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Abstract. Direct Anonymous Attestation (DAA) was designed for the
Trusted Platform Module (TPM) and versions using RSA and ellip-
tic curve cryptography have been included in the TPM specifications
and in ISO/IEC standards. These standardised DAA schemes have their
security based on the factoring or discrete logarithm problems and are
therefore insecure against quantum attackers. Research into quantum-
resistant DAA has resulted in several lattice-based schemes. Now in this
paper, we propose the first post-quantum DAA scheme from symmet-
ric primitives. We make use of a hash-based signature scheme, which
is a slight modification of SPHINCS+, as a DAA credential. A DAA
signature, proving the possession of such a credential, is a multiparty
computation-based non-interactive zero-knowledge proof. The security
of our scheme is proved under the Universal Composability (UC) model.
While maintaining all the security properties required for a DAA scheme,
we try to make the TPM’s workload as low as possible. Our DAA scheme
can handle a large group size (up to 260 group members), which meets
the requirements of rapidly developing TPM applications.

Keywords: Hash-based signatures · Direct anonymous attestation

1 Introduction

Direct Anonymous Attestation (DAA) [7] is a group type of anonymous signature
scheme, which allows users in a group to sign messages such that the signatures
can be verified using a group public key, and the actual signers’ identities are
not revealed (beyond the fact that they belong to the group). Unlike group
signatures [21], DAA signatures are not traceable, there is no group tracer who
can find out which signer created a given signature. However, DAA has two
properties that aim to stop a malicious signer from abusing anonymity: rogue
key-based revocation and user-controlled linkability. These two properties were
designed for using DAA in a remote attestation service that allows a Trusted
Platform Module (TPM) to serve as a root of trust for attesting to the host
platform that it is embedded in. The first property guarantees that a TPM whose
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key has been revealed will not be allowed to make any attestation reports. The
second property allows a user to include a basename in the signature. If the same
basename is used for two signatures then they can be linked, even though the
anonymity of the signer is maintained. This property allows a verifier to build
a revocation list based on a link token which is a deterministic function of the
TPM’s key and a basename.

When using a TPM in a platform’s attestation service, the group signer’s role
is split into two with a principal signer (the TPM) and an assistant signer (the
host). They jointly create attestation reports on the state of the platform. These
reports include information on the boot sequence and the software running in
the host. These attestation reports convince a remote verifier that the computer
platform it is communicating with is running on top of the trusted computing
technology and using the correct software and hardware. Using DAA allows such
attestations to be made in a privacy-preserving manner. That is, the verifier can
check that an attestation report originates from a legitimate TPM, but it does
not learn the identity of the particular TPM that generated the DAA signature.

The first RSA-based DAA scheme was standardised as part of the Trusted
Computing Group’s TPM 1.2 specification [53] published in 2004. The TPM
specification was updated in 2014 and this newer TPM 2.0 specification [54] sup-
ports elliptic curve based DAA (EC-DAA) and an Intel variant called Enhanced
Privacy ID (EPID) [11]. All of these versions of DAA (RSA-DAA, EC-DAA and
EPID) have also been standardised by ISO/IEC as standard ISO/IEC 20008-
2 [42]. Since the first proposal of DAA, many extensions and works to improve
security and efficiency have been proposed [8–10,13,15,17,18,23,26–30,38,59].
Researchers have also paid attention to studying the security model and proofs
of DAA, e.g. [16,27,56,58].

As reported by the Trusted Computing Group (TCG), which is the industry
standards body that develops the TPM specifications, more than a billion devices
include TPM technology; in particular almost all enterprise PCs, many servers
and embedded systems make use of the TPM as trusted hardware anchors.

Authentication and attestation are important mechanisms used to protect
computer systems and with increasing attention and awareness being given to
privacy concerns, practical interest in DAA is growing. An anonymous attesta-
tion service is particularly important in automotive applications such as vehicle-
to-vehicle communication, where the tracking of drivers should be prevented but
the authenticity of the communication must also be guaranteed [39,57]. A DAA
protocol has also been integrated into the Fast IDentity Online (FIDO) authen-
tication framework [14]. Another DAA-based application is a privacy-enhancing
cloud service architecture to protect user’s data, using DAA to let users control
the extent of data sharing among their service accounts [55].

DAA schemes that are currently supported by the TPM are based on either
the factorization problem (for RSA-DAA) or the discrete logarithm problem (for
EC-DAA and EPID). Since the factorization and discrete logarithm problems
are known to be vulnerable to quantum computer attacks, all standardised DAA
schemes are not post-quantum secure, i.e. an adversary with a powerful quantum
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computer could break the TPM’s security and privacy. There is therefore a need
to update the standard DAA schemes to be quantum resistant. Many proposed
post-quantum cryptographic primitives are built on the top of code-, hash-,
lattice-, isogeny- and multivariate-based problems, and could possibly be used
as the basis for the development of post-quantum DAA schemes. Recently, El
Bansarkhani et al. [1], El Kassem et al. [34,35,44], Chen et al. [24], and Chen et
al. [22] proposed several post-quantum DAA schemes from lattice assumptions.
Due to their expensive storage and computational cost, research in lattice-based
DAA is still ongoing.

Among all post-quantum approaches, the symmetric key approach is consid-
ered as the most conservative approach. The security of symmetric primitives
is the most well-understood and easier to evaluate, hence it serves as a safety
net if the security of other approaches were endangered by newly discovered
threats. Symmetric primitives have been used to build several variants of anony-
mous signature schemes, such as group signatures [12,33,45,52,60,61], ring sig-
natures [36,45] and EPID [5]. However, due to the use of a single Merkle tree
for membership credentials in a group, these group signature and EPID schemes
can only handle a small group size, which is not suitable for TPM use.

Our Contribution. In this paper, we propose the first DAA scheme from sym-
metric primitives, which meets all the requirements on DAA, particularly:

– Signer splitting: To allow the DAA signer role to be split between a TPM
and its host, we introduce a novel approach to splitting an MPC-in-the-Head
scheme into two portions. The TPM keeps the key material secure and per-
forms a small part of the work. Most of the work necessary is done by the
host. The TPM and the host’s contributions work together seamlessly to form
a DAA signature.

– Support a large group size: our DAA scheme can support a large group size
(up to 260). To achieve this, we make use of a slightly modified SPHINCS+
signature rather than a Merkle signature as a group membership credential.

– Security proof: the security of the proposed DAA scheme is proved under the
Universal Composability (UC) model [16].

The remaining part of this paper is arranged as follows: Sect. 2 describes
relevant preliminaries, Sect. 3 presents the proposed DAA construction, Sects. 4
to 7 provide security notions and proofs, and finally Sect. 8 concludes this paper.

2 Preliminaries

2.1 Hash-Based Signatures

Digital signature schemes can be built exclusively using cryptographic hash func-
tions. In a hash-based signature scheme, a private key is composed of a series of
randomly generated strings, while the corresponding public key is obtained by
applying hash functions to the private key. Early hash-based signature schemes,
such as the Lamport scheme [47] and the Winternitz scheme [48], were one-time
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signatures (OTS), meaning that each key pair can only be used to sign a single
message. The Merkle signature scheme [48] is the first hash-based few-time sig-
natures (FTS). It generates several OTS key pairs and aggregates their public
keys using a Merkle tree. The root of the tree serves as the overall public key.
Every signature uses one OTS private key, and it is comprised of the correspond-
ing OTS and the Merkle tree authentication path for the OTS public key. As
a result, the verifier can authenticate the signature using only the Merkle tree
root. More recent FTS schemes, such as FORS [3], can be more efficient, as they
utilize a large set of secret random strings that can be obtained from a pseu-
dorandom function applied to the private key. Signatures are then generated by
selecting elements from the set based on the message to be signed. While each
signature discloses some secret strings in the set, the set size is large, and the
number of signatures can be controlled to make it infeasible to forge a signature
by mixing and matching secret strings from previously generated signatures.

All previously discussed multi-time signature schemes are characterized as
stateful, as the signer is required to maintain a state containing information
such as the number of signed messages and the keys utilized. In comparison,
SPHINCS+ [3] is a stateless hash-based signature scheme. It employs a hyper-
tree, i.e., a tree of trees, to organize OTS and FTS key pairs. Each SPHINCS+
signature constitutes a chain of signatures, with the initial signature Σ0 being
generated from the message, and each subsequent signature Σi being a signature
of the public key that verifies the preceding signature Σi−1. By using the root
public key, the authenticity of the signature chain can be verified. Although
SPHINCS+ also has an upper limit on the number of signatures that can be
generated per key pair, it can be set to an extremely large value (e.g. 260),
making it highly unlikely to reach this limit in practical scenarios. SPHINCS+
has been chosen as one of the three digital signature schemes by the National
Institute of Standards and Technology (NIST) to become a part of its post-
quantum cryptographic standard [49].

2.2 MPC-in-the-Head and Picnic-Style Signatures

This is a paradigm for zero-knowledge proofs introduced by Ishai et al. [40].
Roughly speaking, given a public value x, the prover needs to prove knowing
a witness w such that f(w) = x. To do so, the prover simulates, by itself, an
MPC (multi-party computation) protocol between m parties that realizes f ,
in which w is secretly shared as an input to the parties. After simulation, the
prover commits to the views and internal state of each individual party. Next,
the verifier challenges the prover to open a subset of these commitments, checks
them and decides whether to accept or not. If the MPC realizes f properly,
then obviously this protocol is complete, meaning a valid statement will always
be accepted. The protocol is also zero-knowledge because only the views and
internal states of a subset of the parties are available to the verifier, and by
the privacy guarantee of the underlying MPC protocol, no information about
w can be leaked. For soundness, if the prover tries to prove a false statement,
then the joint views of some of the parties must be inconsistent, and with some
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probability, the verifier can detect that. The soundness error of a single MPC
run can be high, but by repeating this process independently enough times, the
soundness error can be made negligible. The interactive ZK proofs can be made
non-interactive through techniques such as Fiat-Shamir transformation.

