63.0 ± 0.2 32.3 ± 0.3 52.3 ± 0.5 64.5 ± 0.3 67.2± 0.2 67.1 ± 0.3

7.53 62.9 ± 0.3 66.1 ± 0.1 64.7 ± 0.4 32.6 ± 0.1 63.4 ± 0.4 65.4 ± 0.2 68.1 ± 0.1 68.2± 0.0

Imagenette

11.0 39.3 ± 0.5 49.2 ± 0.4 45.3 ± 0.4 12.9 ± 0.0 45.7 ± 0.3 49.5 ± 0.2 55.8± 0.1 55.6 ± 0.3

46.6 46.2 ± 0.5 56.0 ± 0.4 50.3 ± 0.4 15.3 ± 0.2 50.1 ± 0.2 51.5 ± 0.5 60.8± 0.1 60.2 ± 0.3

130.5 48.0 ± 0.4 58.4 ± 0.1 55.1 ± 0.5 21.2 ± 0.2 50.9 ± 0.4 52.9 ± 0.4 63.8 ± 0.4 64.0± 0.1

Note: The bold data indicates the best performance.
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5.2 | Experimental results

We now report the results. All data reported are based on the measurements from five runs.

5.2.1 | Performance analysis

We first compared the performance of different methods under the same privacy constraints
(the same DP budget ϵ). We used ϵ = 2.93, 2.7, and 7.53 for MNIST, Fashion‐MNIST, and
CIFAR‐10, as suggested by Papernot et al.29 For Imagenette, we used ϵ = 130.5. Another DP
parameter δ was set to 1/| |, where | | is the size of the training set. The other parameters were
set accordingly with respect to δ(ϵ, ). The fixed clip thresholds for Abadi et al.23 are
0.3, 0.3, 1.0, and 10.0, respectively, for the four data sets, and for Papernot et al.29 are
0.4, 0.5, 0.6, and 10.0. And under the same network, the test accuracies without privacy in
these four data sets are 98.9%, 89.8%, 76.8%, and 70.7%, respectively. As we can see in Figure 7,
the performance of all DP methods is worse than nonprivate SGD, and the gap is more
significant in more complex data sets. Our two strategies have similar performance. Both of
them performed better than the fixed‐threshold baseline.29 The performance of Yu et al.,31

Andrew et al.,33 and Du et al.34 is generally worse than Papernot et al.,29 but is better than the
original DP‐SGD23 with a fixed threshold. The performance of Andrew et al.33 is close to Abadi
et al.23 The performance of Pichapati et al.32 is much worse than all other methods. The main
reason could be that the algorithm adds too much noise. The noise in Pichapati et al.32 is added
to each sample (see Algorithm 1, lines 9–12 in the original paper), rather than each mini‐batch
as in other methods. We can also see from Figure 7 that our strategies converge faster than
other methods with DP. This is likely a consequence of setting large (but not overly so) clip
thresholds at the early stage of training. Fast convergence is beneficial to privacy as well: We
can stop training earlier hence the overall ϵ, which is the sum of the budget for each epoch, can
be reduced. Therefore, in some scenarios45,46 where the number of training epochs needs to be
limited to save computing resources, the advantages of our two strategies will be more obvious.

5.2.2 | Effect of privacy budget

In Section 5.2.1, we only analyze the performance of each data set on one privacy budget.
To better demonstrate the superiority of our two strategies compared with other methods.

FIGURE 7 Comparison of the accuracy performance of different methods, where differential privacy
training consumes a privacy budget ϵ of 2.93, 2.7, 7.53, and 130.5 in these four data sets, respectively. (A) MNIST,
(B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at wileyonlinelibrary.com]
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We further show how the methods perform with different privacy levels. The results are
displayed in Table 2 and Figures 8 and 9. For each data set, we varied the privacy budget ϵ, and
measured the test accuracy. As we can see, our two strategies consistently outperformed the
baselines and the other adaptive clipping methods. The advantage is more significant when
training with complex data sets (CIFAR‐10 and Imagenette). Again, our two strategies will
make the model converge more quickly and the performance of our transfer strategy and that of
our decay strategy are quite close. Given that the transfer strategy is computationally intensive,
the decay strategy could be a better choice in many cases.

