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Abstract

In this paper we generalise the authorisation policy
model supported by the Ponder policy language for hierar-
chically organised domains of managed objects to support
subject-based policies and return policies. We describe
the authorisation conflicts that can occur and present a
strategy to automatically resolve them. In our model each
action has four endpoints: the subject call, the subject
return, the target call and the target return. Each endpoint
can have an associated policy which is used to define
constraints on which subjects are permitted to call which
targets, and what is permitted to be transferred between
subjects and targets. Subject-based policies aim to protect
the subject from untrusted targets, while target-based poli-
cies aim to protect the target from unauthorised subjects.
Subject-based policies are defined for and enforced by
the subject’s PEP, while target-based policies are defined
for and enforced by the target’s PEP. Although subject-
based and target-based policies are separated, they can
be uniformly specified in our framework.

I. Introduction

Current distributed systems involve a large number of
applications which require an increasing variety of secu-
rity mechanisms to fulfill their needs. The complexity of
managing such systems results in high administrative costs
and long deployment cycles. It becomes even worse as a
system expands because the effort and time required for
management becomes a burden. Therefore, it is desirable
and becoming more and more critical that management
procedures are automated to reduce administrative cost [1],
[2]. For security it also desirable if management could
come with a higher level of abstraction, so that the con-

figuration details of security mechanisms and technologies
used can be separated from the application logic.

Policy-based management is potentially an effective
solution for the distribution, automation and dynamic adap-
tation of current and future systems. Policies are rules
governing the choices in the behavior of a system [22].
In the context of policy-based management, security man-
agement can be defined as the support for specification of
authorisation policies, and translation of these policies into
information which can be used by security mechanisms to
control accesses, manage key distribution, monitor and log
security activities [21]. Security management should also
support flexible adaptation mechanisms for responding to
changing requirements, context, denial-of-service attacks,
etc.

The contributions of this paper can be summarized as
follows. First of all, a new model is described where autho-
risation policies can be uniformly specified and enforced
for protecting both the subject and the target for a given
action. Secondly, we describe a deterministic strategy for
resolving authorisation policies conflicts on hierarchically
organised domains of subjects and targets. Finally, our
framework caters for neatly separating policy enforcement
form the application logic.

Authorisation policies are mainly used for enforcing
access control to check whether a subject is authorised to
execute an action of a target. In this paper, we describe
a framework based on the Ponder language [7], where
authorisation policies can be uniformly specified for both
the subject and the target of an action. With our framework,
it becomes possible to specify and enforce authorisation
policies to prevent the subject from performing actions that
could be harmful for the subject or the subject’s domain(s),
e.g. preventing a web browser sending a request to a
blacklist webserver. Furthermore, policies can be specified
to prevent a subject from accepting a reply from an action
that could threaten the integrity of the subject. In this case,



a policy can activate a filter to scrutinize the reply before
it is passed to the subject.

Central to policy-managed systems is the resolution
of conflicts that arise between policies. For instance,
there might be two authorisation policies which permit
and forbid the same action. Although previous work has
investigated this problem in detail [13], no definitive solu-
tions have been implemented for automatically resolving
conflicts. In this paper, we provide a simple yet powerful
strategy for conflict resolution that can deterministically
provide a solution when a conflict arise.

This paper is organised as follows. In Section II, we
provide an overview of related work. Section III briefly
discusses the policy interpreter that we use in our frame-
work and highlights the extensions introduced by our
approach. Conflict resolution is described in Section IV.
In Section V we discuss several approaches that could be
used for implementing the policy enforcement mechanism.
We conclude with Section VI providing future directions
of our research.

Fig. 1. The IETF policy architecture.

