

Policies for Self Tuning Home Networks

Dimosthenis Pediaditakis, Leonardo Mostarda, Changyu Dong, and Naranker Dulay
Department of Computing

Imperial College London, UK SW7 2AZ
{dpediadi, lmostard, cd04, nd}@doc.ic.ac.uk

Abstract

A home network (HN) is usually managed by a user
who does not possess knowledge and skills required to
perform management tasks. When abnormalities are
detected, it is desirable to let the network tune itself
under the direction of certain policies. However, self
tuning tasks usually require coordination between
several network components and most of the network
management policies can only specify local tasks. In
this paper, we propose a state machine based policy
framework to address the problem of fault and
performance management in the context of HN.
Policies can be specified for complex management
tasks as global state machines which incorporate
global system behaviour monitoring and reactions. We
demonstrate the policy framework through a case
study in which policies are specified for dynamic
selection of frequency channel in order to improve
wireless link quality in the presence of RF interference.

1. Introduction

Home networks (HN) are becoming more
complicated. A typical home of the past decade had a
single computer with a modem. Nowadays, a typical
home network features increasing numbers of devices,
desktops, laptops, PDAs, smart phones networked with
a wireless broadband router. It is not a trivial task to
deploy such networks and it often requires bespoke
configuration in order to work properly. This makes the
management of home network complex. In addition,
home networks have to be installed, used and managed
by non-expert users, who often know little or nothing
about the technicalities of home networks. The
consequences are that home networks are usually not
configured to an optimal state and it is difficult for
home users to resolve networking problems.

Ideally, a home network should be able to configure
itself automatically with minimum user involvement.
Research efforts have been performed towards this
direction. However they have mainly focused on
automatically configuring network layer settings and

service discovery. Little work has been done on
automatic performance tuning and fault recovery.
Moreover, most existing approaches perform simple
actions that involve only a few (if not just one) devices
and do not consider tasks which may require changing
settings on several devices simultaneously.

In the present paper, we propose a policy-based
solution to the aforementioned problem of home
network management. We define policies in terms of
global state machines for the target network. The
network is monitored and the monitoring data is used to
trigger reconfiguration and to provide feedback. We
use a case study to demonstrate the proposed policy-
based solution. More specifically, in section 2 we
present a test-case scenario. In section 3 we present a
systematic mechanism to define global system
management behavior, using state machine based
policies. In section 4 we present related work. In
section 5 we conclude and discuss our future work
plans.

2. Scenario description

A quite common problem-scenario for wireless
home networks involves a user experiencing poor
network performance. In many cases, degradations in
performance are due to bad-quality wireless links
between the home devices and the wireless access-
point(s) of the network.

Bad link quality can be the result of so-called “co-
channel interference” (or simply interference from now
and on) which is caused by nearby stations operating
on the same frequency. Interference either adds delays
due to backing-off (when carrier sense operation can
perceive it) or even worse, it causes frequent collisions
which result in a high frame loss rate.

Home networks are usually deployed without little
or no planning. When multiple networks are deployed
in the same area, most of the time, will result in chaotic
network topologies [1]. The main characteristic of
chaotic wireless network deployments is the presence
of extensive and intense interference. However,

2009 IEEE International Symposium on Policy for Distributed Systems and Networks

978-0-7695-3742-9/09 $25.00 © 2009 Crown Copyright

DOI 10.1109/POLICY.2009.30

29

IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-3742-9/09 $25.00 © 2009 Crown Copyright

DOI 10.1109/POLICY.2009.30

29

Authorized licensed use limited to: Imperial College London. Downloaded on June 01,2010 at 11:35:04 UTC from IEEE Xplore. Restrictions apply.

popular wireless technologies like IEEE 802.11 b/g [2]
provide several channels for a given operating
frequency band, which allows the simultaneous
operation of more than one co-existing network.
Despite the fact that the total number of channels is 13,
stations can only use every fourth or fifth channel
without overlap. Selecting the best channel to operate
in a dynamic way is a problem without a
straightforward solution, especially in the context of
home networks where the use of expensive channel-
measurement equipment is not possible.

In this work we basically focus on a particular case-
scenario, where we assume a home network consisting
of a number of devices that are equipped with wireless
interfaces of compatible technologies (e.g.
WLAN/WiFi). All devices are managed and
interconnected via a wireless access point (AP). As
described above, home WLANs are deployed in an
arbitrary way and as a result, they suffer from serious
contention and delays due to co-channel interference.
We will aim to provide a policy-based approach for
switching frequency channel in order to limit the
interference levels which result in better quality for
wireless links. It is quite important to understand that
such a channel selection scheme has to be dynamic
since interference varies over time and space, and
home networks are also dynamic by nature. In addition,
we usually cannot assume that links are symmetric in
terms of quality. The need to go beyond the single-pair
link quality management is quite evident. Channel
section decisions should be taken in a distributed
fashion and be based on distributed information from
multiple nodes across the network.