5.2.3 | Effect of model structure

Lastly, we show the performance of our strategies when using other network structures. For
MNIST, Fashion‐MNIST and CIFAR‐10, we used a smaller network with two convolutional,
two pooling, and two fully connected layers, and for the Imagenette data set, we used a larger
ResNet18 (removed the BN layer as the BN layer affects privacy). The specific network
parameters can be found in Appendix B. We run the greedy algorithm on those networks to
obtain transferable thresholds for our strategies. We compared the performance against the
fixed‐threshold baselines as well as the adaptive clipping methods. We were not able to obtain
the result for Pichapati et al.32 on Imagenette due to an out‐of‐memory error. The results are
shown in Table 3 and Figure 10. As we can see, our strategies still perform better than all the

FIGURE 8 A comparison of the accuracy performance of different methods, where differential privacy
training consumes a privacy budget ϵ of 4.5, 4.5, 6.78, and 46.6 in these four data sets, respectively. (A) MNIST,
(B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 A comparison of the accuracy performance of different methods, where differential privacy
training consumes a privacy budget ϵ of 1.2, 1.5, 3.0, and 11.0 in these four data sets, respectively. (A) MNIST,
(B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at wileyonlinelibrary.com]
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others, and the other experimental performances are also similar to those described in
Section 5.2.2.

6 | CONCLUSION

In this paper, we conducted an empirical study on adaptive clipping in DP‐SGD. Through
experiments, we confirmed the intuition that adaptive clipping thresholds could improve the utility
when training differentially private models. We also uncovered new design insights that were not
captured by existing literature. These novel findings enabled us to propose two simple yet effective
adaptive clipping strategies, that consistently outperform the state‐of‐the‐art. We hope our study
could shed a light on future theoretical analysis of gradient clipping in private settings as well.
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ENDNOTES
* Pichapati et al.32 not included here because it uses a fixed overall threshold but adaptive clips the per‐
coordinate gradient.

† Opacus is an open source library provided by Facebook that implements DP‐SGD in the Pytorch framework.

‡ The Imagenette data set. https://github.com/fastai/imagenette.

REFERENCES
1. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human‐level performance on

imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision; 2015:
1026‐1034.

2. Zheng W, Yan L, Gou C, Wang FY. Fighting fire with fire: a spatial‐frequency ensemble relation network
with generative adversarial learning for adversarial image classification. Int J Intell Syst. 2021;36(5):
2081‐2121.

3. Mikolov T, Karafiát M, Burget L, Cernockỳ J, Khudanpur S. Recurrent neural network based language
model. In: Interspeech. Vol 2. Makuhari; 2010:1045‐1048.

FIGURE 10 A comparison of the accuracy performance of different methods, where differential privacy
training consumes a privacy budget ϵ of 1.0, 1.0, 1.5, and 11.0 in these four data sets, respectively. (A) MNIST,
(B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at wileyonlinelibrary.com]

18 | LIN ET AL.

http://orcid.org/0000-0002-7372-7345
http://orcid.org/0000-0002-1493-9671
http://orcid.org/0000-0001-7261-6398
https://github.com/fastai/imagenette
http://wileyonlinelibrary.com


4. Ai S, Hong S, Zheng X, Wang Y, Liu X. CSRT rumor spreading model based on complex network. Int
J Intell Syst. 2021;36(5):1903‐1913.

5. Hu L, Yan H, Li L, Pan Z, Liu X, Zhang Z. MHAT: an efficient model‐heterogeneous aggregation training
scheme for federated learning. Inf Sci. 2021;560:493‐503.

6. Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and
related applications: an overview. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE; 2013:8599‐8603.

7. Qin X, Tan S, Tang W, Li B, Huang J. Image steganography based on iterative adversarial perturbations
onto a synchronized‐directions sub‐image. In: 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2021). IEEE; 2021:2705‐2709.

8. Jiang N, Jie W, Li J, Liu X, Jin D. GATrust: a multi‐aspect graph attention network model for trust
assessment in OSNs. IEEE Trans Knowl Data Eng; 2022.

9. Tianqing Z, Zhou W, Ye D, Cheng Z, Li J. Resource allocation in IoT edge computing via concurrent
federated reinforcement learning. IEEE Internet Things J. 2021;9(2):1414‐1426.

10. Vartak M, Huang S, Siddiqui T, Madden S, Parameswaran A. Towards visualization recommendation
systems. ACM SIGMOD Record. 2017;45(4):34‐39.

11. Zhu T, Li J, Hu X, Xiong P, Zhou W. The dynamic privacy‐preserving mechanisms for online dynamic
social networks. IEEE Trans Knowl Data Eng. 2020;34(6):2962‐2974.

