
Privacy-Preserving Credential Verification for
Non-monotonic Trust Management Systems

Changyu Dong,Giovanni Russello and Naranker Dulay

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ, UK
{changyu.dong,g.russello,n.dulay}@imperial.ac.uk

Abstract. Trust management systems provide a flexible way for per-
forming decentralized security management. However, most trust man-
agement systems only support monotonic policies. Compared with non-
monotonic policies, monotonic ones are less flexible and cannot express
policies such as “Chinese wall policies” and “separation of duties”. To
support non-monotonic policies, trust management systems must be able
to correctly identify the credentials which a subject has that are required
by the policies. Previous efforts address the problem by letting the system
query the issuers directly to verify the possession status of the creden-
tials. But this approach can violate the subject’s privacy. The main con-
tribution of this paper is a cryptographic credential verification scheme
for non-monotonic trust management systems that can correctly iden-
tify the credentials that a subject has while also protecting the subject’s
privacy. We also analyze the security of the scheme and prove that with
correct construction and certain cryptographic assumptions, the scheme
is secure.

Key words: Trust Management, Non-monotonic Policy, Privacy, Cryp-
tography

1 Introduction

In the past ten years, we have seen the emergence of trust management sys-
tems for access control and privacy protection. Trust management systems have
advantages in flexibility, scalability and extensibility over traditional security
mechanisms and support decentralized security management for contemporary
distributed computing environments.

Trust management was first proposed by Blaze et al. [1]. It aims to provide
a unified approach to specify and interpret security policies, credentials and
relationships that allow direct authorization of security-critical actions. The basic
problem that they address is: “Does the set of credentials C prove that the
request R complies with the local security policy P?”

Most trust management systems, such as [2–6], assume monotonicity: addi-
tional credentials can only result in the increasing of privilege. There are several

reasons why monotonicity is a desirable property in trust management [7, 4, 8].
Firstly, monotonicity simplifies the design of trust management systems. The
systems do not need to evaluate all potential policies and credentials, but are
still provably correct and analyzable. Monotonicity also avoids policy conflicts
[9, 10] which are often caused by non-monotonicity. Furthermore, in some cases,
non-monotonic policies can be converted into monotonic policies. For example,
instead of defining a negative policy that requires credential C, one can define a
positive policy to require a credential of “not have C”.

The monotonic assumption oversimplifies the real world by cutting off the
negative part, thus it cannot handle many important scenarios. For example,
with monotonic semantics, it is hard to express explicit negative policies such as
a consultant cannot serve company A and B at the same time because there is
a conflict of interest (the Chinese Wall policy); a bank teller should not be an
auditor of the same bank (Separation of Duties). Explicit negation is particularly
important for authorization in distributed system scenarios, where the number
of potential requesters is high. Without negations, we cannot express policies
such as “allow all except some’ elegantly.

Non-monotonicity allows more flexible and expressive security policies [11,
12, 10]. The difficulty with non-monotonic trust management systems is that the
systems must have the exact set of credentials from an entity to make a sound
decision. It is hard because of information asymmetry. If a subject knows or can
predict that a certain credential will result in the decrease of its privileges, it may
prefer not to reveal it. A trust management system cannot distinguish whether
the absence of certain credentials is caused by “not having” or “not disclosing”.
To solve this problem, previous studies on non-monotonic trust management
[13–16] suggest that the system should be able to collect credentials directly
from the credentials issuers rather than only from the subjects. Although this
approach seems to be able to solve the problem, it causes new problems. One
problem is privacy: the issuer could disclose information about the subject, i.e.
the credential, to anyone who wants the credential. It also requires issuers to be
always online, which may not be practical.

To handle non-monotonicity in trust management systems, we present a cryp-
tographic credential verification scheme which guarantees that the trust man-
agement system can identify all the required credentials possessed by the subject
while also providing protecting the subject’s privacy.

2 Problem Definition

Let’s consider a trust management system controlling access to a resource. Let
V be the set of atomic privileges, Cp be the set of all credentials relevant to the
trust decision, the trust policies can be formalized as pol : P(Cp) → P(V), where
P(Cp) and P(V) are the power sets of Cp and V respectively. Loosely speaking,
this means that given a set of relevant credentials, the trust management system
can decide a set of privileges based on its local trust policies.

If the policies are monotonic, then we have C1 ⊆ C2→ pol(C1) ⊆ pol(C2) for
all C1, C2 ∈ P(Cp). In contrast, if the policies are non-monotonic, then there
exists C1, C2 ∈ P(Cp) such that C1 ⊆ C2∧ pol(C1) * pol(C2).