II. Background

A widely accepted architecture for policy-based man-
agement was proposed by IETF [25] as shown in Figure 1.
The two main components in the architecture are the Policy
Decision Point (PDP) and the Policy Enforcement Point
(PEP). The PDP processes the policies, along with other
data such as network state information, and takes policy
decisions regarding what policies should be enforced and
how this will happen. These policy decisions are sent as
configuration data to the appropriate PEPes, which are
responsible for installing and enforcing them. The other
component proposed by the IETF is the Policy Man-
agement Service (PMS) which provides a user interface
for specifying, editing, and administering policy. Having a
language for security policy specification that provides a
high abstraction level is crucial. In this direction, several
research efforts have been conducted. In [3], the authors
proposed a policy language for representing authorisa-

tion requirements. The language is a many-sorted first-
order logic with a rule construct which is useful for
stating structural properties of authorisation requirements.
The language is declarative and has a semantics that is
independent of implementation mechanisms and the se-
mantics is efficiently computable which allowing efficient
authorisation evaluation. The Authorisation Specification
Language (ASL) [4], [5] is a logical language designed for
an authorisation model which can support different types
of policies within a single, unified system. For example,
the users can specify closed policies in which all positive
authorisations must be specified for some objects and
open policies in which all negative authorisations have
to be specified for the others. The language provides
a general mechanism that is capable of implementing
a number of different types of security policies, there-
fore making it possible to separate the implementations
of policies from the implementations of access control
mechanisms. Rei[12] is a policy framework designed for
pervasive computing applications. Rei represents security
and management policies in a semantic language like RDF-
S, DAML+OIL or OWL. This allows different systems
to share a model of policies, roles and other attributes.
The language is not tied to any specific application and it
permits domain specific information to be added without
modification. In LGI [14], policies specify which actions
the agent has to enforce upon the receipt or sending of
messages. Policies use a simple Prolog notation. It assumes
that policies are interpreted by trusted controllers at each
agent’s site. Ponder [7] is a declarative language that
supports the specification of authorisation, obligation and
other types of policies for managing distributed systems.
Ponder uses an object-oriented approach which allows user
to define different types of policies to meet specific security
and administrative management goals.

The use of an effective language for policy specification
makes it possible to separate the policy decision making
from the application. As a consequence, the PDP can be
generic and application-independent. Multiple applications
can share the same PDP, therefore policies can be described
uniformly across multiple domains. More importantly, it
allows the design and implementation of security mecha-
nisms to be separated from the application functionality.
This means that application developers can focus more on
the functionalities of the application without taking into
consideration many of the security concerns. This approach
is in line with the principle of Separation of Concerns [15].

Although it is possible to delegate security policy deci-
sions to a universal policy engine, application developers
still have to define in their application where the policy
enforcement points are. Moreover, application developers
are still responsible for correctly enforcing the decisions
taken by policies which should be the concern of security



administrators. As pointed out by Filman, et al. in [8]
not supporting a clear separation between the application
functionality from system-wide properties, such as secu-
rity, leads to an increase in the complexity of the system
as a whole.

It seems that more abstraction for the PEP function-
alities is needed. The functionalities of a PEP include
checking the execution of the application and triggering the
policy evaluation at appropriate times; collecting necessary
information for the policy evaluation; enforcing the deci-
sions from the PDP. If such functionalities are introduced
at the application level then the level of dependency
between the PEP and the application becomes too high.
The PEP has to know which are the triggering points for
the application. On the other hand, the application has to
pass the required information for the policy evaluation and
to enforce the decision taken by the PDP. If the PEP is such
that the enforcement point could be abstracted from the
specific application and the application is unaware of any
details of policy enforcement then a complete decoupling
would be achieved.

The work described in [6] is in line with this approach.
Their work is an extension of the access control mechanism
provided by Java’s security framework [11]. It consists of
several modules that have been introduced to map policies
specified in Ponder [7] into Java security structures. Lever-
aging on the power and richness of the Ponder language,
it becomes possible to specify more complex policies
that can be analyzed for conflicts using an analysis tool
provided by Ponder. The main advantage of this approach
is that by using the security framework there is an effective
decoupling of the PEP from application level. In fact,
the points of policy enforcement are completely hidden
from the application. On the other hand, because the Java
security framework is limited to control resource access it
cannot be used for intercepting other enforcement points.