3. Specifying global State Machine based
Policies (SMP)

A global state machine describes a set of actions
that can be performed in response to certain distributed
events under certain conditions. The state machine is
given in terms of sets of components which provide the
system functionality. Components are themselves
specified using an Interface Description Language
(IDL). Given these specifications we use the Goanna
platform [3] to automatically generate a distributed
state machine implementation.

3.1. The state machine based language

In this section we briefly describe our state machine

based language. In order to simplify the presentation
we refer to our case study.

A global state machine declaration starts with a state
machine signature, that is the keywords global and fsm

followed by the state machine name and its formal
parameter list. Each formal parameter is declared as a
set which groups together component instances of the
same type. For instance, in Figure 1 we define a state
machine named changeChannel, implementing our
channel tuning policy. It takes as an input the set of all
clients and the set of routers (composed exactly by one
instance in our case study). After the state machine
signature, a list of event-state-condition-action rules
follow, to define the state machine transitions. Each
rule specifies which action can be performed when an
event has been observed and some condition is true.

Figure 1: The channel selection policy definition

Events can be component events or timeout events.

A component event is consequence of a component
service invocation. Four component invocation events
can be observed: (i) invoke service and (ii) receive
service reply for clients, (iii) receive invocation and
(iv) reply to invocation for servers. We can also use the
symbol * to denote unknown component types. For
example, in the state machine of Figure 1 the event on
c in clientSet to * where c sees bad_link is generated
when a client device in the clientSet observes a low
quality of its local link.

A timeout event specifies an integer t. This event is
not a consequence of component interactions but the
state machine implementation itself triggers it when
(within the amount of time t) no component event has
been successfully accepted. Referring back to our case
study, a timeout can be accepted in state 1 when no bad
links are observed.

For a given event e, the state machine can define a
list of state-condition-actions. A state-condition-action
is of the form qs-qt: { condition } { action } where qs
and qt are the starting and the destination states while
condition and action are a predicate and a piece of code
respectively. Let us suppose that an event e is observed
and the current state of the global state machine is q
(with q = qs). If in addition the condition is true, then,
the action can be executed and the current state is set to
the destination one qt (i.e., the event has been
successfully accepted). It is worth mentioning that the
first state listed in the state machine definition is

3030

Authorized licensed use limited to: Imperial College London. Downloaded on June 01,2010 at 11:35:04 UTC from IEEE Xplore. Restrictions apply.

assumed to be the starting one. For instance 0 is the
starting state of the state. The machine matches one
event at a time. When an event can be accepted the
state is changed accordingly otherwise the event is
rejected. Referring to the case study, the rule: on c in
clientSet to * where c sees bad_link 1-1:
{not_persistent()} -> {update()} can be applied when
the state machine is in state 1, a bad link is observed on
a client and the bad_link observation is not persistent
i.e., it is observed for a small amount of times for a
given period of time.

3.2. Component definition

A component definition specifies two main parts:
component provided/required services and a
component object.

3.2.1. The component services

Component services are specified through a

CORBA-like [4] IDL. This allows the description of a
component as a set of services. Each service can be
either asynchronous (labelled with “async”) or
synchronous and can be either required or provided
(specified through the keywords required and
provided). Nonetheless, a service has a return type and
an optional list of formal parameters. In Figure 2 we
describe a client device component providing a service
bad_link.

Figure 2: The client Component definition

Figure 3: The router Component definition

3.2.2. The component object

The component object is used to support the state

machine specification. This information contains
attributes and methods. Attributes can be used inside
methods and state machine conditions/actions. The
Methods are written using a C-like platform
independent language and can refer to variables
declared in the attributes section, call methods,
component services and third-party libraries. A method
can also call external remote services and methods

defined on other component definitions and give rise to
component events. For instance, the client declaration
specifies an attribute count used by the procedure
update() to count the number of bad links. The same
variable is used by the predicate persistent and
notPersistent to signal persistent and not persistent bad
link conditions. The router component declares a
method changeChannel() that can be invoked from
methods of different component types.

Two primitives can be used for remote calls: (i)
signal call to instance and (ii) signal call to set. The
keyword signal is always followed by a method/service
call (in our case call) while the keywords to can be
followed by a component instance or a set. By using
this primitive the method signals the platform to
execute a remote method/service call. In case (i) the
platform contacts the component instance and performs
the call while in (ii) the platform contacts all
component instances reachable inside the set and
performs the call on them. The primitive signal returns
a positive number when at least one instance was
found. We emphasize that when the signal call returns
the control to the method, the related method call has
not been necessarily performed but instead, it may have
been scheduled to be executed later on. For instance
the signal changeChannel() to s in routerSet signal
procedure is used to call the method changeChannel on
the router definition in order to switch channel.

3.2.3. Component sets

Figure 4: Sample Set definitions

Components can be grouped together to form sets.
We have developed a definition language that allows
the specification of sets based on component types and
hosts that they are deployed on. While a set definition
is unique it can have multiple instances each related to
a different host. Moreover, set definitions can be
categorized either as local or global ones. A local set is
composed of component instances residing in the same
host while a global one includes instances scattered
over several hosts.