There are multiple frameworks for constructing MPC-in-the-head ZK proofs,
e.g., IKOS [40], ZKBoo [37], ZKB++ [20], KKW [45], Ligero++ [4], Limbo [51],
BBQ [50], Banquet [2], BN++ [43], Rainer [31] and AIMer [46]. They follow
the same paradigm, but are different in the underlying MPC protocols and have
different concrete/asymptotic efficiency. In this paper, to describe our scheme,
we do not need to touch the low level details, hence we will use MPC-in-the-head
(for Boolean circuits) in an abstract way. We will use the following syntax to
describe a ZK proof:

π = P{(public params); (witness)|relation to be proved}
For example, to prove the same key sk is used in two different instantiations of
a pseudorandom function F with different data inputs, we write:

π = P{(C1, P1), (C2, P2)); (sk)|C1 = F (sk, P1) ∧ C2 = F (sk, P2)}
MPC-in-the-head has been used to generate signature schemes from a sym-

metric key setting. As the first scheme is named Picnic [19,20,62], this type of
signature is called a Picnic-style signature, in which the secret signing key is
k and the public verification key is a pair (c, p), and the key pair satisfy the
equation c = E(k, p) where E is a block cipher, k is a secret key, and p and c are
respectively a plaintext and ciphertext block. Signing a message m essentially is
to generate a non-interactive MPC-in-the-head proof of knowing the private key:

π = P{(c, p)); (k)|c = E(k, p)}(m)

Note that this signature is based on the Fiat-Shamir transformation. The mes-
sage m is included as a part of the input for the challenge hash in the transfor-
mation. Again, to describe our scheme, we do not need to explain the details of
the E algorithm, and any secure Picnic-style signature scheme can be used.

2.3 DAA Concept

A DAA scheme involves the following players:

– An issuer manages the group membership, decides who can be a group
member, and issues group membership credentials.

– Group members create DAA signatures. Each member is formed by two
entities: the TPM serves as a principal signer and the host an assistant signer.

– Verifiers verify DAA signatures. A verifier also has two other roles: as a
linker to check whether two given signatures using the same basename were
created by the same signer or not; as a revocation authority to decide
whether a group member should be removed from the group based on the
verifier local revocation.



570 L. Chen et al.

A DAA scheme consists of the following algorithms/protocols:

– Init(n): In the initialization algorithm, the issuer takes a security parameter
n as the input, and outputs a master (group) key pair (mpk, msk). The
master public key mpk is made public and the master secret key msk is
stored privately by the issuer. In all other algorithms and protocols, we will
assume mpk along with the security parameter n as an implicit input for all
parties. The issuer also initializes its internal states.

– Join(msk): the joining protocol is an interactive protocol between the issuer
and the user (a TPM and its host) who wants to join the group. The issuer
has a private input msk and the user does not have input. At the end of the
protocol, the issuer outputs a decision: accept or reject. If reject, then
stop. If accept, the user obtains its signing key gsku = (sku, credu) where
sku is a secret key, and credu is a group membership credential. sku is chosen
and held by the TPM, and credu is generated by the issuer and is given to
the host. The issuer also updates its internal states.

– Sign(gsku, msg, bsn): the signing algorithm allows a TPM and its host to
produce a signature Σ on a message msg ∈ {0, 1}∗ using its signing key gsku.
If a basename bsn �=⊥, Σ will include a link token.

– Verify(msg, bsn,Σ,keyRL, linkRL): the verification algorithm allows a ver-
ifier to verify whether a signature Σ is a valid signature of msg/bsn and
whether the signing key has been listed on a rogue key list keyRL or whether
a link token in the signature has been listed on a link revocation list linkRL.

– Link(msg1, Σ1,msg1, Σ2, bsn): the linking algorithm allows a verifier to check
whether given two DAA signatures Σ1 and Σ2 with the same bsn value are
signed using the same gsku or not.

– Revocation the revocation algorithm allows a verifier to add a revealed signing
key in keyRL and to add a link token from a signature generated by a revoked
signer in linkRL.

A DAA scheme needs to satisfy multiple security requirements, including:

– Correctness covers three aspects: (1) an honest user can successfully join
the group, despite the existence of malicious users; (2) a signature generated
by an honest and not revoked group member should always be valid when
being verified; (3) user-controlled linkability, i.e., two valid signatures with
the same bsn values and signed under the same gsku should be linked to each
other.

– Anonymity means that a DAA signature does not reveal the identity of
its signer, i.e., an adversary cannot distinguish which one of the two honest
signers has signed a targeted message while both signers and the message are
at the adversary’s choice. Furthermore, given two signatures, w.r.t. two dif-
ferent basenames, the adversary cannot distinguish whether both signatures
were created by one honest signer or two different signers.

– Non-frameability means that even if the rest of the group, as well as the
issuer and the host of an honest TPM, are corrupted, they cannot falsely
attribute a signature to the TPM who did not produce it. This property
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covers three special cases: (1) no adversary can create a signature w.r.t. a
basename that links to another signature created by an honest TPM for the
same basename; (2) when the issuer and all TPMs are honest, no adversary
can provide a signature on a message msg w.r.t. a basename bsn when no
TPM signed this (msg, bsn) pair; (3) When the issuer is honest, an adversary
can only sign in the name of corrupt TPMs. More precisely, if n TPMs are
corrupt, the adversary can create at most n unlinkable signatures for the same
basename.

These requirements will be described in detail under the DAA UC model
in Sect. 6. Note that the host in a secure DAA scheme is trusted to correctly
execute the protocol and to maintain anonymity. This trust requirement is nec-
essary, as the host is a contributor to a DAA signature, so a malicious host is
able to not provide correct input or to break anonymity by demonstrating the
connection between a DAA signature and the corresponding TPM’s public key
and credential. We assume that the host represents the user so it is interested in
creating valid DAA signatures and maintaining user privacy. However, for non-
frameability, there is no requirement for the host to be trusted. Without the
TPM, the host can neither receive a DAA credential nor generate a DAA signa-
ture. Several types of TPM have been considered in applications: (1) concrete
hardware TPM, (2) integrated TPM, (3) firmware TPM, (4) virtual TPM, and
(5) software TPM. Although the TPM tamper-resistant property level decreases
from the highest case (1) to the lowest one (5), the trust requirements on the
host are the same.

3 Construction

3.1 F-SPHINCS+ and M-FORS

To construct a DAA scheme from symmetric primitives, the first design choice
is to select group membership credentials. A credential essentially is a signature
on the user’s keys generated by the issuer. Because we use only symmetric prim-
itives, the credential can be in the form of the following: (1) a Merkle signature;
(2) a SPHINCS+ style signature; (3) a Picnic-style signature. The first option
is ruled out because it cannot handle a large group size. The last option is also
ruled out because of practical considerations: we have to create a ZKP on that
another ZKP (i.e. the Picnic-style signature) is valid. Unfortunately, the circuit
for verifying a Picnic-style signature is too big, which results in prohibitively
high computation costs and large proof size. Therefore, we focused on utilizing
a SPHINCS+ style signature as the group credential.

In the above descriptions, we said “SPHINCS+ style” rather than
“SPHINCS+”. This is because SPHINCS+ is still too heavy when being veri-
fied in zero knowledge. The main problem comes from the WOTS+ signature
scheme. In WOTS+, verification involves verifying k blocks of d-bit strings.
When verified in the clear, each block requires at most 2d −1 hash operations to
verify and the exact number of hash operations required depends on the content
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of the block. However, in a zero-knowledge proof, we will have to hash each block
exactly 2d − 1 times then choose the right hash value in the chain blindly, to
ensure the verifier is oblivious about the content of the block. Hence in total,
(2d − 1) · k hashes are required to verify a WOTS+ signature. Plug in concrete
parameters, that means 510 hashes at 128-bit security, and 990 hashes at 256-
bit security. The circuit implementing the hash function typically has 103 AND
gates. So verifying one WOTS+ signature requires a circuit with over a million
AND gates and in total we need to verify h WOTS+ signatures, where h is at
least 7 in SPHINCS+.

To fix the problem, we propose a new variant of SPHINCS+ called F-
SPHINCS+. As depicted in Fig. 1, in F-SPHINCS+ we use a hyper-tree that
is a tree of M-FORS trees. The M-FORS signature scheme is depicted in Fig. 2.
Recall that FORS is a few-time signature scheme such that each key pair can be
used to sign up to q signatures. M-FORS, short for Merkle FORS, differs from
FORS in that, the public key is generated as the root of a Merkle tree. The leaf
nodes in this Merkle tree are the root nodes of Merkle trees that authenticate

Fig. 1. F-SPHINCS+ signatures.

Fig. 2. M-FORS signatures.