Verhanneman, et al. [23] tried to achieve uni-
form application-level access control enforcement of
organisation-wide policies by using Aspect-oriented Pro-
gramming (AOP) [9]. They define access interfaces to
specify the requirements an application needs to fulfill to
enforce the policies. It specifies which requests are relevant
to the enforcement of access control and what information
is necessary to supply to take the control decision. The
abstracted requirements are mapped to application-specific
concepts by using a view connector at the application side.
Each application needs its own view connector to bind it to
an access interface. It uses Java Aspect Components [20] to
implement a wrapper to intercept the method calls from the
caller to callee so that view connectors can be configured at
deployment time. The framework provides some flexibility
but not so effectively. The implementations of security
mechanisms and functionalities are not fully decoupled
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Fig. 2. Policy enforcement points.

because developing view connectors is still the responsibil-
ity of the developers. Additionally, this framework focuses
only on access control points for policy enforcement.

To fill the gaps of the above approaches, we propose a
framework where the PEPes can be specified for both the
subject and the target. As shown in Figure 2, we specify
four policy enforcement points:
• PEP 1: at this point, policies are enforced when the

subject sends out a request to a target. PEP 1 policies
are used to prevent a subject from calling an action on
an untrusted target or filtering the data that is passed
to the target (e.g. for privacy reasons). We name such
policies Subject authorisation (SA) policies. Condi-
tions can be defined on known properties of either the
subject or the target or on contextual conditions, such
as time of the day, location or cost of communication.

• PEP 2: is used for enforcing traditional authorisation
policies for access control on the target. Policies are
enforced when an action is received by the target.
We name these policies Target authorisation (TA)
policies.

• PEP 3: this point allows the target to apply policies
after an action is executed but before the reply is sent
back to the subject, i.e. to truncate or filter data that
is sent back to the subject. Just denying the subject
the right to perform the operation is not sufficient to
cover this case. We name these policies Target-return
authorisation (TRA) policies.

• PEP 4: is used for enforcing policies when the subject
receives the reply. PEP 4 policies can be used to
protect the integrity of the subject from malicious
or buggy data sent from the target. We name such
policies Subject-return authorisation (SRA) policies.

In object-oriented systems we treat subjects and targets
as objects, and actions as methods. Intercepting method
invocation or reply can provide the base information



for policy evaluation. In addition, the parameters of the
method call and the return value of the reply can provide
more information if needed.

In the following section, we provide more details about
our framework and present the syntax of authorisation
policies.

III. The Policy Interpreter

The policy interpreter that we extended implements
the Ponder2 language being developed at Imperial Col-
lege [16]. The interpreter supports obligation policies
(event-condition-actions) and target-authorisation policies
written in XML. The interpreter organises the entities on
which policies operate in hierarchical domains of managed
objects. A managed object has a management interface that
the object has to implement in order to be managed by the
interpreter. Domains allow the classification and grouping
of managed objects in a hierarchy. Furthermore, domain
paths can be used to address subjects and targets in policy
specifications. Before a managed object is added to one
or more local domains, the policy interpreter authenticates
the managed object.

Different nodes of a distributed system have their own
policy interpreter which maintains its own local domain
hierarchy. Policies refer to local domain paths and are
enforced locally. When a managed object wants to execute
an action on a target object that is located on a remote
node proxies are created by each interpreter and added in
the local domains.

Let us consider the scenario shown in Figure 3 where a
nurse (n1) working in Hospital1 wants to get the medical
record of a patient (p1). However, the record is not in her
hospital but is stored in Hospital2.