In Figure 4 we illustrate an example of two set
definitions: clientSet and routerSet. The set routerSet is
composed of all components of the type router
instantiated on the host "192.168.0.1 ". This definition
specifies a local set since all the component instances it
includes must belong to the same host and moreover, it
has a unique instance. The set clientSet is composed of
all client components deployed in all hosts (i.e., a
global set with a unique instance). The global state

3131

Authorized licensed use limited to: Imperial College London. Downloaded on June 01,2010 at 11:35:04 UTC from IEEE Xplore. Restrictions apply.

machine is decomposed into a fully distributed
implementation. The reader is referred to [3] for details
on the distribution process.

Figure 5: The FSM

The schematic representation of the proposed global

state machine based policy is depicted in Figure 5. The
state machine is in state 0 (healthy state) when the
home network is working properly and no bad_link
events have been observed for a while. The global state
machine is in state 1 (alert state) when a bad_link event
has been observed by some device. While the FSM is
in state 1, any further bad_link events are simply
logged as long as they do not become persistent and the
FSM transits to state 2. Nonetheless, when no bad_link
events are observed over a time duration n, a timeout
event changes the state to 0. The global state machine
is in state 2 (testing state) when the router has changed
channel. In this state, further bad_links events change
the state to 1 while if no such events are received for a
given amount of time, a timeout changes the state back
to 0. We emphasize that when an event cannot be
accepted in a certain state it is discarded.

4. Related Work

Performance and fault self-management of networks
has attracted a lot of research interest over the last
decade. A recent trend is to make use of policies for
defining global management behaviours [5]. The use of
state machines for policy specifications is relatively
new approach [3] [6]. In [7] Baliosian et al. use finite
state transducer based policies for the self-
configuration of wireless networks but their work
focuses on the detection and resolution of conflicts.
The advantage of our approach is that it enables the
specification of non component / device specific
policies, allowing the definition of global management
behaviours for the network, seen as a whole. There is
relatively little work that does this, especially in the
context of home networks. Finally, there is a number of
dynamic channel selection studies like [8] and [9].
These are quite low-level and do not allow cooperation
between nodes in the network.

5. Conclusions and future work

In this paper we have introduced a novel policy
framework for self-tuning home networks. Policies are
specified using a state machine-based approach. In
particular, a state machine can relate events scattered
over several distributed components. Events can trigger
actions which are further used to tune network
parameters. For future work we are planning to
implement the approach on a real network. We are also
exploring the definition of state machines that can
change their rules in order to dynamically adapt to the
context. Finally, we plan to extend our framework to
support multiple interacting state machines.

Acknowledgements
This research was supported by UK EPSRC research
grants EP/F06446/1 (Homework) and EP/D076633/1
(UbiVal). We would also like to thank the members of
the Policy Research Group for their continued support.

References

[1] A. Akella, G. Judd, S. Seshan, and P. Steenkiste. Self-
management in Chaotic Wireless Deployments: Extended
Version. Wireless Networks (WINET), 2006
[2] IEEE 802.11 Local and Metropolitan Area Networks:
Wireless LAN Medium Access Control (MAC) and Physical
(PHY) Specifications, ISO/IEC 8802-11:1999(E).
[3] L. Mostarda and N. Dulay. GOANNA: State machine
monitors for sensor systems.
http://www.doc.ic.ac.uk/~lmostard/tool/goanna.php
[4] W. A. Ruh, T. Herron, P. Klinker, and W. Ruh. IIOP
Complete: Understanding CORBA and Middleware
Interoperability. Addison Wesley, 2000.
[5] Kowtha, S. and Jiang, X. 2006. An N-State Driven
Policy-Based Network Management to Control End-End
Network Behaviors. In Proceedings of the 7th IEEE
international Workshop on Policies For Distributed Systems
and Networks, 5-7 June 2006
[6] Baliosian, J.; Serrat, J., "Finite state transducers for
policy evaluation and conflict resolution," Fifth IEEE
International Workshop on policies for Distributed Systems
and Networks, June 2004.
[7] Baliosian, J.; Oliver, H.; Devitt, A.; Sailhan, F.;
Salamanca, E.; Danev, B.; Parr, G., "Self-configuration for
radio access networks," Seventh IEEE International
Workshop on policies for Distributed Systems and Networks,
June 2006
[8] N. Ahmed and S. Keshav. SMARTA: A Self-Managing
Architecture for Thin Access Points. ACM CoNEXT, 2006
[9] B. Aznar, R. Kays, W. Endemann, O. Hundt and C.
Schilling, Dynamic characteristics of wireless LAN channels
for multimedia home networks. IEEE International
Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC 2007), 2007.

3232

Authorized licensed use limited to: Imperial College London. Downloaded on June 01,2010 at 11:35:04 UTC from IEEE Xplore. Restrictions apply.