Hash-Based Direct Anonymous Attestation 573

each block of the hash value being signed. So with M-FORS, the hyper-tree in
F-SPHINCS+ is a q-ary tree such that the public key in a child node is signed
by the signing key in the parent node, and the signing key in the leaf node signs
the actual message hash. An F-SPHINCS+ signature then contains a list of h+1
signatures, where h is the height of the hyper-tree. The benefit of M-FORS over
XMSS that is used in the original SPHINCS+ scheme is the lower verification
cost. To verify a message hash that is k blocks of d-bit string, the cost is d·k+k−1
hash operations. This is much less than the (2d − 1) · k hashes for verifying a
WOTS+ signature. On the other hand, the signing time is more than that of
WOTS+. However, this is a lesser concern because in our case signing will be
done in the clear (while verification needs to be done with zero knowledge).

We now describe M-FORS and F-SPHINCS+. M-FORS consists of the algo-
rithms below. For readability and the page limitation, we abstract away certain
low-level details such as how the Merkle trees are built.

– keyGen(seed, n, d, k, aux): it takes as input a random seed seed, a security
parameter n, two positive integers d and k, and aux that is either an empty
string or some optional data. If seed is an empty string, an n-bit random
string will be chosen and assigned to it. Then a pseudorandom function
prf is used to expand seed into k lists (x(0), · · · ,x(k−1)), where each x(i)

contains 2d distinct n-bit pseudorandom strings. Then k + 1 Merkle trees
T = (mt0, · · · , mtk) are built. In particular, each of mt0, · · · , mtk−1 has 2d

leaf nodes. The jth leaf node in mti is the hash of x(i)
j . The leaf nodes of

mtk are r0, · · · , rk−1 that are the roots of (mt0, · · · , mtk−1). keyGen outputs
(pk, sk, param), such that the public key pk = rk where rk is the root of mtk,
the private key sk = seed, and the public parameters mp = (n, d, k, aux).

– sign(sk,MD,mp): to sign a message hash MD ∈ {0, 1}k·d, parse it into k
blocks, each block is interpreted as a d-bit unsigned integers (p0, · · · , pk−1).
Then for the i-th block pi, x(i) and mti (obtained by expanding sk) are used
to generate authpath(i), which is the authentication path of the pi-th leaf
node in the i-th Merkle tree. Then (x(i)

pi , authpath(i)) is put into the signa-
ture. The signature is a list of k pairs σ = {(x(0)

p0 , authpath(0)), · · · , (x(k−1)
pk−1 ,

authpath(k−1))}.
– recoverPK(σ,MD,mp): This algorithm outputs the public key recovered from

a signature σ and the message hash MD. First MD is parsed into k blocks
(p′

0, · · · , p′
k−1). Then for 0 ≤ i ≤ k − 1, σi = (xi, authpath(i)) and p′

i are
used to re-generate a Merkle tree root and get the value r′

i (p′
i is used to

determine the order of the siblings at each layer). Finally, r′
0, · · · , r′

k−1 are
used to compute mt′

k and its root r′
k is returned.

– verify(σ, pk,MD,mp): to verify a signature, call recoverPK(σ,MD,mp). If the
recovered public key is the same as pk, accept the signature, otherwise reject.

The hyper-tree nodes in F-SPHINCS+ are addressed by a pair (a, b) where
a is its layer and b is its index within the layer. The root node is at layer 0, and
the layer number of all other nodes is the layer number of its parent plus 1. All
nodes within a layer are viewed as an ordered list, and index each node in the
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list from left to right, starting from 0. F-SPHINCS+ consists of the following
algorithms:

– keyGen(n, q, h): This algorithm outputs (sk, pk, fp). It takes as input a secu-
rity parameter n, the degree of non-leaf nodes in the hyper-tree q, and
the height of the hyper-tree h. Then it chooses d, k that are the parame-
ters for the underlying M-FORS signature scheme. The public parameters
are fp = (n, q, h, d, k). It also chooses an n-bit random string as the pri-
vate key sk. It generates the M-FORS key pair for the root node by calling
genNode((0, 0), sk, fp), and set the public key pk to be the M-FORS public
key pk0,0.

– genNode(nodeAdr, sk, fp): This algorithm generates a node in the hyper-
tree given the address nodeAdr = (a, b). With the private key sk used as
a seed, the algorithm first generates a subseed with a pseudorandom func-
tion seeda,b = prf(seed, a||b), then it calls M-FORS key generation algorithm
M-FORS.keyGen (seeda,b, n, d, k, a||b). The output (pka,b, ska,b,mpa,b) is the
content of the node at (a, b).

– mHash(msg, gr):This algorithm produces message hash and the leaf node
index used in generating the F-SPHINCS+ signature. The input msg is
the message to be signed, gr is a random string. The algorithm produces
MD||idx ← H3(msg||gr), where H3 : {0, 1}∗ → {0, 1}d·k+(log2 q)·h is a public
hash function, MD is d ·k bit long and idx is interpreted as an (log2 q) ·h bit
long unsigned integer.

– sign(msg, sk, fp): This algorithm produces the F-SPHINCS+ signature as
a chain of M-FORS signature along the path from a leaf node to the root
node of the hyper-tree. It chooses an n-bit random string gr. Then obtain
MD||idx ← mHash(msg, gr). A leaf node at (h, idx) is then generated by
calling genNode((h, idx), sk, fp). The M-FORS signing key skh,idx is used to
sign MD and generate σ0. The parent node of (h, idx) is then generated by
calling genNode((h−1, b), sk, fp) where (h−1, b) is the address of the parent
node. Then the parent secret key skh−1,b is used to sign the child public key
pkh,idx, and the signature is σ1. Repeat the signing process until obtaining
σh that is signed by sk0,0 on pk1,b′ for some b′. The F-SPHINCS+ signature
is then Σ = (gr, (σ0, · · · , σh)).

– verify(msg,Σ, pk, fp): This algorithm verifies every M-FORS signature
chained up in Σ. Given Σ = (gr, (σ0, · · · , σh)), first compute MD||idx ←
H3(msg||gr). Then obtain pk0 ← recoverPK(σ0,MD,mp0), pk1 ←
recoverPK(σ1, pk0,mp1), repeat until pkh ← recoverPK(σh, pkh−1,mph). If
pk = pkh, accept the signature, otherwise reject.

Remark 1. In M-FORS algorithms, we use two tweakable hash functions [3]
H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ → {0, 1}d·k. Almost all hash operations
are done using H1. H2 is only used to map the k-th Merkle tree to the k · d-bit
M-FORS public key, so that when used in F-SPHINCS+ the public key is of
the right size to be signed by the parent node. If M-FORS is to be used as a
stand-alone signature scheme, these two hash functions can be the same.
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Remark 2. The tweakable hash functions follow Construction 7 for tweakable
hash functions in [3]. Namely, the hash of an input M is produced by calling a
hash function with additional input as H(P||ADD||M), where P is a public hash
key and ADD acts as the tweak. The tweak is the address where the hash operation
takes place within the hyper-tree, and it is a five part string a1||b1||v||a2||b2:
– (a1, b1), where 0 ≤ a1 ≤ h, 0 ≤ b1 ≤ 2a1 − 1, is the address of an hyper-tree

node. Within the node, an M-FORS key pair that is based on k + 1 Merkle
trees are stored.

– 0 ≤ v ≤ k is the index of a Merkle tree in the M-FORS key pair stored in the
hyper-tree node (a1, b1). When 0 ≤ v ≤ k − 1, the Merkle tree (of height d) is
used to sign the v-th block of the message; when v = k, the Merkle tree (of
height 	log2 k
) is used to accumulated the roots of all the previous Merkle
trees into the public key.

– (a2, b2) is the address of an Merkle tree node. When 0 ≤ v ≤ k−1, 0 ≤ a2 ≤ d
and 0 ≤ b2 ≤ 2a2 −1; When v = k, 0 ≤ a2 ≤ 	log2 k
−1 and 0 ≤ b2 ≤ 2a2 −1.

The security analysis of F-SPHINCS+ is given in Sect. 4.

3.2 The DAA Scheme

Overall, the DAA signature scheme is designed in this way: the issuer generates
an F-SPHINCS+ key pair as the group master key pair. When a user (including
a TPM and its host) joins the group, the TPM generates a secret signing key.
The issuer decides whether the user should be admitted into the group, if so a
group credential is generated as an F-SPHINCS+ signature on an entry token
(a commitment of the user’s signing key). The credential is accessible to the
host. When signing a message, the TPM and its host work together to produce
an MPC-in-the-head (MPCitH) non-interactive zero-knowledge (NIZK) proof to
show it possesses a group credential and the signature is generated on the hash
of the message and a random data string under the key authorized by the group
credential. We have created a novel approach that allows the TPM and its host
each to make a partial signature and a DAA signature is a combination of these
two. In particular, the TPM proves its possession of the signing key and the host
proves the credential. These two proofs are glued seamlessly in a zero-knowledge
manner. Verifying the DAA signature involves checking the NIZK proof so the
verifier is convinced of a group membership. Each DAA signature also includes
a link token, essentially it is a pseudorandom function output of a basename
bsn produced using the signing key as a secret. This link token will be used for
user-controlled linkability, key-based revocation and link-based revocation.

We now present the concrete construction of algorithms and protocols.