The following steps are executed by the policy inter-
preters of each hospital. When the nurse makes the request
for accessing the patient record (1), the Naming service of
the interpreter at Hospital1 resolves (transparently to he
nurse application) the patient application’s URL, contact-
ing the Naming service at Hospital2. The communication
between the Naming services of each host is handled by
the respective Comm service (2). The Naming service at
Hospital2 forwards the request to its local Authentication
service (3). The Authentication services of each hospital
conduct a negotiation for the credentials of the nurse
(4). Once the nurse is authenticated, the Authentication
service at Hospital2 creates a nurse proxy and inserts
it in its local domain structure (5). However, the nurse
proxy is inserted in the nurse domain contained in the
external domain. In this way, it is possible to differentiate
between nurses working in the hospital and external ones
and more restrictive policies can be defined for external
nurses. Once the nurse is authenticated, the Naming service

at Hospital2 retrieves the reference for the patient p1
(6) and returns it to the Naming service at Hospital1
via the Comm service (7). The obtained patient reference
is passed to the Authentication service (8) at Hospital1
and authenticated (4). After authentication, a proxy1 for
the remote patient object is created and inserted in the
local domain structure (9). Now the nurse n1 makes
the invocation (10) via the local proxy of the patient.
This request is forwarded to Hospital2 (11-12) using the
Comm service, and it is executed as a local operation by
the nurse proxy (13-14) on Hospital2.

The evaluation and enforcement of authorization poli-
cies is executed during step (10) for PEP1 and PEP4,
and during step (14) for PEP2 and PEP3. This simple
approach allows us to specify and enforce authorization
policies in a completely decentralized way. Furthermore,
the negotiation between authentication services is currently
based on credentials, such as certificates that assert the
target and subject roles. However, we foresee, as discussed
in our future work (see Section VI), the use of a more
sophisticated authentication service based on automated
trust negotiation [17], [18], [19].

In the following subsection, we outline the basics of
our authorisation policies.

A. Authorisation Policies

In the domain structure maintained by the policy in-
terpreter, a domain can only be reached using one single
path. In other words, a domain can be the child of only
one other domain. However, instances of managed objects
are allowed to be present in more than one domain. In this
way, if a domain represents a role then an instance of a
managed object can be associated with multiple roles.

It is quite common in a policy-managed system to adopt
a default authorisation policy: every action is allowed or
every action is forbidden. In our framework we allow the
policy administrator to specify the default authorisation
policy. This is done by setting the value of the attribute
defaultAccess. The possible values are:

• ALL+ indicates that by default all actions are allowed.
To restrict accesses negative authorisation policies
must be defined.

• ALL- indicates that by default no action can be
executed unless a positive authorisation policy is
defined.

Once the value of this attribute is assigned to a domain
structure it cannot be changed. Changing the value of
this attribute after several authorisation policies have been
specified could alter the meaning of those policies.

1A proxy for the nurse object is also created at Hospital2.
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Ideally, this attribute could be defined on a domain ba-
sis. The subdomains and instances contained in a given do-
main inherit the values of the attribute. However, because
the same instance of a managed object can be contained
in multiple domains it could be the case that the values of
the defaultAccess attribute could conflict. Figure 4
depicts the case in which an instance t is contained in
two domains, d and e. The defaultAccess attribute
value for domain d conflicts with the defaultAccess
attribute value of domain e. In fact, domain d is a domain
sub-structure where by default no actions are allowed. On
the other hand, domain e is part of a sub-structure where all
actions are allowed and negative policies override positive
ones. To avoid this type of conflict, the defaultAccess

attribute is required and only permitted for the root domain
and its value propagates down to the domain structure to
all the subdomains and contained instances.

B. Policy Specifications

In this subsection, we provide examples of policies that
it is possible to specify using our approach. The policies
that we consider are for mobile healthcare agents. We focus
on subject-enforced policies.