One required security property of trust management systems is that the
subject should not receive excessive privileges. In other words, for a subject who
has a set of credentials Cs, the privileges it can get should be bound by pol(Cr)
where Cr = Cs ∩ Cp are the credentials possessed by the subject and required
by the policies (see Figure 1). It seems trivial since given Cp, for each set of
credentials Cs, there is exactly one Cr. However, in most cases, the system only
knows Cs′ which is a set of credentials collected by it. The policy evaluation is
therefore based on Cr′ = Cs′ ∩ Cp rather than Cr. The credentials are digital
assertions signed by the credential issuers and are unforgeable, i.e. Cs′ ⊆ Cs. In
consequence, it is clear that Cr′ ⊆ Cr.

Fig. 1. Credential Sets.

In monotonic trust management systems, the required property is preserved
in all situations. Since Cr′ ⊆ Cr, by monotonicity, pol(Cr′) ⊆ pol(Cr) is always
true. But in non-monotonic trust management systems, the potential privileges
the subject can get is bound by

⋃
C

ri′∈P(Cr)
pol(Cri′). This means that if the

system cannot identify Cr correctly, the subject may get more privileges than
it should. As a result, credential collection and verification is crucial to non-
monotonic trust management systems.

In monotonic trust management systems, credentials are usually submitted
by the subjects. This is obviously not appropriate in non-monotonic trust man-
agement systems. A scheme that most non-monotonic trust management systems
use is to actively collect and verify the credentials. For each credential ci ∈ Cp,
the system sends a query to the credential issuer. The issuer returns a positive
reply if it has issued ci to the subject, a negative reply otherwise. If the issuer’s
reply is positive, the system can infer that ci ∈ Cs and in consequence, ci ∈ Cr.
If the reply is negative, then ci ∈ Cp−r, where Cp−r is the set of credentials that
were required by the policies but not possessed by the subject. After receiving
definite replies for all the credentials in Cp, the system identifies the correct set
Cr.

The scheme is problematic in the sense that it considers little about the sub-
ject’s privacy. Credentials may contain sensitive information about the subject,

but there is no way to prevent a malicious system from probing the credentials
the subject has, e.g. the system can query about a credential in Cs−r, which is
not relevant to the trust decision at all. It can be even worse since the query is
open to everyone. Another noticeable defect is that the query may not always
get a definite reply. A query can go unanswered if the issuer is offline. In such
situations, the system cannot verify the possession status of the credential.

In the following sections, we will describe a new credential verification scheme
designed for non-monotonic trust management systems. The scheme allows the
system to identify Cr efficiently and correctly. The scheme also protects the
subject’s privacy. The verification must first be permitted by the subject, and
after the verification, the system knows nothing about the credentials in Cs−r.

3 Credential Verification Scheme

Our credential verification scheme tries to keep a balance between avoiding un-
necessary security breaches caused by lack of information and respecting the
users right of controlling their information. In sections 6 and 6 we will prove
that the scheme is:

– Correct. The scheme can correctly identify all the credentials that the subject
has that are required by the target. And also,

– Privacy-preserving. The verification is controlled by the subject. Without
the permission of the subject, the target cannot learn anything about the
credentials possessed by the subject.

3.1 Overview of the Scheme

There are three roles in our scheme:

– Subjects: The subjects are entities who send access requests and need to be
authorized.

– Targets: The targets are entities who provide resources and make the trust
decisions.

– Credential issuers: Issuers create the credentials, and also credential profiles
(see section 3.2) to allow the targets to identify the credentials possessed by
the subjects.

As described earlier, the aim of a credential verification scheme for non-
monotonic trust management systems is to identify the correct Cr. The tradi-
tional scheme achieves the goal by finding two mutually exclusive credential sets
Cr and Cp−r such that Cp = Cr ∪Cp−r. This approach relies totally on the target
to verify the credentials. Our approach is different. In our scheme, we let the
subject provide a credential set C′r such that C′r ⊆ Cp and C′r ⊆ Cs. Then the
subject must convince the target that C′r = Cr by proving Cp−r′ ∩ Cs−r′ = ∅,
where Cp−r′ = Cp − C′r, Cs−r′ = Cs − C′r.

To see that this is correct, first let’s assume that when Cp−r′ ∩ Cs−r′ = ∅ ,
C′r 6= Cr. Because C′r ⊆ Cp and C′r ⊆ Cs and Cr = Cp ∩ Cs, the only possibility
of C′r 6= Cr is C′r ⊂ Cr, therefore we can find a non-empty credential set C′′r such
that C′′r ∩C′r = ∅ and C′′r ∪C′r = Cr. Then it follows that Cp−r′ ∩Cs−r′ = C′′r , which
contradicts the assumption. So C′r = Cr must be true.