– Initialization Init(n): Given a security parameter n, the issuer does the
following: Choose the hyper-tree node degree q and the tree height h, the
values (d, k) for the underlying M-FORS scheme, a pseudorandom function
prf, three hash functions H1 : {0, 1}∗ → {0, 1}n, H2 : {0, 1}∗ → {0, 1}d·k,
H3 : {0, 1}∗ → {0, 1}d·k+(log2 q)·h, and a keyed pseudorandom function F :
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{0, 1}n×{0, 1}n → {0, 1}n; Run (sk, rpk, gp) ← F-SPHINCS+.keyGen(n, q, h),
where (rpk, sk) is the F-SPHINCS+ key pair, gp = (n, q, h, d, k) are the
hyper-tree parameters; Publish mpk = (gp, rpk, H1, H2, H3, F, prf) and
keep msk = sk private. The issuer provides a non-interactive zero-knowledge
(NIZK) proof πI to demonstrate that the key pair is generated correctly,
meaning that the secret and public keys are associated with each other.
This NIZK proof can be achieved by signing its own public key rpk using
F-SPHINCS+.sign, which is similar to the issuer creating a group membership
credential in the joining protocol described below. In addition, the issuer ini-
tializes a group list GL, and each verifier initializes two revocation lists: a
key revocation list keyRL and a link token revocation list linkRL. All these
lists are empty when initialized.

– DAA joining protocol Join(msk,mpk): The joining protocol is run between
a user (a TPM and its host) and the issuer. Note that this protocol involves
the authentication of the TPM by the issuer. The issuer has an authentic
copy of the TPM’s endorsement key, which is used to establish a secure and
authenticated channel between the TPM and the issuer. In the following
protocol description, it is assumed the existence of such a channel, and the
reader is recommended to find the detail regarding how to establish such a
channel from [25]. The protocol includes the following steps:

1. A unique session ID u is assigned to the user. For simplicity we can think
the session ID as a monotonically increasing counter, and each invocation
of the joining protocol will increase it by 1. Alternatively, the value u can
be computed from the TPM’s endorsement key, which is unique to the
TPM.

2. The TPM chooses a random secret key: sku
R← {0, 1}n as its signing key.

3. The host computes the group identifier gid = H1(rpk) and sends it to its
TPM.

4. The TPM then generates and returns its entry token etu = F (sku, gid)
together with the NIZK proof πu:

πu : P{(gp, gid, etu); (sku)|etu = F (sku, gid)}

5. The host then chooses a random string cr
R← {0, 1}n and computes a

commitment ct = H1(etu||cr). The host sends (u, ct) to the issuer to
request joining the group.

6. Upon receiving (u, ct), the issuer checks whether an entry with the same
u is in GL. If yes, rejects the user. Otherwise, if the issuer would like
to accept the user, the issuer chooses a random string gru

R← {0, 1}n

and sends it to the host, who responds by sending (etu, cr, πu) back.
The issuer verifies ct = H1(etu||cr) and the NIZK proof πu. If both
verifications pass, the issuer computes the group credential (gru,S) ←
F-SPHINCS+.sign(etu||gru,msk, gp); otherwise the issuer rejects the user.
The credential is sent to the TPM through the secure and authenticated
channel between the TPM and issuer and then forwarded it to the host.
The issuer adds (u, etu, gru,S) to GL.
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7. The user, if accepted by the issuer, sets its group membership secret key
gsku = (sku, gru, S). More specifically, the TPM will record sku and the
host will record the remaining values.

– DAA signature generation DSig(gsku,msg, bsn): To produce a DAA sig-
nature on a message msg and a basename bsn, the TPM and its host jointly
create a DAA signature using gsku = (sku, gru, S) as follows:

1. The host computes the link identifier lid = H1(bsn), the signature iden-
tifier sid = H1(msg||str), where str

R← {0, 1}n, and the group identifier
gid = H1(rpk), and sends these three identifier values to the TPM.

2. The TPM computes the group membership entry token etu = F (sku, gid),
the signature link token slt = F (sku, lid) and the signature signing token
sst = F (sku, sid) together with the NIZK proof πDT . The TPM then sends
sst and πDT back to the host.

πDT :P{(gp, sid, gid, lid, slt, hk, cetu); (sku, sst, etu)|
slt = F (sku, lid) ∧ sst = F (sku, sid) ∧ etu = F (sku, gid)
∧ hk = H1(sst) ∧ cetu = F (sst, etu)}

Note that πDT proves that these three tokens are computed under the same
sku and also provides a hook (hk, cetu), which allows the host to carry
on proving the group credential for etu.

3. The host then computes mtu||idx = H3(etu||gru) and com =
H1(sst||pkh|| · · · ||rpk)}, where pkh, · · · , rpk are the public keys for veri-
fying the signatures in S, from the layer h to layer 0 (the public key at the
layer 0 is rpk). Here H3(etu||gru) is used as F-SPHINCS+.mHash(etu, gru).
The host also computes an NIZK proof πDH :

πDH :P{(gp, rpk, slt, com, hk, cetu); (etu, sst, gru, S = {σh, · · · , σ0})|
hk = H1(sst) ∧ cetu = F (sst, etu) ∧ mtu||idx = H3(etu||gru)
∧ pkh = recoverPK(σh,mtu, (n, d, k, (h, idx)))

∧ pkh−1 = recoverPK(σh−1, pkh, (n, d, k, (h − 1, � idx

q
�))) ∧ · · ·

∧ rpk = recoverPK(σ0, pk1, (n, d, k, (0, 0)))
∧ com = H1(sst||pkh|| · · · ||rpk)}

4. The signature Σ = (str, slt, com, πD), where πD is the combination of
πDT and πDH , i.e., πD = (πDT , πDH). hk and cetu appearing in both πDT and
πDH play the role that glues these two MPCitH instances together. From
a verifier’s point of view, πD produces the following NIZK proof:
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πD :P{(gp, rpk, gid, sid, lid, slt, com);
(sku, etu, sst, gru, S = {σh, · · · , σ0})|
slt = F (sku, lid) ∧ sst = F (sku, sid) ∧ etu = F (sku, gid)
∧ mtu||idx = H3(etu||gru)
∧ pkh = recoverPK(σh,mtu, (n, d, k, (h, idx)))

∧ pkh−1 = recoverPK(σh−1, pkh, (n, d, k, (h − 1, � idx

q
�))) ∧ · · ·

∧ rpk = recoverPK(σ0, pk1, (n, d, k, (0, 0)))
∧ com = H1(sst||pkh|| · · · ||rpk)}

More details of πD will follow in Sect. 3.3.

– DAA signature verification DVf(msg, bsn, Σ, keyRL, linkRL) : Given
Σ = (str, slt, com, πD),msg, bsn, together with two revocation lists keyRL
and linkRL, the verifier first rejects Σ if (bsn, slt) ∈ linkRL. Otherwise,
the verifier recomputes lid = H1(bsn), and ∀sk∗

u ∈ keyRL computes slt∗ =
F (sk∗

u, lid). If any slt∗ = slt, rejects Σ. Otherwise, the verifier verifies πD.
Accept if the verification succeeds; otherwise reject.

– DAA link algorithm Link(Σ,Σ′) : Given two valid DAA signatures Σ =
(str, slt, com, πD) and Σ′ = (str′, slt′, com′, π′

D) associated with the same bsn,
the verifier checks if slt = slt′ holds. If so output linked, otherwise not linked.

– DAA revocation There are two cases to revoke the group membership of the
user u: (1) Given sku, a verifier adds it in keyRL1; (2) Given a pair (bsn, slt)
associated with a DAA signature signed by the user u to be revoked, a verifier
adds this pair in linkRL.

3.3 The Proof πD

The most important part in the DAA signature Σ = (str, slt, com, πD =
(πDT , πDH)) is the proof πD. In this section we dissect it to show the design rationale
and explain two changes we made to MPC-in-the-Head, which greatly improves
the efficiency and may be of independent interest.

As Σ is a signature of a message msg, the foremost thing πD needs to prove
is that the signer knows a group signing key gsku = ( sku, gru, S) and it was
used to sign msg. Besides that, πD also needs to prove that gsku is authorized
by the issuer. To do that, in πD the following is done:

1. It proves that the same signing key sku is used to generate three values etu,
slt and sst, where etu is bound with the group root public key rpk (as it is
computed from gid = H1(rpk)), slt is bound with the base name bsn (as it
is computed from lid = H1(bsn)), and sst is bound with the message msg
and random string str (as it is computed from sid = H1(msg||str)). slt is
revealed in Σ, and etu and sst are hidden.

1 It is an open problem for creating a validation check on keyRL that doesn’t take
O(N) time, where N is the size of the list.
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2. It proves that two revealed values slt and com are produced using the same
sku. It binds com to sst (by using sst in computing com). The commitment
com also binds Σ to all public keys used to blindly verify the signatures in S.

3. It proves that mtu, which is computed from etu, is signed under a private key
in a leaf node of the hyper-tree generated by the group issuer. This is done by
verifying all the signatures in S such that mtu and σh produce the leaf public
key pkh, which in turn with σh−1 produces pkh−1, and so on until reaching
the root. The last public key produced is rpk which is published by the group
issuer. All public keys recovered in this process match those committed in the
commitment com.

The first challenge for implementing πD with MPCitH comes from splitting
the signer role into two parts, the principal signer TPM and the assistant signer
host, where the TPM holds sku and the host holds S. A straightforward choice
is to let the TPM and host be involved in the same MPCitH instance. This will
result in a large communication cost between these two entities. Our solution is
to split πD into two MPCinH instances, πDT and πDH , each is performed by one
entity. The difficulty now is how to glue these two instances together seamlessly
in a zero-knowledge manner. We let (sst, etu) serve as a hidden hook and hk =
H1(sst) and cetu = F (sst, etu) as a commitment of sst and etu. Both πDT and πDH

include the same MPCitH proofs of hk and cetu. The collision-resistance property
of the functions F and H1 guarantees that the same pair of (sst, etu) are in πDT

and πDH . The preimage resistance property of these two functions guarantees that
neither etu nor sst is revealed. The MPC instance of πDT is shown in MPCitH 1.