Policy 1: shows a negative subject authorisation (SA-)
that prevents a mobile patient agent requesting treatment
from an untrusted medical service e.g. a medical service
that cannot provide a valid certificate signed by the
National Health Service (NHS).

subject
auth- patientAgent.requestTreat()→MedService

when !certified(MedService, NHS)

Policy 2: shows a negative subject return authorisation
(SRA-) applied on the patient agent. The policy denies to
the agent access to the treatment returned by the medical
service when the returned treatment is signed by a GP that
is not recognized by the NHS. Note: to ensure call-return
pairing SRA policies must be appended to positive SA
policies. Similarly TRA policies must be appended to
positive TA policies.

subject
auth+ patientAgent.requestTreat()→MedService

when request.condition=SERIOUS
return-

when !certified(reply.GPSignature, NHS)



Positive authorisation policies can be used to filter the
data that is supplied or returned. The filter is specified by
using filter in the action clause. Filtering policies must
be positive authorisations because no transformation needs
to be applied if the action is forbidden.

Policy 3: shows a positive subject authorisation (SA+)
for an employee. The employee has to provide to the GP
of the company where the employee works her medical
record. For privacy reasons, the employee wants her
psychiatric data removed from her medical record. The
policy applies a filter that nullifies the sensitive field from
the record. The filter is executed by the subject’s policy
interpreter by intercepting the call, nullifying the psych
field and then forwarding the call to the target.

subject
auth+ employeeAgent.rec()→CompanyGP

filter request.psych:=NULL

Policy 4: shows a traditional positive target
authorisation (TA+) policy for a nurse agent that
has to perform accesses on the patients’ medical records
in a hospital. According to this policy, a nurse agent can
access the medical records of a patient when the nurse is
on duty on the ward where the patient is being treated.

target
auth+ nurseAgent→medicalRecordDB.readrec()

when ward(nurseAgent)=ward(request.patient)

Policy 5: shows a positive target return authorisation
policy (TRA+) for an insured patient that modifies a
terminal diagnosis asking that the patient contact the
Medical Service.

target
auth+ patientAgent→MedService.requestTreat()

when insured(request.InsuranceNo)
return+

when reply.diagnosis=TERMINAL
filter reply.diagnosis:=CONTACT US

It should be noted that the framework realizes a com-
plete separation of concerns. In fact, all the details about
checking the credentials of the target, the target’s reply,
and the application of filters on sensitive data are specified
outside the logic of the application. These details are
isolated and captured in the policy specification.

IV. Conflict Resolution

When dealing with policy based systems, it is unavoid-
able that conflicts arise in the set of policies. Ideally
conflicts are detected by static analysis of the policy set.
However it is often not possible to perform such analysis
on policies that depend on run-time state. This issue is
more acute in the case of large systems where the policies
are specified as the system evolves. In our model, we define
a conflict-resolution strategy that is used statically and

dynamically to determine which policy takes precedence.
The strategy aims to provide policy administrators with a
range of desirable policy precedence behaviours. Typically,
conflicts arise when multiple policies apply to the same
(subject, target, action)-triple. Therefore, it is necessary to
provide rules to define the precedence between conflicting
policies. In this paper, we focus on modality conflicts, that
is inconsistencies that arises when more than one policy
with modality of opposite sign apply to the same subject,
target and action.

First of all, in our model there are two default modalities
that administrators can choose. The first modality allows
all actions to be performed unless an authorisation policy
is specified. In this case, the restrictions imposed by the
authorisation policy must be satisfied to complete the
action. The second modality is more restrictive inasmuch
as all the actions are prohibited unless an authorisation
policy is specified. In any event, whatever the default
modality is, modality conflicts can arise.

To determine the precedence between two or more poli-
cies we based our conflict resolution algorithm on domain
nesting. The domain nesting resolution gives precedence to
policies that apply to a more specific instance of subjects,
targets, or both. In other words, a policy that applies to a
subdomain is more specific than a policy that applies to any
ancestor domains. The main strength of this approach is
that it is intuitively applicable to a domain-based system.
For instance in Figure 5-(a) policy p2 takes precedence
over policy p1 being p2 more specific than p1.
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Fig. 5. Examples of priority based on domain
nesting (a) and final status (b).

However, this principle does not apply to all situations.
Sometimes it is desirable that a global policy overrides
more specific ones. For supporting these cases, in our
framework it is possible to use special global policies that
override any specific policies defined in the subdomain
structure. To define such a policy the keyword final must
be used in the definition of the policy. Final authorisation
policies can only be defined on domains, since it does not



make sense to define such policies on object instances.
Figure 5-(b) shows a scenario where the final policy p1
overrides policy p2.