12. Li J, Ye H, Li T, et al. Efficient and secure outsourcing of differentially private data publishing with
multiple evaluators. IEEE Trans Dependable Secure Comput; 2020.

13. Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning
models. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE; 2017:3‐18.

14. Hitaj B, Ateniese G, Perez‐Cruz F. Deep models under the GAN: information leakage from collaborative
deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security; 2017:603‐618.

15. Salem A, Zhang Y, Humbert M, Berrang P, Fritz M, Backes M. ML‐leaks: model and data independent
membership inference attacks and defenses on machine learning models. In: Network and Distributed
Systems Security (NDSS) Symposium; 2019.

16. Huang T, Zhang Q, Liu J, Hou R, Wang X, Li Y. Adversarial attacks on deep‐learning‐based SAR image
target recognition. J Network Comput Appl. 2020;162:102632.

17. Zhu L, Liu Z, Han S. Deep leakage from gradients. Adv Neural Inf Process Syst. 2019;32.
18. Mo K, Liu X, Huang T, Yan A. Querying little is enough: model inversion attack via latent information. Int

J Intell Syst. 2021;36(2):681‐690.
19. Mo K, Tang W, Li J, Yuan X. Attacking deep reinforcement learning with decoupled adversarial policy.

IEEE Trans Dependable Secure Comput; 2022.
20. Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis. In:

Theory of Cryptography Conference. Springer; 2006:265‐284.
21. Xin B, Geng Y, Hu T, et al. Federated synthetic data generation with differential privacy. Neurocomputing.

2022;468:1‐10.
22. Hu C, Li J, Liu Z, et al. How to make private distributed cardinality estimation practical, and get differential

privacy for free. In: 30th USENIX Security Symposium (USENIX Security 21); 2021:965‐982.
23. Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy. In: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security; 2016:308‐318.
24. Leino K, Fredrikson M. Stolen memories: leveraging model memorization for calibrated white‐box

membership inference. In: 29th USENIX Security Symposium (USENIX Security 20); 2020:1605‐1622.
25. Jayaraman B, Evans D. Evaluating differentially private machine learning in practice. In: 28th USENIX

Security Symposium (USENIX Security 19); 2019:1895‐1912.
26. Pan Z, Hu L, Tang W, Li J, He Y, Liu Z. Privacy‐preserving multi‐granular federated neural architecture

search a general framework. IEEE Trans Knowl Data Eng; 2021.
27. Tang W, Li B, Barni M, Li J, Huang J. An automatic cost learning framework for image steganography

using deep reinforcement learning. IEEE Trans Inf Forensics Secur. 2020;16:952‐967.
28. Li T, Li J, Chen X, Liu Z, Lou W, Hou YT. NPMML: a framework for non‐interactive privacy‐preserving

multi‐party machine learning. IEEE Trans Dependable Secure Comput. 2020;18(6):2969‐2982.

LIN ET AL. | 19



29. Papernot N, Thakurta A, Song S, Chien S, Erlingsson Ú. Tempered sigmoid activations for deep learning
with differential privacy. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol 35; 2021:
9312‐9321.

30. van der Veen KL, Seggers R, Bloem P, Patrini G. Three tools for practical differential privacy. In: NeurIPS
2018 Workshop; 2018.

31. Yu D, Zhang H, Chen W. Improve the gradient perturbation approach for differentially private
optimization. In: NeurIPS 2018 Workshop; 2018.

32. Pichapati V, Suresh AT, Yu FX, Reddi SJ, Kumar S. AdaCliP: adaptive clipping for private SGD. arXiv
preprint arXiv:1908.07643. 2019.

33. Andrew G, Thakkar O, McMahan HB, Ramaswamy S. Differentially private learning with adaptive
clipping. In: NeurIPS; 2021.

34. Du J, Li S, Feng M, Chen S. Dynamic differential‐privacy preserving SGD. arXiv preprint
arXiv:2111.00173. 2021.

35. Gondara L, Carvalho RS, Wang K. Training differentially private neural networks with lottery tickets. In:
European Symposium on Research in Computer Security. Springer; 2021: 543‐562.

36. Frankle J, Carbin M. The lottery ticket hypothesis: finding sparse, trainable neural networks. In:
International Conference on Learning Representations; 2018.

37. Zhou Y, Wu S, Banerjee A. Bypassing the ambient dimension: private SGD with gradient subspace
identification. In: International Conference on Learning Representations; 2020.