MPCitH 1: πDT – MPC instance for the TPM’s part of πD

Public: gp = (n, q, h, d, k), sid, gid, lid, slt
Private: �sku�
Output: slt′, hk, cetu

Check: slt′ = slt ∧ hk′ = hk ∧ cet′
u = cetu

1 slt′ = MPC_F(�sku�, lid);
2 �sst� = MPC_F(�sku�, sid);
3 �etu� = MPC_F(�sku�, gid);
4 hk′ = MPC_H1(�sst�);
5 cet′

u = MPC_F(�sst�, �etu�);

Let us first introduce the notation used in such an MPCitH algorithm: �x�
means that the value x is secret-shared when using an MPC algorithm, meaning
that it is known by the prover but not the verifier. MPC_X means the MPC
subroutine implementing the function X (e.g. MPC_F, MPC_H1, MPC_H2 and
MPC_H3 implement F , H1, H2 and H3). This notation will be used throughout
the paper. Based on [41], in an implementation MPC_F can be used as a building
block for the hash functions that we need.

In MPCitH 1, the TPM performs the MPC_F algorithm four times and
the MPC_H1 algorithm once when computing the signature link token slt =
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MPC_F(�sku�, lid), the signature signing token �sst� = MPC_F(�sku�, sid), the
entry token �etu� = MPC_F(�sku�, gid), the hash value hk = MPC_H1(�sst�),
and the connection entry token cetu = MPC_F(�sst�, �etu�). These five opera-
tions are performed in the same MPCinH knowledge-proof routine, where sku,
sst and etu are kept secret. The TPM outputs the proof along with slt′, hk,
and cetu. The proof demonstrates that the same sku value was used in steps 1)
- 3), and steps 4) and 5) are used to pass sst and etu to the host, which allows
the latter to carry on the MPCinH knowledge-proof πDH for the DAA credential
associated with etu. In an implementation this reduces to 5 calls to MPC_F.

The second challenge for implementing πD with MPCitH comes from the cost
of h + 1 M-FORS signature verifications required by the proof in πDH . Recall
that in an M-FORS signature (Sect. 3.1, also the example in Fig. 2), the message
hash to be signed is broken into k blocks, and each block is authenticated with
a Merkle-tree of height d. Then the k Merkle tree roots are organized into a
new Merkle tree whose root is the public key. Verifying the full signature means
to check whether the public key can be recovered from the message hash, the
secret strings corresponding to the hash blocks (x(i)

pi ), and the hashes along the
Merkle tree authentication paths. In total, to verify a single M-FORS signature,
k ·(d+1)+(k−1) = kd+2k−1 hashes are needed, which is in the order of 102 for
a practical setting (with an extra factor of 2 if implementing with MPC_F). The
h+1 factor means that if implemented naively, the MPC used in πDH would need
to call thousands of times the sub-procedure that implements the hash function,
and the size of the circuit for the whole MPC can go easily above a million-gates.
Even worse, to reduce the soundness error, the same circuit needs to be executed
tens to hundreds of times in an MPCitH proof. Thus, a naive implementation of
πDH will result in a very large signature size and a high computational cost.

Fig. 3. M-FORS Patial Verification.

Our more efficient strategy for implementing πDH is: in MPCitH, rather than
repeating t times a MPC procedure in which the M-FORS signatures are fully
verified, we run t′ ≥ k MPC procedures in which the M-FORS signatures are
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partially verified, one block in each run (see the example of partial verification
in Fig. 3). More precisely, we extend the M-FORS with the following algorithms:

– partial-sig(σ,MD, i,mp): to extract a partial signature of the i-th block
of MD from σ = {(x0,authpath(0)), · · · , (xk−1,authpath(k−1))}. The
Merkle tree mtk can be recomputed from σ. The partial signature is ∂σ,i =
(xi,authpath(i), authpath(k,i)) where (xi,authpath(i)) is a copy of the i-
th pair in σ, and authpath(k,i) is the authentication path of ri (the root of
the i-th Merkle tree) in mtk.

– partial-rec(∂σ,i, pi, i,mp): This algorithm recovers the public key from ∂σ,i

and pi. Given ∂σ,i = (x,authpath,authpath′), first compute the Merkle
tree root ri from (x,authpath, pi), then compute the Merkle tree root pk
from (ri,authpath′, i). Output pk.

With partial-rec, only one path is used to recover the M-FORS public key instead
of k paths.

The MPC procedure for proving the v-th block in πDH is shown in MPCitH 2.
The first 2 steps of this algorithm are the same as steps 4) and 5) in MPCitH 1.
This duplication can glue the TPM part πDT and the host part πDH together.

MPCitH 2: πDH – MPC instance for the v-th block in the host’s part of πD

Public: gp = (n, q, h, d, k), rpk, com, v, hk, cetu

Private: �sst�, �etu�, �gru�, �∂σh,v�, · · · , �∂σ0,v�
Output: pk0, hk′, cet′

u, com′

Check: pk0 = rpk ∧ hk′ = hk ∧ cet′
u = cetu ∧ com′ = com

1 hk′ = MPC_H1(�sst�);
2 cet′

u = MPC_F(�sst�, �etu�);
3 �mtu�||�idx� = MPC_H3(�etu�||�gru�);
4 �M� = �mtu�;
5 �COM� = �sst�;
6 for l = h; l ≥ 0; l − − do
7 parse �M� into k blocks �p0�, · · · , �pk−1�, each block is d-bit;
8 �M� = MPC_pRec(�∂σl,v�, �pv�, �idx�, gp, l, v) ;
9 �COM� = MPC_H1(�COM�||�M�);

10 �idx� = ��idx/q��;
11 end
12 com′ = �COM�;
13 pk0 = Reveal(�M�);

The host uses partial signatures in the MPC. Recall that in the group signing
key gsku, a list S = {σh, · · · ,σ0} of h+1 signatures are stored, one for each layer
in the hyper-tree of F-SPHINCS+. The signer can extract a partial signature
for the v-th block from each signature, i.e. {∂σh,v, · · · , ∂σ0,v}. In Line 8, an
MPC subroutine MPC_pRec that implements partial-rec is used. This subroutine
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uses the input to compute the corresponding public key at the l-th layer in the
hyper-tree (stored in �M� and also appended to �COM�). After the last iteration,
�COM� is hashed and �M� is revealed. The results will be checked by the verifier
to see whether they match com and rpk. If so, the signer is likely to possess valid
partial signatures along the path from the idx-th leaf node to the root node in
the hyper-tree.

Why does this strategy make sense? In an MPCitH proof, the same procedure
is run multiple times. Each run has a soundness ε that a cheating prover can
get away without being detected. Thus t runs are needed so that εt is negligibly
small. In our case, the main cost of the MPC procedure comes from verifying all
the M-FORS signatures. The full verification requires every block of the message
digest or the child public key to be verified. Our observation is that if a prover
has to cheat, then it has to cheat in more than 1 blocks with a high probability.
If the prover has to cheat in n out of k blocks, then using partial verification
with t′, such that t′ · n/k ≥ t, ensures that the prover has to cheat in more
than t runs, and hence with a negligible success probability. As we analyzed, an
implementation with full signature verification requires t · (h+1) · (k ·d+2k −1)
calls to the MPC hash procedure. The partial verification based implementation,
on the other hand, requires only t′ · (h + 1) · (d + 1 + 	log k
) MPC hash calls.
The improvement is roughly tk

t′ times.
The soundness analysis of πD is given in Sect. 5.

4 Security Analysis of F-SPHINCS+

The standard security definition for digital signature schemes is existential
unforgeability under adaptive chosen-message attacks (EU-CMA). It can be
extended to few-time signature by limiting the adversary’s call to the sign
oracle to qs times where qs is the maximum number of signatures that the
few-time signature scheme is allowed to generate for each signing key. Let
SIG = (kg, sign, vf) be a qs-time signature scheme, Fig. 4 shows the qs-EU-
CMA game.

Fig. 4. qs-EU-CMA game.
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Definition 1 (qs-EU-CMA). Let SIG be a digital signature scheme. It is said
to be qs-EU-CMA secure, if for any adversary A, the following holds:

Succqs-EU-CMA
SIG (A(n)) = Pr

[
Expqs-EU-CMA

SIG,A (n) = 1
]

≤ negl(n)

Theorem 1. Following the definitions of SM-TCR (single function, multi-
target-collision resistance), SM-DSPR (single function, multi-target decisional
second-preimage resistance), TSR (target subset resilience), and ITSR (inter-
leaved target subset resilience) given in [3], for suitable parameters, n, d, k, h, q,
the F-SPHINCS+ signature is qh-EU-CMA secure if:

– H1 is SM-TCR and SM-DSPR secure;
– H2 is TSR secure with at most q queries;
– H3 is ITSR secure with at most qh queries;
– prf is a secure pseudorandom function.

Proof. To successfully forge an issuer’s signature on a message M chosen by the
adversary, there are the following mutually exclusive cases:

1 Let MD||idx = H3(M ||gr) for some gr. In the forged signature, all secret
strings corresponding to MD = p0|| · · · ||pk−1, i.e. {x(i)

pi }k−1
i=0 , are the same

as generated from leafidx’s secret key. This case consists of the following
sub-cases:
1.1 The adversary learns all secret strings from signatures obtained in the

query phase.
1.2 Some secret strings are not leaked from previous signatures, and for each

of them, the adversary either:
1.2.1 learns it by breaking the pseudorandom function that is used to

expand the secret key into xi;
1.2.2 or learns it by looking at their H1 hash values and find the pre-images.