There are cases in which there is no way of determining
a precedence based on domain nesting and final policies.
This is the case when the same managed object resides in
different domains and conflicting policies are defined on
those domains. For such cases, in our framework negative
authorisation overrides positive authorisation.

A. Conflict Resolution Strategy

The strategy for conflict resolution is based on the
following preliminary steps:

1) First search for the uppermost final policy that is
applicable on the given (subject, target, action)-
triple.

2) If a modal conflict arises between applicable final
policies of the same domain level then any negative
authorisation gets priority.

3) If no final policy is found then search for the most
specific policies that are applicable to the triple.

4) If a modal conflict arises then give higher priority to
the negative one.
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Fig. 6. Examples where the specificity of a
policy cannot be determined.

However, it is possible that policies could be specified
on subjects that are at different levels in the domain
structure but on the same target, and vice-versa. Figure 6
depicts several such cases. Case 6-(a) is when an action is
authorised for a restricted group of entities. For instance, in
general, nurses are not allowed to access a patients’ records
(negative policy p1), but only if a nurse is on duty on the
same ward of the patient (positive policy p2). Case 6-(b)
captures the case when an action on a specific domain
of entities must not be allowed (negative policy p2), but
the same action is permitted for a more general set of
targets (policy p1). For instance, a medical researcher is
allowed to access all the patients’ records expect for certain
cases. And case 6-(c) captures the case in which an action
on a specific domain of targets must not be allowed to

a general domain of subjects. However, a more specific
domain of subjects are allowed to execute the same action
on a general domain of targets. For instance, in general,
nurses cannot access the patients’ personal information,
contained in domain d. However, nurses in Emergency
Room can have access to medical records (contained in
domain b) and in particular to the personal information of
patients. The selection of an eligible policy, in such cases,
is done using the length of the path from the subject to the
target using the policy arc. Two cases can be distinguished:
resolving for final policies and resolving for normal non-
final policies.

For the first case, the policy with the longest path is
selected. For instance, in Figure 6-(a) if p1 and p2 are
both final policies, then policy p1 will override p2. In
fact, the longest path from subject s to target t is through
policy p1 (“s, c, a, p1, d, t” compared to “s, c, p2, d, t”) . In
the case of Figure 6-(b) again the longest path is through
policy p1 (“s, c, p1, b, d, t” compared to “s, c, p2, d, t”).
The case in Figure 6-(c) is more interesting since both
paths have the same length. For a case like this, we give
higher importance to the path of the subject2. Therefore,
the policy p1 overrides policy p2 because policy p1 is more
general than p2.

For the second case, when resolving normal non-final
policies, the policy that provides the shortest path is
selected. Consequently, in Figure 6-(a) and (b) policy p2
overrides policy p1. For the case in Figure 6-(c), policy
p2 overrides p1 because p2 is more specific than p1 with
respect to the subject path.

When the subject or the target of an action are in
multiple domains, then for each domain path we search
for an eligible policy using the same strategy as shown
before. All the eligible policies found for each path are
evaluated according to the negative precedence rule. In
other words, if one negative policy is found in any path
then this overrides all the other policies and the action is
not allowed. The rationale behind this decision is to select
and enforce the policy that does not affect the integrity of
the system. If all the policies are positive then the action
is allowed. Otherwise, if no eligible policies have been
found then the policy specified by the defaultAccess
attribute is enforced.