38. Yu D, Zhang H, Chen W, Liu TY. Do not let privacy overbill utility: gradient embedding perturbation for
private learning. In: International Conference on Learning Representations; 2020.

39. Tramer F, Boneh D. Differentially private learning needs better features (or much more data). In:
International Conference on Learning Representations; 2021.

40. Chen X, Wu SZ, Hong M. Understanding gradient clipping in private SGD: a geometric perspective. In:
NeurIPS; 2020.

41. Song S, Thakkar O, Thakurta A. Characterizing private clipped gradient descent on convex generalized
linear problems. arXiv e‐prints. 2020: arXiv‐2006.

42. Li JQ, Du Y, Gao KZ, et al. A hybrid iterated greedy algorithm for a crane transportation flexible job shop
problem. IEEE Trans Autom Sci Eng; 2021.

43. Kumar R, Moseley B, Vassilvitskii S, Vattani A. Fast greedy algorithms in mapreduce and streaming. ACM
Trans Parallel Comput (TOPC). 2015;2(3):1‐22.

44. Wang X, Kuang X, Li J, Li J, Chen X, Liu Z. Oblivious transfer for privacy‐preserving in VANET's feature
matching. IEEE Trans Intell Transp Syst. 2020;22(7):4359‐4366.

45. Li M, Soltanolkotabi M, Oymak S. Gradient descent with early stopping is provably robust to label noise for
overparameterized neural networks. In: International Conference on Artificial Intelligence and Statistics.
PMLR; 2020:4313‐4324.

46. Li M, Yan C, Liu W, Liu X. An early warning model for customer churn prediction in telecommunication
sector based on improved bat algorithm to optimize ELM. Int J Intell Syst. 2021;36(7):3401‐3428.

How to cite this article: Lin G, Yan H, Kou G, et al. Understanding adaptive gradient
clipping in DP‐SGD, empirically. Int J Intell Syst. 2022;1‐27. doi:10.1002/int.23001

20 | LIN ET AL.

https://doi.org/10.1002/int.23001


APPENDIX A: DP ‐SGD ALGORITHM
The DP‐SGD algorithm23 is shown in Algorithm 2.

Algorithm 2 Differentially private SGD

Input: Examples D, loss function L, parameters θ, batch sizem, learning rate ηt , noise scale σ , gradient norm
bound C

Output: θT and the overall privacy cost ( δϵ, ) using a privacy accounting method.

1: Initial θ0 randomly

2: for ∈t T[ ] do

3: Take a random batch Bt with the size m

4: Compute Gradients

5: for each ∈i Bt, compute   θx Lg x( ) ( , )i θ t it t

6: Clip Gradients

7: ∕  ( )x xg g( ) ( ) max 1,t i t i
x

C

g ( )t i 2

8: Add Noise

9:  ( )g x σ Cg I( ) + (0, )t m i t i
1 2 2

10: Descent

11:  θ θ η g−t t t t+1

12: end for

APPENDIX B: NETWORK STRUCTURE PARAMETER
For all our experiments except those for Table 3, we use the same CNN structures suggested in
Papernot et al.29 For MNIST and Fashion‐MNIST, the network structure is shown in Table B1.
For CIFAR‐10 and CIFAR‐100, the network structure is shown in Table B2. For Table 3
experiments, the network structures are shown in Tables B3 and B4.

TABLE B1 CNN model for MNIST and Fashion‐MNIST

Layer Parameters

Convolution 16 filters of 3 × 3, stride 2, padding 1

Max‐Pooling 2 × 2, stride 1

Convolution 32 filters of 3 × 3, stride 1, padding 1

Max‐Pooling 2 × 2, stride 1

Fully connected 32 units

Fully connected 32 units

Abbreviation: CNN, convolutional neural network.
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APPENDIX C: IMAGENETTE AND ImageNet SUBSET
Imagenette‡ is a subset of 10 easily classified classes from Imagenet (tench, English springer,
cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and
parachute). For details see Table C1.

TABLE B2 CNN model for CIFAR‐10 and CIFAR‐100

Layer Parameters

Convolution × 2 32 filters of 3 × 3, stride 1, padding 1

Max‐Pooling 2 × 2, stride 2

Convolution × 2 64 filters of 3 × 3, stride 1, padding 1

Max‐Pooling 2 × 2, stride 2

Convolution × 2 128 filters of 3 × 3, stride 1, padding 1

Max‐Pooling 2 × 2, stride 2

Fully connected 128 units

Fully connected 10 units

Abbreviation: CNN, convolutional neural network.