2 Let MD||idx = H3(M ||gr) for some gr. In the forged signature, some secret
strings corresponding to MD = p0|| · · · ||pk−1, i.e. {x(i)

pi }k−1
i=0 , are NOT the

same as generated from leafidx’s secret key. Then let S be the list of h + 1
M-FORS signatures in the forged signature, we can find i such that when
verifying the i-th signature (0 ≤ i ≤ h), we obtain the same public key as
would be generated by the signer, but for all 0 ≤ j < i, we obtain a different
public key as would be generated by the signer. This means:
2.1 The adversary has found at least one second-preimages of H1 so that

some Merkle trees in the ith signature are computed with the second-
preimages. They end up having the same roots as the trees computed by
the issuer.

2.2 The adversary knows all secret strings corresponding to the public key
produced from verifying the (i−1)th signature. This public key is different
from the public key at the same location generated by the issuer. This
can be done by either:



584 L. Chen et al.

2.2.1 learning all from previous signature queries;
2.2.2 or breaking the pseudoranodm function;
2.2.3 or finding some pre-images of H1.

Given the above, we analyze the F-SPHINCS+ signature scheme through a
series of games:
Game 0: The original EU-CMA game in which the adversary needs to forge a
valid issuer’s signature after qs queries.
Game 1: Exactly as Game 0 except all output of prf are replaced by truly
random n-bit strings. We eliminate from the above list Case 1.2.1 and 2.2.2 by
this modification. Since each call to prf uses a secret key and a distinct value as
input, assuming prf is a pseudorandom function, we have:

|SuccGame0(A(n)) − SuccGame1(A(n))| ≤ negl(n)

Game 2: Game 2 differs from Game 1 in that we consider the adversary lost
if the adversary outputs a forgery by breaking the ITSR security of H3. This
modification eliminates from the above list Case 1.1. The winning condition in
Fig. 4 is changed to:

– Return 1 iff ITSR(H3,M
∗) = 0 ∧ vf(pk,M∗, σ∗) = 1 ∧ M∗ �∈ {Mi}qh

i=1.

The predicate ITSR is defined as the following:

– Let M∗ be the message that the adversary chooses to generate the forgery on,
and gr∗ the random string used by the adversary to compute MD∗||idx∗ =
H3(M∗||gr∗).

– Parse MD∗ = p∗
0|| · · · ||p∗

k−1 where each p∗
j ∈ [0, 2d − 1]. From the above we

obtain a set C∗ = ((idx∗, 0, p∗
0), · · · , (idx∗, k − 1, p∗

k−1)).
– For each message queried in the query phase Mi (1 ≤ i ≤ qh), and gri

the random string, compute MDi||idxi = H3(Mi||gri) and obtain Ci =
((idxi, 0, pi,0), · · · , (idxi, k − 1, pi,k−1)).

– Return 1 iff C∗ ⊆ ⋃qh

i=1 Ci.

We can see that ITSR(H3,M
∗) = 0 iff the adversary can break the ITSR

security of H3. Hence, we have:

|SuccGame1(A(n)) − SuccGame2(A(n))| ≤ SuccITSR
H3,qh(A) ≤ negl(n)

Game 3: Game 3 differs from Game 2 in that we consider the adversary lost
if the forgery contains a second preimage for an input to H1 that was part of
a signature returned as a signing-query response. Here the second preimage can
be included explicitly in the signature, or implicitly observed when verifying the
signature. This eliminates from the above list Case 2.1. Then we have:

|SuccGame2(A(n)) − SuccGame3(A(n))| ≤ SuccSM−TCR
H1,q (A) ≤ negl(n)

Game 4: Game 4 differs from Game 3 in that we consider the adversary lost if
the adversary outputs a forgery by breaking the TSR security of H2, which allows
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the adversary to forge an intermediate signature in S, and then any signature
earlier in the chain. This eliminates from the above list Case 2.2.1. The winning
condition in Fig. 4 is changed to:

– Return 1 iff TSR(H2,M
∗) = 0 ∧ ITSR(H3,M

∗) = 0 ∧ vf(pk,M∗, σ∗) =
1 ∧ M∗ �∈ {Mi}qh

i=1.

The predicate TSR is defined as the following:

– The adversary chooses an intermediate node in the hyper-tree at address
(a, b), and two n-bit string L∗, R∗.

– For each signature obtained in the query phase, if Si includes a signature gen-
erated using the secret key in node (a, b) over the public key in one of its child
node, parse this public key into k blocks, each of d-bit pki = pi,0|| · · · ||pi,k−1,
and generate a set Ci = {(j, pi,j)}k−1

j=0 .
– Compute pk∗ = H2(aux||k||0||0||L∗||R∗), parse pk∗ into p∗

0|| · · · ||p∗
k−1, and

generate a set C∗ = {(j, p∗
j )}k−1

j=0 .
– Return 1 iff C∗ ⊆ ⋃q

i=1 Ci.

Note that each M-FORS public key is the root of a Merkle tree generated from
pseudorandom strings. Also for each intermediate node in a hyper-tree, it has
at most q children, hence no more than q signatures signed by the secret key in
this intermediate node can be obtained by the adversary. So TSR(H2,M

∗) = 0
iff the adversary can break the TSR security of H2. Hence, we have:

|SuccGame3(A(n)) − SuccGame4(A(n))| ≤ SuccTSR
H2,q(A) ≤ negl(n)

Now the cases in which the adversary can forge a signature are all eliminated
except Case 1.2.2 and 2.2.3, which requires the adversary to find a pre-image
of at least one hash value produced by H1. The success probability of finding a
pre-image is as analyzed in [3]:

SuccGame4(A) ≤ 3 · SuccSM−TCR
H1,p (A) + AdvSM−DSPR

H1,p (A) ≤ negl(n)

So overall, the advantage of the adversary is negligible.

TSR Security of H2. In any case, q signatures can be generated under the
secret key of a non-leaf node in the hyper-tree. Assuming the adversary knows
all of them, then for each block of the chosen pk∗, the probability of the secret
string has been leaked is 1 − (1 − 1

2d
)q, so all secret string have been leaked is

(1 − (1 − 1
2d
)q)k. For d = 16, q = 1024, k = 68, this probability is 2−468.87, if

k = 35, this probability is 2−210.39.

ITSR Security of H3. For a leaf node of the hyper-tree, it may have been used
to sign γ signatures out of the total qs signature queries. So the probability that
all secret string of a chosen message M being leaked through query is:

∑
γ

(1 − (1 − 1
2d

)γ)k
(

qs

γ

)
(1 − 1

qh
)qs−γ 1

qhγ

For d = 16, q = 1024, k = 68, h = 6, qs = 260, this probability is 2−407.32, if
k = 35, this probability is 2−208.95.
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5 Soundness Analysis of πD

In πD, k instances of MPC are run. In the ith instance, the partial verification
procedure is used to verify every M-FORS signature in S, but only the i-th
block of the hash value being signed. Out of the k blocks, the adversary may
have learned the secret strings correspond to λ1 blocks through queries, and
has to cheat in all the remaining k − λ1 blocks. For each MPC instance, the
verifier opens the views of a subset of the MPC parties and a cheat prover can
be detected with a probability 1−ε. Therefore, if using an MPC protocol without
pre-processing, then the soundness error is;

k∑
i=0

Pr[λ1 = i] · εk−i

If using an MPC protocol with pre-processing, then the adversary can also cheat
in the pre-processing phase. If the adversary cheats in λ2 (out of M) copies of
pre-processing data, and not being detected when checking the pre-processing
data (the probability is denoted as Succpre(λ2, k,M)), then it needs to cheat in
k − λ1 − λ2 MPC instances. The soundness error is:

k∑
i=0

Pr[λ1 = i]

(
k−λ1∑
λ2=0

Succpre(λ2, k,M) · εk−λ1−λ2

)

As a concrete example, let us consider a case in which we implement πD using
KKW [45]. Then we have:

Pr[λ1 = i] =
(

k

i

)
(1 − (1 − 2−d)q)i((1 − 2−d)q)k−i,

Succpre(λ2, k,M) =

(
M−λ2
M−k

)
(

M
M−k

) , ε =
1
N

In the above, d, k, q are the parameters for the M-FORS signature, M is the
number of pre-processing data generated, and N is the number of MPC parties.
When d = 16, k = 70, q = 1024,M = 1120, and N = 16, then the soundness
error is 2−257.769; when d = 16, k = 35, q = 1024,M = 560, and N = 16, then
the soundness error is 2−128.987.

6 UC Security Model for DAA

Security in the Universal Composability (UC) framework follows the simulation-
based paradigm, where a protocol is secure when it is as secure as an ideal
functionality that performs the desired tasks in a way that is secure by design.
In this framework, an environment E passes inputs and outputs to the protocol
parties. The network is controlled by an adversary A that may communicate
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freely with E . The framework includes an ideal world and a real world. In the ideal
world, the parties forward their inputs to the ideal functionality F , which then
(internally) performs the defined task and creates outputs that are forwarded to
E by the parties. A real-world protocol Π is said to securely realize a functionality
F , if the real world is indistinguishable from the ideal world, meaning that for
every adversary performing an attack in the real world, there is an ideal world
adversary (often called simulator) S that performs the same attack in the ideal
world. More precisely, a protocol Π is secure if for every adversary A, there
exists a simulator S such that no environment E can distinguish executing the
real world with Π and A, and executing the ideal world with F and S. Another
key point of UC, towards reducing the computational complexity of the specified
protocol, is the composition theorem: It guarantees composition with arbitrary
sets of parties and executed computational tasks. This ensures that UC-security
proofs, for any subroutine of F , are also transferred to the security model of the
entire protocol Π.