Let us consider the examples shown in Figure 7 to see
in practice how conflicts are resolved. In Figure 7-(a), the
subject is contained in two domains, c and e. The conflict
resolution strategy is used for path “s, e, p1, d, t” and the
negative policy p1 is found. For the path “s, c, p2, d, t” the

2The reason for this strategy is that users are familiar with the concept
of specifying policies to protect their assets (targets) from being accessed
by other entities (subjects). In the next future, we foresee a new release
of our framework with a more complex strategy that discerns between the
specificity of subject and target paths depending on whether the policy
that should be enforced is of target or subject type, respectively.
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Fig. 7. Examples where the subject and the
target are contained in more than one do-
main.

positive policy p2 is found. Because of the negative priority
rule, policy p1 is selected. It could seem that policy p2
should be applied over p1 using the domain nesting rule,
but since p1 and p2 are defined on different paths, the rule
cannot be applied.

In Figure 7-(b) and (c) a final policy is defined in one
of the paths where the subject or the target are contained.
For case 7-(b) the search is started from the subject. In
path “s, e, p1, d, t” the final positive policy p1 is found
and in path “s, c, p2, d, t” the negative policy p2 is found.
Again here the negative precedence rule is applied and
policy p2 overrides policy p1. The rationale behind this is
that the final status of policy p1 makes sense only on the
path where the policy is defined. For different paths, it is
difficult to determine the specificity of a policy because the
domain nesting for different paths is not comparable. This
means that when compared to policies defined on different
paths, final policies are treated as normal ones.

Figure 7-(c) shows the case in which a target is
contained in multiple domains. In this case, for path
“s, c, p1, e, t” the final policy p1 is found and for path
“s, c, p2, d, t” the negative policy p2 is found. Again here,
policy p1 loses its status of final and the policy p2 overrides
it for the negative priority rule.
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Fig. 8. Examples where multiple filters can be
applied.

B. On Filtering

The use of filters in positive authorisation policies
brings up some interesting situations that should be dis-
cussed. For instance, Figure 8-(a) shows the case in which
two filtering policies could be applied to a subject that
is contained in two different domains. Policy p1 applies
filter f1 to the reply and policy p2 applies a different
filter f2. Here, it is not about solving a conflict, because
both policies are positive. The problem is how to apply a
filter that returns the appropriate information as the policy
administrator wanted to express with these policies.

A case could be that a doctor is also a researcher in the
hospital and he wants to access patients’ records, specified
as follows: rec :< name, age, address, patology >.
Policy p1 allows the doctor to access the record of a
patient but filter f1 removes the address of the patient
(f1 → rec.address = NULL). On the other hand, policy
p2 allows a researcher to access the patient record but the
filter f2 removes the patient’s name (f2 → rec.name =
NULL). For cases like this one, the intersection of the
filters’s fields is applied. For the specific example of the
doctor/researcher it means that no filtering is applied.

It could be the case that for the same attribute different
filtered values are specified. For instance, filter f1 specifies
that the value of attribute x is substituted with value
v′ while filter f2 specifies that for the same attribute x
the value to substitute is v′′. To securely solve filtering
conflicts, the value of the attribute x is nullified. Although
this solution changes the semantic of the filters, we reduce
the risk that meaningful information is leaked out. When
such conflicts arise, the policy interpreter, logs a warning
to alert the policy administrator of the possible problem.

Another possible problem is presented in Figure 8-(b).
In this case, different filters can be applied to the same
target and therefore their union should be applied to the
result. For instance, filter f1 of policy p1 could nullify
fields that are common to all the instances that are in
domain b. On the other hand, filter f2 removes fields
specific of instances contained in domain d. Returning
to the hospital example, domain b contains patients and
domain d contain terminal patients. Then, filter f1 removes
the identity and filter f2 removes the life expectancy of a
terminal patient. Applying the union of the filters removes
all the necessary information that needs to be protected by
both policies.

V. Policy Enforcement Mechanisms

Crucial to our approach is the realization of a PEP
mechanism such that (i) it supports a fine-grained level
of enforcement point specification and (ii) it is completely
transparent to the application logic.
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Fig. 9. The modules implemented in our
framework to provide a complete control over
authorisation.