The difficulty with our scheme is how to preserve the privacy of the subject,
namely how to effectively prove Cp−r′∩Cs−r′ = ∅ without letting the target know
any credentials in Cs−r. We address the problem by constructing a cryptographic
bijection mapping ρ : Cs → Es. Es is publicly available to any entity through a
highly available P2P directory service. ρ is constructed using well-defined cryp-
tographic primitives, so Es discloses no information about Cs to the targets. The
subject must prove that for any credential ci ∈ Cp−r′ , ci /∈ ρ−1(Es−r′). Because ρ
is a bijection, so ρ−1(Es−r′) = ρ−1(ρ(Cs−r′)) = Cs−r′ . Therefore the above proof
is equivalent to proving Cp−r′ ∩ Cs−r′ = ∅. The proof is zero-knowledge, thus at
the end, the target can be convinced about the statement but knows nothing
more.

Fig. 2. Overview of our approach.

3.2 Architecture

In our scheme, Es is implemented as a credential profile (or profile for simplicity)
which allows targets to verify which credentials the subjects has. Each credential
profile has four basic components. The components are:

– ID Hash: The hash value of the subject’s identity. It can be used to search
all the profiles associated with the identity.

– Profile Entries: Each entry is linked to a credential held by the subject and
contains some encrypted information. The target can verify that the subject
has the linked credential by performing a computation on the entry. Profile
entries are discussed in more detail later.

– Timestamp: The time when this profile was created. It allows entities to
determine which profile is the latest.

– Signature: The digital signature of the issuer for this profile. This signature
is used to ensure that no one can modify the profile after it has been created.

The profiles are distributed independently of the credentials through a P2P
directory service. The P2P directory service is maintained by the credential
issuers and can be used by any entity. The advantage of the P2P approach is
that each profile can be duplicated and stored in multiple places over a wide
area. Therefore it provides higher availability of the profiles than storing them
in one place.

To ensure that all credential information is preserved in the profile, we use
an “onion” structure for the profile. If the subject has n credentials, its profile
has n + 1 layers. The innermost layer of the profile, layer 0, is the ID hash of
the subject. Each layer i, consists of a profile entry, a timestamp and is wrapped
by an overall signature on the content of layer 0 to layer i. The onion structure
is built up along with the updating process of the subject’s credential set. As
shown in Figure 3, each time the subject needs a credential, it contacts the
credential issuer (1). The credential issuer generates a credential for the subject,
at the same time it must also create a new profile for the subject. To do so, the
credential issuer first needs to obtain the latest version of the subject’s profile.
This can be done by searching the P2P directory service using the hash value of
the subject’s identity (2). After getting the latest profile (3), the issuer generates
a new entry for the credential it is issuing to the subject and also a timestamp,
then appends them to the old profile. The issuer then signs the new profile and
releases it to the subject (4) with the credential and also to the P2P directory
service (5). As we can see, by using the onion structure, we ensure that the next
time that a credential issuer creates a profile, it cannot modify or remove any
content from the old profile. Suppose it modifies the content in layer k, it would
then need to forge all the signatures from layer k to layer n. We also require the
peers in the P2P directory service to check the contents of a newer versions of a
profile with their local version, and reject them if the checking fails.

3.3 Cryptographic Building Blocks

Our scheme is realised by using cryptographic techniques. In this section, we
briefly outline the cryptographic primitives used. In section 4, we will show how
the security of our scheme follows the security properties of the primitives. For
more information about these cryptographic primitives and their formal security
definition, please refer to [17–19]. The cryptographic primitives used are:

1. A commitment scheme, Commit : {0, 1}n × {0, 1}k → {0, 1}l. It is a two-
phase protocol between two parties, the committer and the receiver. In the
first phase (the commitment phase), the committer commits to r ∈ {0, 1}n

by choosing a Secret s ∈ {0, 1}k to generate a commitment Commits(r)
through a polynomial time algorithm which binds r to Commits(r), i.e. it’s

P2P
Overlay

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

Credential
Issuer

subject

(1)

(2)

(3)

(4)

(5)

Fig. 3. Issuing a credential using the P2P directory service.

infeasible for the receiver to find r′ and s′ which produce the same com-
mitment Commits′(r′) = Commits(r) (this is the binding property). The
committer sends Commits(r) to the receiver. Given only the commitment,
it’s infeasible for the receiver to compute the committed string r (this is the
hiding property). In the second phase (the open phase), the committer re-
veals r and s to the receiver. Now the receiver checks whether they are valid
against the commitment, if the receiver can compute Commits(r) from r
and s, then it is convinced that r was indeed committed by the committer
in the first phase, otherwise it rejects r.