Fig. 5. UC security model for DAA

Now we employ the UC model for the security of our DAA protocol Π.
Figure 5 depicts the network topology of the real and ideal worlds. The endmost
goal is to prove the completeness and soundness of the DAA protocol by prov-
ing that an adversary cannot gain any significant advantage when monitoring
the operations and interacting tasks that take place in the real world; i.e., be
indistinguishable from the case where all the DAA internal phases are executed
in the ideal world. Security of our DAA protocol Π is captured by the fact
that every attack A mounted in the real world, S carries out in the ideal world.
Protocol security is implied since such attacks cannot be mounted in the ideal
world. We have then that the output E retrieved from the execution of Π in
the ideal world with S and from the execution of Π with the real-world entities
and A are indistinguishably distributed. This ensures that a real-world DAA
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protocol Π securely realizes all internal cryptographic tasks (e.g., JOIN, SIGN,
VERIFY, and LINK) if for any real-world adversary A that interacts with the
DAA players, running Π, there exists an ideal world simulator S that interacts
with the ideal functionality F , and the notional entities executing DAA protocol
so that no probabilistic polynomial time environment E can distinguish whether
it is interacting with the real world adversary A or the ideal world adversary S.

We follow the UC security model for DAA given by Camenisch et al. in [16],
where the ideal functionality F assumes static corruptions, i.e., the adversary
decides upfront which parties are corrupt and makes this information known to
the functionality. The UC framework allows us to focus the analysis on a single
protocol instance with a globally unique session identifier sid. F uses session
identifiers of the form sid = (I, sid′) for some issuer I and a unique string sid ′.

The ideal functionality F is further parametrized by a leakage function
l : {0, 1}∗ → {0, 1}∗, that models the information leakage occurred in the com-
munication between a host Hj and its TPM Mj . We define F by using two
“macros” to determine if a TPM’s signing key sku is consistent with the internal
functionality records or not. This is checked at several places in the functionality
and also depends on whether the sku belongs to an honest or corrupt TPM. The
first macro CheckTtdHonest is used when the functionality stores a new TPM
key sku that belongs to an honest TPM, and checks that none of the existing
valid signatures is identified as belonging to this TPM key. The second macro
CheckTtdCorrupt is used when storing a new sku that belongs to a corrupt TPM,
and checks that the new sku does not break the identifiability of signatures, i.e.,
it checks that there is no other known TPM key sk′

u, unequal to sku, such that
both keys are identified as the owner of a signature. Both functions output a bit
b where b = 1 indicates that the new sku is consistent with the stored informa-
tion, whereas b = 0 signals an invalid key. We also define the JOIN and SIGN
sub-sessions by jsid and ssid. In addition F maintains a group member list ML,
a key record list DomainKeys, a signature record list Signed, and a verification
result list VerResults.

We adopt two sub-functionalities introduced in [16] and they are available to
all parties. The first one is a certificate authority functionality Fca that allows
the issuer to register their public key. The second is the common reference string
functionality Fcrs, which is used to provide all entities with the system parame-
ters comprising the random seed to generate the commitments and the issuer’s
public key. Note that for the communication between the TPM and issuer (via
the host) in the join protocol we adopt the key binding protocol introduced in
[25] that provides a secure and authenticated channel between the TPM and the
issuer even in the presence of a corrupt host, therefore no need for the semi-
authenticated channel F∗

auth in our model. We now define the algorithms that
will be used inside the ideal functionality as follows:

– ukgen(n): A probabilistic algorithm that takes a security parameter n as input
and generates a key sku for a honest TPM.

– sign(sku,msg, bsn): A probabilistic algorithm used by a honest TPM; input is
a key sku, a message msg and a basename bsn, and output is a signature Σ.
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– verify(Σ,msg, bsn): A deterministic algorithm that is used in the VERIFY
interface. On input of a signature Σ, a message msg and a basename bsn, it
outputs f = 1 if the signature is valid, and f = 0 otherwise.

– link(Σ1,msg1, Σ2,msg2, bsn): A deterministic algorithm that is used in the
LINK interface. Given two signatures with the same bsn, it outputs 1 if both
Σ1 and Σ2 were generated by the same TPM, and outputs 0 otherwise.

– identify(sku, Σ,msg, bsn): A deterministic algorithm that is used to ensure
consistency with the ideal functionality F ’s internal records. It outputs 1 if a
key sku was used to produce a signature Σ, and outputs 0 otherwise.

We explain the interfaces of the ideal functionality F in the UC framework:
Setup

1. Issuer Setup. On input (SETUP, sid) from issuer I,
– Verify that sid = (I, sid′) and output (SETUP, sid) to S.

2. Set Algorithms. On input (ALG, sid , ukgen, sign, verify, link, identify) from
S,

– Check that verify, link and identify are deterministic (i).
– Store (sid , ukgen, sign, verify, link, identify) and output (SETUPDONE, sid)

to I.

Join

3. Join Request. On input (JOIN, sid , jsid,Mj) from host Hj ,
– Create a join session record 〈jsid,Mj ,Hj , status〉 with status ← request .
– Output (JOINSTART, sid , jsid,Mj ,Hj) to S.

4. Join Request Delivery. On input (JOINSTART, sid , jsid) from S,
– Update the session record 〈jsid,Mj ,Hj , status〉 to status ← delivered .
– Output (JOINPROCEED, sid , jsid,Mj) to I.

5. Join Proceed. On input (JOINPROCEED, sid , jsid) from I,
– Update the session record 〈jsid,Mj ,Hj , status〉 to status ← complete.
– Output (JOINCOMPLETE, sid , jsid) to S.

6. Platform Key Generation. On input (JOINCOMPLETE, sid , jsid, skj)
from S,

– Look up record 〈jsid,Mj ,Hj , status〉 with status = complete.
– Abort if I or Mj is honest and a record 〈Mj , ∗, ∗〉 ∈ ML already exists

(ii).
– If Mj and Hj are honest, set skj ← ⊥.
– Else, verify that the provided skj is eligible by checking

• CheckTtdHonest(skj) = 1 if Hj is corrupt (iii) and Mj is honest, or
• CheckTtdCorrupt(skj) = 1 if Mj is corrupt (iv).

– Insert 〈Mj ,Hj , skj〉 into ML and output (JOINED, sid , jsid) to Hj .

Sign

7. Sign Request. On input (SIGN, sid , ssid,Mj ,msg, bsn) from host Hj ,
– If I is honest and no entry 〈Mj ,Hj , ∗〉 exists in ML, abort.
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– Create a sign session record 〈ssid,Mj ,Hj ,msg, bsn, status〉 with
status ← request .

– Output (SIGNSTART, sid , ssid, l(msg, bsn),Mj ,Hj) to S.
8. Sign Request Delivery. On input (SIGNSTART, sid , ssid) from S,

– Update the session record 〈ssid,Mj ,Hj ,msg, bsn, status〉 to status ←
delivered .

– Output (SIGNPROCEED, sid , ssid,msg, bsn) to Mj .
9. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mj ,

– Look up record 〈ssid,Mj ,Hj ,msg, bsn, status〉 with status = delivered .
– Output (SIGNCOMPLETE, sid , ssid) to S.

10. Signature Generation. On input (SIGNCOMPLETE, sid , ssid, Σ) from S,
– If Mj and Hj are honest, ignore the adversary’s signature and internally

generate the signature for a fresh or established skj :
• If bsn �= ⊥, retrieve skj from 〈Mj , bsn, skj〉 ∈ DomainKeys for

(Mj , bsn). If no such skj exists or bsn = ⊥, set skj ← ukgen(). Check
CheckTtdHonest(skj) = 1 (v) and store 〈Mj , bsn, skj〉 in DomainKeys.

• Compute signature as Σ ← sign(skj ,msg, bsn) and check
verify(Σ,msg, bsn) = 1 (vi).

• Check identify(Σ,msg, bsn, skj) = 1 (vii) and check that there is no
M′

j �= Mj with key sk′
j registered in ML or DomainKeys such that

identify(Σ,msg, bsn, sk′
j) = 1 (viii).

– If Mj is honest, store 〈Σ,msg, bsn,Mj〉 in Signed.
– Output (SIGNATURE, sid , ssid,Σ) to Hj .

Verify

11. Verify. On input (VERIFY, sid ,msg, bsn,Σ,keyRL, linkRL) from some
party V,
– Retrieve all pairs (skj ,Mj) from 〈Mj , ∗, skj〉 ∈ ML and 〈Mj , ∗, skj〉 ∈
DomainKeys where identify(Σ,msg, bsn, skj) = 1. Set f ← 0 if at least
one of the following conditions holds:

• More than one key skj was found (ix).
• I is honest and no pair (skj ,Mj) was found (x).
• There is an honest Mj but no entry 〈∗,msg, bsn,Mj〉 ∈ Signed

exists (xi).
• There is a sk′

u ∈ keyRL where identify(Σ,msg, bsn, sk′
u) = 1 and

no pair (skj ,Mj) for an honest Mj was found, or there exists
(slt′,msg′, bsn′) ∈ linkRL such that identify(slt′,msg′, bsn′, skj) =
1. (xii).