The realization of a PEP could be achieved using the
standard Wrapper Pattern. The idea is that any managed
component code is wrapped by a piece of code that
intercepts all the inbound and outbound calls to and
from the component (actually this is our managed object
interface). Each time a call is intercepted, the wrapper
passes the necessary information to the Policy Interpreter
taking policy decisions. The clear advantage of this method
is that we have complete control over the wrapper design
and we can easily customise it for our needs.

A Java-based solution that supports the wrapper pattern
is the Java Management Extension (JMX) [10]. JMX
provides application developers with a powerful yet simple
solution for managing resources. In JMX resources may be
objects, devices, and services. A resource can be enabled to
be managed through the JMX framework if it is enabled
via a Managed Bean (MBean). An MBean is a special
Java bean that exposes via a standardized interface (defined
by the JMX specification) attributes and methods of the
resource that it manages. MBeans can be enabled to
emit notifications when certain events happen. Given the
fine-grained instrumentation that can be achieved with a
properly specified MBean interface and its notification
capability, JMX could be used for implementing our PEPs
and provide access to the management capabilities sup-
ported by JMX.

With the release of the J2SE 5.0 the Java Virtual
Machine Tool Interface (JVMTI) was introduced to provide
an interface that software agents can use to control and
monitor Java applications. Agents use the functionality
exposed by the interface to be notified when events occur
in the application, and to query and control the application

during execution. The agent is passed as an argument when
the JVM is started. Among the events that an agent can
intercept there are those that capture when the execution
enters and exits a method. JVMTI allows the agent to
retrieve information regarding method call, such as object
type of the caller and the callee, the parameter values
passed in the method invocation, and the value that the
method returns.

An alternative approach would be to use AOP, as done
in [23]. This technique requires that the application code is
modified with the injection of aspect-specific code. Crucial
in AOP is the specification of where the aspect code must
be injected. In Java Aspect Components (JAC), this is done
transparently to the application. However, this requires that
descriptor files must be supplied to the JAC middleware
where those points are specified. In particular for the
approach described in [23], application developers have to
specify descriptors that must be customized for the specific
security policy that is going to be enforced. For instance,
if the policy requires the values of some parameters, the
application developer has to specify in the descriptor how
such parameters are to be retrieved.

It should be noted that the design of our framework
is independent of the actual mechanism used for imple-
menting a PEP. As shown in Figure 9, for the imple-
mentation of the Policy Enforcement Mechanism all the
above approaches could be used. This has the advantage of
allowing our framework to enforce policies across systems
implemented using different technologies.

VI. Conclusions and Future Work

In this paper we presented a model for the specification
and enforcement of authorisation policies defined over
hierarchically organised domains. The contributions of this
paper are the followings. Firstly, in our model authorisation
policies can be used to protect both the subject and the
target of an action. It also supports the validation and
filtering of information flows between subjects and targets.
This fills the gap of previous approaches where policies
could be specified and enforced on the target side only.
Secondly, the model includes a strategy that determinis-
tically resolves conflicts that could arise between autho-
risation policies while minimising leaks due to filtering
conflicts. Finally, our framework treats policy specification
and enforcement in line with the SoC principle. As a matter
of facts, the application logic is completely agnostic of
authorisation policies and how/when they are enforced at
run-time.

There are several areas that we want to investigate
as future research. First of all, we want to extend the
policy interpreter to include static checks for authorisation
policy conflicts, for example, when policies are loaded or



unloaded. Static checks can provide an early indication of
conflicts and can also enable optimisations that speed up
policy enforcement. Secondly, we want to investigate how
dynamic changes of the domain hierarchy impact policy
enforcement and conflict solving. The main objective here
is to investigate how to maximise concurrency and min-
imise locking of data-structures in the policy interpreter.
Finally, we are looking at integrating a trust model, policies
and mechanisms. Since the action interception mechanism
is independent from the actual authorisation model, we can
easily integrate a trust component that can take decisions
on whether given subjects, targets, actions are ’trustwor-
thy’. The component would recommend trust-levels or
even authorisation policies. These levels or policies can
change over time, providing a very flexible framework
in comparison with the yes-or-no approach of classical
security models.
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