2. Zero-Knowledge Proof Protocols. Let P , V be two Interactive Turing Ma-
chines, L be a language over {0, 1}∗, the goal of a zero-knowledge proof
protocol (P, V) is to allow the prover P to prove to the verifier V that a
given x belongs to language L, without disclosing any other information.
In the following sections, we will use the notion introduced in [20] for the
zero-knowledge proofs. The convention is that the elements listed in the
round brackets before “:” denote the knowledge to be proved to the verifier
and all other parameters are known to the verifier. For example: PK{(a, b) :
y = gahb} means a zero-knowledge proof of integers a, b such that y = gahb

holds and y, g, h are known to the verifier.

3.4 Profile Entry

Profile entries (or entries for simplicity) can be used by the target to verify
that the subject possesses the corresponding credential. Entries are generated
by using cryptographic techniques so that one cannot learn anything about the
credentials from the entries, unless following the credential verification protocol.

We assume that there is a common vocabulary for specifying credentials
which is used by all the entities in the system. We also assume that each cre-
dential has a credential name, e.g. student, member etc.. An entry is linked to

a credential whose name is c and generated by the credential issuer when it
issues the credential. To generate an entry, the creator (the credential issuer)
first creates a commitment for the credential name Commits(c). The secret s
for opening the commitment will be sent to the subject through a secure chan-
nel. The entry is a tuple (Commits(c), Sig(cred), exp time). Sig(cred) is the
signature of the linked credential and is used to associate the entry with the real
credential. exp time is the expiration time of the credential. An entry can be
revoked implicitly or explicitly. Each entry contains the expiration time of the
linked credential. The entry becomes invalid when the credential expires. When
a credential is revoked before expiring, the credential issuer puts the signature
of the credential into a revocation list, and publishes it into the P2P network.

We use a modified Pedersen Commitment Scheme which is slightly different
from the standard one.

Setup The issuer chooses two large prime numbers p and q such that q divides
p − 1. Let g be a generator of Gq, the unique order-q subgroup of Z∗p. The
issuer chooses x uniformly randomly from Zq and computes h = (gx mod p).
The issuer keeps the value x secret and makes the values p, q, g, h public.

Commit The issuer chooses s uniformly randomly from Zq and computes the
commitment Commits(c) = gchs.

There are three parties involved: a committer (the issuer), a prover (the
subject) and a receiver(the target). The issuer generates the commitment to c
and lets the subject know the secret for opening the commitment. This is because
the binding property can only guarantee that after generating the commitment,
the committer cannot change what it committed to; however, it provides no
guarantee on what can be committed to. If we let the subject generate the
commitment, it could commit to another credential name c′ rather than c and
it could take advantage from this, i.e. to hide the credential in order to gain
excessive privileges. So we let a trusted third party (the issuer) generate the
commitment to ensure that the commitment is indeed a commitment to c. Note
that the subject does not need to open the commitment. What the subject
needs to do is to use the commitment and the secret s to convince the target by
a zero-knowledge proof protocol that the linked credential is not required.

3.5 Credential Verification Protocol

The protocol is described in the following and shown in a message sequence chart
in Figure 4. Note: any party can terminate the process if a malicious behavior
is detected during the protocol. If the protocol terminates prematurely, it will
output “⊥”.

1. The target receives a request from the subject.
2. The target decides the credentials that need to be checked according to its

local policies, i.e. Cp, and lets the subject know Cp.

Fig. 4. Message sequence chart of the protocol for credential verification.

3. The subject decides Cr = Cp ∩ Cs. If there is any credential in Cr which is
sensitive and the subject does not want the target to know, it can choose to
refuse and terminate the process. Otherwise, the subject proceeds. Note: as
we have mentioned before, Cp is the set of all the credentials the target needs
to check according to its local policies, not the the credentials the subject
must have, so even if the subject does not have all the credentials requested,
it can still choose to proceed.

4. If the subject chooses to proceed, it sends C′r = Cr to the target. The target
checks the validity of the credentials in C′r. If C′r contains all the creden-
tials that appear in Cp, i.e. C′r = Cp, the protocol terminates and outputs
C′r, otherwise the target creates the set Cp−r′ = Cp − C′r and the protocol
continues.

5. The target obtains the subject’s latest credential profile P from the P2P
directory service.

6. The target creates a set containing all the valid entries extracted from P .
Valid means not expired or revoked. The set is effectively equal to Es. For
each valid entry (Commitsj (cj), Sig(credj), exp timej), if the target can find
a credential in C′r whose signature is Sig(credj), then this entry is removed
from Es. At the end, the target will have the set Es−r′ .

7. For each entry (Commitsk
(ck), Sig(credk), exp timek) in Es−r′ , the subject

must run a zero-knowledge proof protocol as described in section 3.6 to
convince the target that there is no credential in Cp−r′ whose name is ck.
The target will then know that the credential is not required by its policies,
but nothing more than that.