TABLE B3 Smaller CNN model for MNIST and Fashion‐MNIST

Layer Parameters

Convolution 16 filters of 5 × 5, stride 1, padding 0

Avg‐Pooling 2 × 2, stride 2

Convolution 32 filters of 5 × 5, stride 1, padding 0

Avg‐Pooling 2 × 2, stride 2

Fully connected 512 units

Fully connected 10 units

Abbreviation: CNN, convolutional neural network.

TABLE B4 Smaller CNN model for CIFAR‐10 and CIFAR‐100

Layer Parameters

Convolution 32 filters of 5 × 5, stride 1, padding 2

Max‐Pooling 2 × 2, stride 2

Convolution 32 filters of 5 × 5, stride 1, padding 0

Max‐Pooling 2 × 2, stride 2

Fully connected 128 units

Fully connected 10 units

Abbreviation: CNN, convolutional neural network.
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When conducting the transfer experiments, we selected 10 other classes in ImageNet for the
experiments, namely (goldfish, spaniel, tabby, tiger, airliner, canoe, digital watch, freight car,
half track, and tow truck). For details see Table C2.

APPENDIX D: HYPERPARAMETER SETTINGS
We described the setting of hyperparameters in Section 5.1.4. In this appendix, we show the
detailed setting of these parameters in Tables D1–D4.

TABLE C1 Imagenette data set

Category ID #Name #Sample #Train sample #Test sample

n01440764 Tench 1350 963 387

n02102040 English springer 1350 955 395

n02979186 Cassette player 1350 993 357

n03000684 Chain saw 1244 858 386

n03028079 Church 1350 941 409

n03394916 French horn 1350 956 394

n03417042 Garbage truck 1350 961 389

n03425413 Gas pump 1350 931 419

n03445777 Golf ball 1350 951 399

n03888257 Parachute 1350 960 390

TABLE C2 The 10 classes in ImageNet used for transferability

Category ID #Name #Sample #Train sample #Test sample

n01443537 Goldfish 1300 1040 260

n02102177 Spaniel 1300 1040 260

n02123045 Tabby 1299 1040 259

n02129604 Tiger 1300 1040 260

n02690373 Airliner 1300 1040 260

n02951358 Canoe 1270 1016 254

n03197337 Digital watch 876 701 175

n03393912 Freight car 1275 1020 255

n03478589 Half track 1300 1040 260

n04461696 Tow truck 1277 1022 255
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APPENDIX E: ADDITIONAL EXPERIMENTAL RESULTS
In this appendix, we show a comparison of the optimal clipping thresholds found by Greedy
algorithms and other adaptive algorithms on the Imagenette data set in Figure E1 and the
optimal clipping thresholds found by these methods on four data sets after the network
structure is changed in Figure E2.

TABLE D3 Fixed clipping gradient threshold and initial gradient clipping threshold for the experiment of
Table 3

Data set

Methods MNIST Fashion‐MNIST CIFAR‐10 Imagenette

Abadi et al.23 0.7 0.7 0.7 4.0

Papernot et al.29 0.7 0.7 0.6 5.0

Yu et al.31 0.8 0.8 1.0 5.0

Du et al.34 0.8 0.8 1.0 4.0

TABLE D4 Settings of hyperparameters h1 and h2 and the settings of hyperparameter γ are in the
experiments Table 3

Data set

Parameters MNIST Fashion‐MNIST CIFAR‐10 Imagenette

h1 1e− 4 1e− 3 1e− 3 –

h2 1e− 5 1e− 5 1e− 5 –

γ 0.7 0.6 0.1 0.02

FIGURE E1 Comparison of gradient clipping thresholds with different adaptive methods for fixed privacy
budget ϵ = (A) 11.0, (B) 46.6, and (C) 130.5 on Imagenette data set [Color figure can be viewed at
wileyonlinelibrary.com]
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FIGURE E2 Comparison of gradient clipping thresholds with different adaptive methods for fixed privacy
budget ϵ = 1.0, 1.0, 1.5, and 11.0 on MNIST, Fashion‐MNIST, CIFAR‐10, and Imagenette data sets, respectively.
(A) MNIST, (B) Fashion‐MNIST, (C) CIFAR‐10, and (D) Imagenette. [Color figure can be viewed at
wileyonlinelibrary.com]

LIN ET AL. | 27

http://wileyonlinelibrary.com