8. The credential verification protocol completes by outputting C′r.

3.6 Zero-Knowledge Proof Protocol

The zero-knowledge proof protocol that we use in step 7 above is adapted from
[21]. The original protocol is a two-party secure computation protocol used to
compare two integers. We simplify the settings because there is only one secure
input, which is the name of the credential held by the subject.

The aim of this protocol is: given public security parameters p, q, g, h, a com-
mitment gchs as described in 3.4, and a different credential name c′ ∈ Zq, the
subject must prove c′ 6= c to the target.

We use two well-defined sub-protocols in the proof. The first one is Schnorr’s
protocol [22] PK{(x) : y = gx} which proves knowledge of a discrete log-
arithm. The other is Okamoto’s protocol [23] PK{(a, b) : y = ga

1gb
2} which

proves knowledge of how to open a commitment. It can be easily extended to
PK{(a, b) : (x = ga

1) ∧ (y = ga
2gb

3)}. The zero-knowledge proof protocol is:

1. The subject uniformly randomly chooses x ∈ Zq, x is kept secret. It computes
h2 = hx and sends it to the target. Then it proves to the target that it knows
x by PK{(x) : h2 = hx}.

2. The subject computes Ps = hs
2 where s is the secret to open the commitment

Commits(c) = gchs and sends it to the target. Then it proves to the target
that it knows c, s and that it used the same s in computing hs

2 as in computing
gchs by PK{(c, s) : (Ps = hs

2) ∧ (Commits(c) = gchs)}.
3. The target also selects a random element s′ ∈ Zq and computes Ps′ = hs′

2

and Commits′(c′) = gc′hs′ . The target sends Commits′(c′) to the subject
as a challenge.

4. The subject computes Q = (Commits(c)
Commits′ (c′)

)x, sends the result to the target,

and proves PK{(x) : h2 = hx ∧Q = (Commits(c)
Commits′ (c′)

)x}.
5. Finally, the target checks whether Q 6= Ps

Ps′
holds. If so, then c′ 6= c

We have implemented a proof-of-concept prototype in Java 1.5 and done a
preliminary performance evaluation. The evaluation was done on a Pentium IV
3.2 GHz (dual core) desktop with 1 GB memory. The execution of the zero-
knowledge protocol takes about 130 milliseconds. The result was obtained by
averaging the time for 1000 executions. The performance can be further improved
by optimizing the code.

4 Security Analysis

In our credential verification protocol, the security requirements of the parties
are different. For the subject, the requirement is for the scheme to prevent a
malicious target from learning excessive information about its credentials. For
the target, the requirement is for the scheme to correctly identify the subject’s
credentials and prevent a malicious subject from cheating about the credentials
it has.

To reflect the requirements of both parties, we define the security of our
protocol as follows:

1. Correctness. Given the target follows the protocol, if the subject sends
C′r = Cr to the target, then at the end, the protocol should output Cr

with overwhelming probability; otherwise, the protocol should output ⊥ with
overwhelming probability.

2. Privacy-preserving. Given the subject follows the protocol, the target should
learn either nothing or the set of credentials Cr. In the latter case, it should
be computationally infeasible for a malicious target to learn any credential
in Cs−r.

The proofs can be found in the appendix.

5 Related work

There are few non-monotonic trust management systems. REFEREE [13] is a
trust management system for web applications. It uses PICS labels [24] as creden-
tials and assumes they can be obtained from authorities’ websites. The system is
responsible for collecting all the credentials, therefore it is possible to gather com-
plete information. TPL [15] allows negative credentials which are interpreted as
suggestions of “not to trust”. In TPL, positive credentials are submitted by the
subject, and the negative credentials are collected by the system. [25] discusses
non-monotonic access policies in trust negotiation and argues that to avoid rely-
ing on outside information, the system should only have non-monotonic policies
according to its local information and the credentials submitted to the system
should be monotonic. A recent study [16] adds a restricted form of negation
to the standard RT trust management language. But as we have mentioned in
section 1, none of these systems address privacy or availability issues.

6 Conclusion and Future Work

In this paper we discussed the benefits and problems of non-monotonic trust
management systems. To handle non-monotonicity, we developed a credential
verification scheme which guarantees that the system can identify all the re-
quired credentials possessed by the subject while also protecting the subject’s
privacy. The scheme is implemented by using several cryptographic primitives.
We also analyzed our scheme and proved that with correct construction and
certain cryptographic assumptions, our scheme is secure.

One aspect of our future work is to allow more expressive trust policies.
Currently, our scheme does not support wildcard credential names in policies,
for example, the policy “a subject can access the patient’s medical record if it
has a doctor credential signed by any hospital”. At present, such policies cannot
be handled directly. The example has to be translated into verifying the subject
has at least one credential in the list of all doctor credentials signed by a hospital.
This approach is static and also increases the computation time because in the
worst case, all the credential names that appear in the list need to be verified.

We will also investigate using the cryptographic credential verification scheme
in automated trust negotiation [26]. Automated trust negotiation is a promising
approach to build trust management systems in a privacy-preserving way. Dis-
closure policies are established to regulate the disclosure of sensitive credentials

and policies. Traditional trust negotiation systems disclose the credentials incre-
mentally, therefore must be monotonic. They are also subject to policy cycles
where a negotiator A has a disclosure policy that requires credential c1 from
another negotiator B before disclosing credential c2 while B has a disclosure
policy that requires credential c2 from A before disclosing credential c1. When
there is a policy cycle, the negotiation fails. In [27], the authors propose the Re-
verse Eager (RE) trust negotiation strategy in which two negotiators start from
the maximum credentials sets and in each iteration prune the credentials sets by
removing the unusable credentials according to their own policies. The RE strat-
egy is cycle-tolerant which means even with policy cycles, the negotiation can
still succeed. But the RE strategy does not support non-monotonic policies and
the trust negotiation protocol requires intensive computation. We are looking at
developing a more efficient protocol using our credential verification scheme and
the RE strategy for non-monotonic and cycle-tolerant trust negotiation.

Acknowledgments. This research was supported by the UK’s EPSRC research
grant EP/C537181/1 and forms part of CareGrid, a collaborative project with
the University of Cambridge. The authors would like to thank the members of
the Policy Research Group at Imperial College for their support.

References

1. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: SP ’96:
Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington,
DC, USA, IEEE Computer Society (1996) 164–173

2. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: Rfc2704: The keynote
trust-management system version 2 (1999)

3. Jim, T.: Sd3: A trust management system with certified evaluation. In: SP ’01:
Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington,
DC, USA, IEEE Computer Society (2001) 106–115

4. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-
management framework. In: SP ’02: Proceedings of the 2002 IEEE Symposium
on Security and Privacy, Washington, DC, USA, IEEE Computer Society (2002)
114–130

5. Hess, A., Seamons, K.E.: An access control model for dynamic client-side content.
In: SACMAT ’03: Proceedings of the eighth ACM symposium on Access control
models and technologies, New York, NY, USA, ACM Press (2003) 207–216

6. Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic
networks. In: SEFM, IEEE Computer Society (2003) 54–61

7. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance checking in the policymaker
trust management system. In: FC ’98: Proceedings of the Second International
Conference on Financial Cryptography, London, UK, Springer-Verlag (1998) 254–
274

8. Seamons, K., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H.,
Yu, L.: Requirements for policy languages for trust negotiation. In: POLICY
’02: Proceedings of the 3rd International Workshop on Policies for Distributed
Systems and Networks (POLICY’02), Washington, DC, USA, IEEE Computer
Society (2002) 68–79

9. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng. 25(6) (1999) 852–869

10. Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework
for enforcing multiple access control policies. In: SIGMOD ’97: Proceedings of the
1997 ACM SIGMOD international conference on Management of data, New York,
NY, USA, ACM Press (1997) 474–485

11. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: IEEE Symposium on Security and Privacy. (1987) 184–195

12. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium
on Security and Privacy. (1989) 206–214

13. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: Referee: trust
management for web applications. Comput. Netw. ISDN Syst. 29(8-13) (1997)
953–964 283252.

14. Li, N., Feigenbaum, J., Grosof, B.N.: A logic-based knowledge representation for
authorization with delegation (extended abstract). In: Proceedings of the 1999
IEEE Computer Security Foundations Workshop, IEEE Computer Society Press
(June 1999) 162–174

15. Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., Ravid, Y.: Access control meets
public key infrastructure, or: assigning roles to strangers. In: the 2000 IEEE Sym-
posium on Security and Privacy, Berkeley, CA (2000) 2–14

16. Czenko, M., Tran, H., Doumen, J., Etalle, S., Hartel, P., den Hartog, J.: Non-
monotonic trust management for p2p applications. Electronic Notes in Theoretical
Computer Science 157(3) (2006) 113–130

17. Goldreich, O.: Foundations of Cryptography: Volume I Basic Tools. Cambridge
University Press (2001)

18. Goldwasser, S., Bellare, M.: Lecture notes on cryptography. http://www-
cse.ucsd.edu/users/mihir/papers/gb.pdf

19. Goldreich, O.: Foundations of Cryptography: Volume II Basic Applications. Cam-
bridge University Press (2004)

20. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In Jr., B.S.K., ed.: CRYPTO. Volume 1294 of Lecture Notes
in Computer Science., Springer (1997) 410–424

21. Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the
socialist millionaires’ problem. Discrete Applied Mathematics 111(1-2) (2001) 23–
36

22. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3)
(1991) 161–174

23. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: CRYPTO ’92: Proceedings of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, London, UK, Springer-
Verlag (1993) 31–53

24. Resnick, P., Miller, J.: Pics: Internet access controls without censorship. Commun.
ACM 39(10) (1996) 87–93

25. Dung, P.M., Thang, P.M.: Trust negotiation with nonmonotonic access policies. In
Aagesen, F.A., Anutariya, C., Wuwongse, V., eds.: INTELLCOMM. Volume 3283
of Lecture Notes in Computer Science., Springer (2004) 70–84

26. Winsborough, W.H., Seamons, K.E., Jones, V.E.: Automated trust negotiation.
In: DARPA Information Survivability Conference and Exposition, 2000. DISCEX
’00. Volume 1., Hilton Head, SC, IEEE Press (2000) 88–102

27. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: NDSS, The Internet Society (2006)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In Feigenbaum, J., ed.: CRYPTO. Volume 576 of Lecture Notes in Com-
puter Science., Springer (1991) 129–140

Appendix

Security Proof of the Zero-knowledge Proof Protocol

Lemma 1. The protocol in section 3.6 is complete: if c′ 6= c, then Pr[(P, V)(c′ 6=
c) = 1] = 1.

Proof. The zero-knowledge proof convinces the verifier by comparing Q =
(Commits(c)

Commits′ (c′)
)x= (gchs

gc′hs′)x = g(c−c′)xh(s−s′)x and Ps

Ps′
= hsx

hs′x = h(s−s′)x where c

is a credential name and c′ is another credential name. Q 6= Ps

Ps′
holds only when

c′ 6= c, therefore the protocol is complete.

Lemma 2. The protocol in section 3.6 is sound: if c′ = c, then ∀P ′ Pr[(P ′, V)(c′ 6=
c) = 1] ≤ δ, where δ is a negligible probability.

Proof. If a malicious prover can manipulate Q, Ps, Ps′ , then it can control the
result of the zero-knowledge proof protocol. For example, if the prover can con-
struct Ps′ = hs′′x using s′′ 6= s′, then Q 6= Ps

Ps′
even c = c′. But a cheating prover

can succeed with only a negligible probability. Firstly, hx is revealed to the veri-
fier and proved to be constructed correctly in step 1 using Schnorr’s protocol. In
step 2, the prover must prove it uses the same s in computing Ps = (hx)s as in
computing gchs using the extended Okamoto protocol. Commits(c) is known by
the target and Commits′(c′) is computed by the target, and in step 5, the prover
must prove that it uses the same x in computing hx and Q = (Commits(c)

Commits′ (c′)
)x

using Schnorr’s protocol. To manipulate hx, Ps and Q, a malicious prover must
break Schnorr’s protocol or the extended Okamoto protocol. But in the two sub-
protocols, the challenges are chosen randomly from [1, 2t], so the probability of
successful cheating is at most 2−t. When t is sufficiently large, the probability
is negligible. Therefore hx, Q and Ps must be constructed correctly with a over-
whelming probability. The prover cannot manipulate Ps′ = (hx)s′ because s′ is
selected by the verifier. So the protocol is sound.

Lemma 3. Under the Discrete Logarithm Assumption and the Decisional Diffie-
Hellman Assumption, the protocol in section 3.6 is zero-knowledge.

Proof. The execution of the protocol produces a view in the form {h2 = hx, Ps =
hs

2, s
′, Commits′(c′), Q = (Commits(c)

Commits′ (c′)
)x}. Following the definition of zero-knowledge,

we need to show that there exists a probabilistic polynomial time simulator M∗

which can produce a simulation of a view. Note that because the simulator of
the main protocol can call the simulators of the sub-protocols, and because the
sub-protocols have been proven to be zero-knowledge, we omit views of the sub-
protocols here.

We can construct M∗ as follows:

1. The public input is p, q, g, h, gchs, c′.
2. M∗ randomly chooses x∗ ∈ Zq, and compute h∗2 = hx∗ .
3. M∗ randomly chooses s′∗ ∈ Zq, and computes P ∗s′ = (h∗2)

s′∗ and Commits′(c′)∗ =
gc′hs′∗ .

4. M∗ computes Q∗ = (Commits(c)
Commits′ (c′)∗

)x∗ .
5. M∗ chooses s∗ such that (h∗2)

s∗ 6= Q∗P ∗s′ , then let P ∗s = (h∗2)
s∗ .

6. M∗ outputs {h∗2, P ∗s , s′∗, Commits′(c′)∗, Q∗}
It is easy to see that under the Discrete Logarithm Assumption and the De-
cisional Diffie-Hellman Assumption, the simulation is computationally indis-
tinguishable from a view produced in the protocol. So our protocol is zero-
knowledge.

Proof of Correctness of Credential Verification Protocol

Theorem 1. The credential verification protocol is correct.

Proof. Firstly we need to prove that in the protocol, if the subject sends C′r = Cr

to the target, then at the end, the protocol should output Cr with overwhelming
probability. It is clear that in step 4, if an honest subject sends C′r = Cr to the
target, then there are two cases to consider:

Case 1: Cr = Cp. In this case, the target will detect Cr′ = Cp, and will terminate
the protocol and output Cr′ , which equals Cr.

Case 2 Cr ⊂ Cp. In this case, the target has Cp−r′ = Cp − Cr′ = Cp − Cr = Cp−r

in step 4. In step 6 the target will have Es−r′ = ρ(Cs − Cr′) = ρ(Cs − Cr) =
ρ(Cs−r). We have proven that the zero-knowledge proof protocol is complete
in Lemma 1, therefore in step 7, the subject can prove that for each entry
(Commitsk

(ck), Sig(credk), exp timek) in Es−r′ , that there is no credential
in Cp−r′ whose name is ck. Then in step 8, the protocol outputs Cr′ , which
equals Cr.

Next we will prove that if the subject sends C′r 6= Cr to the target, then at
the end, the protocol should output ⊥ with overwhelming probability.

In step 4, if a malicious subject sends C′r 6= Cr to the target, there are also
two cases to consider:

Case 1: Cr′ * Cr. In this case, there exists at least one credential c such that
c ∈ Cr′ and c ∈ Cs−r. If Cr′ = Cr, then all the credentials in Cr′ must also
be in Cp, but now c is not in Cp because it is in Cs−r. Therefore the target
can detect C′r 6= Cr easily. The target will then terminate the protocol and
output ⊥.

Case 2: Cr′ ⊂ Cr. In this case, there exists a non-empty credential set C′′r such
that C′′r ∩C′r = ∅ and C′′r ∪C′r = Cr. In step 4, the target has Cp−r′ = Cp−r∪C′′r
and in step 6, the resulting set Es−r′ = ρ(Cs−r ∪ C′′r). Because ρ−1(Es−r′) ∩
Cp−r′ = C′′r , for a credential in C′′r whose name is ck, its entry (Commitsk

(ck),
Sig(credk), exp timek) can be found in Es−r′ . We have proven that the the

zero-knowledge proof protocol is sound in Lemma 2, therefore in step 7, the
subject cannot convince the target. The target will terminate the protocol
and output ⊥ with overwhelming probability.

Proof of Privacy-preservation of Credential Verification Protocol

Now we prove that the subject’s privacy is preserved by the protocol. We first
need to show that the credential profile is privacy-preserving.

Lemma 4. Given only the credential profile, the target learns nothing about the
credential possessed by the subject.

Proof. A credential profile contains profile entries. Let’s look at the structure
of a profile entry. Each entry is a tuple (Commits(c), Sig(cred), exp time).
Sig(cred) discloses no information because the signature is generated from the
hash value of the credential content. As the hash function is not invertible, no
one can learn anything about the credential by looking at the signature. The
commitment scheme we use is unconditionally hiding, which means even with
unbounded computational power, the possibility of an adversary finding the com-
mitted value c is still negligible because for any c ∈ Zq and uniformly randomly
chosen s ∈ Zq, Commits(c) is uniformly distributed in Gq [28]. So by looking
at the commitment, one can learn nothing about c. It is impossible to infer the
credential from exp time. Overall, the profile entries leaks no information about
the credential.

For the other parts in the profile: an adversary cannot learn any information
about the credentials from the signatures, and ID hash and timestamps contain
no information about the credentials.

Therefore, given only the credential profile, the target learns nothing about
the credentials possessed by the subject.

Theorem 2. The credential verification protocol is privacy-preserving.

Proof. The credential profile is publically available in the P2P directory service
before entering the protocol, so is available to the target. But by Lemma 4, the
target learns nothing about the subject’s credentials by looking at the profile.

In steps 1-3, the subject discloses no additional information about its cre-
dentials, so the target still knows nothing. If the subject terminates in step 3,
then the target knows nothing about the credentials in Cs.

If the subject decides to proceed, then in step 4, the subject discloses Cr to
the target. The target knows all the credentials in Cr, but nothing about the
credentials in Cs−r. In step 7, the subject needs to run the protocol described in
section 3.6 with the target. We have shown that under the Discrete Logarithm
Assumption and the Decisional Diffie-Hellman Assumption, that the protocol is
zero-knowledge in Lemma 3, so for any credential c ∈ Cs−r, it is computationally
infeasible for the target to learn any information other than the fact that c /∈ Cr.