– If f �= 0, set f ← verify(Σ,msg, bsn) (xiii).
– Add 〈Σ,msg, bsn,keyRL, linkRL, f〉 to VerResults, output

(VERIFIED, sid , f) to V.

Link

12. Link. On input (LINK, sid , Σ,msg,Σ′,msg′, bsn �= ⊥) from some party V,
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– Output ⊥ to V if at least one signature tuple (Σ,msg, bsn) or
(Σ′,msg′, bsn) is not valid (verified via the verify interface with
keyRL = ∅ and linkRL = ∅) (xiv).

– For each ski in ML and DomainKeys compute bi ← identify(Σ,msg,
bsn, ski) and b′

i ← identify(Σ′,msg′, bsn, ski) and do the following:
• Set f ← 0 if bi �= b′

i for some i (xv).
• Set f ← 1 if bi = b′

i = 1 for some i (xvi).
– If f is not defined yet, set f ← link(Σ,msg,Σ′,msg′, bsn).
– Output (LINK, sid , f) to V.

We highlight that our model catches all the security requirements discussed
in Sect. 2.3 (correctness, anonymity and non-frameability):

– The correctness of our scheme is guaranteed in our model. When an honest
signer (including both the TPM and Host) successfully creates a signature,
honest Verifiers will always accept this signature. This is due to the checks v,
vi, vii, and viii performed by F in the Sign interface.

– The anonymity in our scheme is also guaranteed by F due to the random
choice of skj that will be later used for the construction of DAA signatures
as part of the Sign interface. In the case of corrupt devices, the Simulator is
allowed to provide a signature that will convey the signer’s identity, as the
signing key can be extracted from the respective device key pair. This reflects
that the anonymity of the DAA signer is guaranteed if both the TPM and
the Host are honest.

– The non-frameability property guarantees that a signature created by an
adversary cannot be linked to a legitimate signature created by the target
device, this is due to the check ix in our model. CheckTtdHonest prevents
registering an honest skj in the Join interface that matches an existing sig-
nature so that conflicts can be avoided and signatures can always be traced
back to the original signer. This ensures that honest signers are not revoked
due to the identify algorithm being deterministic in our model. Consider an
adversary aiming to create a signature on a message that has not been signed
by an honest device, checks x and xi in the Verify interface ensure the scheme
unforgeability property, which dictates that it is computationally infeasible to
maliciously forge signatures.

7 UC Security Proof of the DAA Scheme

7.1 High-Level Description of Our Proof

We start with the real-world protocol execution in Game 1. In the next game, we
construct one entity C that runs the real-world protocol for all honest parties.
Then we split C into two pieces, an ideal functionality F and a simulator S that
simulates the real-world parties. Initially, we start with an “empty” functionality
F . With each game, we gradually change F and update S accordingly, moving
from the real world to the ideal world, and culminating in the full ideal func-
tionality F being realized as part of the ideal world, thus, proving our proposed
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security model presented in Sect. 6. The endmost goal of our proof is to prove the
indistinguishability between Game 1 and Game 16, i.e., between the complete
real world and the fully functional ideal world. This is done by proving that each
game is indistinguishable from the previous one. We use the “≈” sign to express
games indistinguishably between games.

The ideal functionality F is introduced in Game 3; at this stage F only for-
wards its inputs to the simulator S who simulates the real world. From Game 4
onward, F starts executing the setup interface on behalf of the Issuer. Moving on
to Game 5, F handles simple verification and identification checks without per-
forming any detailed checks at this stage; i.e., it only checks if the signer belongs
to a revocation list separately. In Games 6–8, F executes the Join interface while
performing checks to keep the consistency of registered keys. It also adds checks
that allow only the signers that have successfully been enrolled to create sig-
natures. Game 9 proves the anonymity of our protocol by letting F handle the
sign queries on behalf of honest signers. To do this, F creates signatures using
freshly generated random keys instead of running the signing algorithm using
the signer’s signing key. At the end of this game, we prove that by relying on the
ZKP constructions, an external environment will notice no change from previous
games where the real-world Sign algorithm was executed. Now moving to Games
10–16, we let F perform all other checks that are explained in Sect. 6.

7.2 The DAA Scheme Proof

Due to the limited space, we provide a sketch of the security proof of the proposed
DAA protocol, including a sequence of games based on the model of Camenish
et al. in [16]. A detailed proof will be given in the full paper. The proof in [16] is
constructed under the Discrete Logarithm (DL) and Decisional Diffie-Hellman
(DDH) assumptions and the unforgeability of the Camenisch-Lysyanskaya (CL)
signatures. Other DAA signatures such as [24,35] are proved based on lattice
hard problems, namely Ring-LWE and Ring-SIS, and the unforgeability is sup-
ported on the modified Boyen or Dilithium signature scheme [6,32]. In contrast
to the previous DAA schemes, our game indistinguishability is based on the per-
fect simulation of the MPCitH-based NIZK proofs, the soundness, completeness
and zero-knowledge properties of the proofs πI and πD, the unforgeability of
the F-SPHINCS+ signature scheme, and the security properties of the tweak-
able hash functions, H1, H2 and H3, and the pseudorandom function F . The
sequence of games is as follows:

Proof (sketch)
Game 1: (Real-World execution of the protocol): This is the start.
Game 2: (Introducing C): An entity C is introduced; C receives all inputs

from the parties and simulates the real-world protocol for them. This is equiva-
lent to Game 1.
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Game 3: (Reconstruction of C): We now split C into two parts, F and S,
where F behaves as an ideal functionality. F receives all the inputs and forwards
them to S, who simulates the real-world protocol for honest parties, and sends
the outputs to F . F then forwards the outputs to the environment E . This game
is simply Game 2 but with different structure, so Game 3 ≈ Game 2.

Game 4: (F handles the setup queries): F now behaves differently in
the setup interface and stores the algorithms for the issuer I. F also does checks
to ensure that the structure of sid is correct for an honest I, and aborts if not.
In case I is corrupt, S extracts the secret key for I and proceeds in the setup
interface on behalf of I. Clearly E will notice no change, so Game 4 ≈ Game 3.

Game 5: (F handles the verification and linking queries): F now
performs the verification and linking checks instead of forwarding them to S.
There are no protocol messages and the outputs are exactly as in the real-world
protocol. However, the only difference is that the verification algorithm used by
F does not contain a revocation check. F performs this check separately thus
the outcomes are equal, so Game 5 ≈ Game 4.

Game 6: (F handles the join queries): The join interface of F is now
changed, and F stores the joined member information in the Member List ML .
If I is honest, F stores the secret key sku, extracted from S, for corrupt TPM’s.
S always has enough information to simulate the real-world protocol except
when the issuer is the only honest party. In this case, S does not know who
initiated the join since the host does not authenticate towards the issuer in the
real world, so S can’t make a join query with F on a corrupt host’s behalf. Thus,
to deal with this case, F can safely choose any corrupt host and put it into ML,
the identities of hosts are only used to create signatures for platforms with an
honest TPM or honest host, so fully corrupted platforms do not matter. In the
only case, where the TPM has already been registered in ML, F may abort the
protocol, but I should have already tested this case before continuing with the
query JOINPROCEED, hence F will not abort. Thus in all cases, F and S can
interact to simulate the real-world protocol, so Game 6 ≈ Game 5.

Game 7: (F knows bsn and msg to be signed or l(msg, bsn)): F now no
longer informs S about the message and the basename that are being signed. If
the whole signer is honest, S can learn nothing about the message msg and the
basename bsn. Instead, S knows only the leakage l(msg, bsn). To simulate the
real world, S chooses a pair (msg′, bsn′) such that l(msg′, bsn′)=l(msg, bsn).
Therefore Game 7 ≈ Game 6.

Game 8: (F performs pre-sign checks): If I is honest, F only allows
the signer that has joined to sign. An honest host will always check whether it
has joined with its TPM in the real-world protocol, so no difference for honest
hosts. Also, an honest TPM only signs when it has joined with the host before.
In the case that an honest Mi performs a join protocol with a corrupt host Hj

and the honest issuer, the simulator S will make a join query with F , to ensure
that Mi and Hj are in ML. Therefore, Game 8 ≈ Game 7.

Game 9: (F handles the sign queries, i.e., simulating the TPM
without knowing its secret): In this game, F creates anonymous signatures
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for honest signers by running the algorithms defined in the setup interface. Let
us start by defining Game 9.k.k′, in this game F handles the first k′ signing
inputs of Mk, and subsequent inputs are then forwarded to S. For i < k, F
handles all the signing queries with Mi using algorithms. For i > k, F forwards
all signing queries with Mi to S who creates signatures as before. Now from the
definition of Game 9.k.k′, we note that Game 9.0.0 = Game 8. For increasing k′,
Game 9.k.k′ will be at some stage equal to Game 9.k+1.0, this is because there
can only be a polynomial number of signing queries to be processed. Therefore,
for large enough k and k′, F handles all the signing queries of all TPMs, and
Game 9 is indistinguishable from Game 9.k.k′. We want to prove now that
Game 9.k.k′+1 is indistinguishable from Game 9.k.k′. Suppose that there exists
an environment that can distinguish a signature of an honest party using sku

from a signature using a different sk′
u, then the environment can break the

pseudorandom property of the function F .
The first j ≤ k′ signing queries on behalf of Mk are forwarded by F to

S, which calls the real-world protocol. Now suppose that E is given tuples
Σ = (str, slt, com, πD) and it is challenged to decide if Σ = (str, slt, com, πD)
is calculated from uniform random r ← {0, 1}n or from a certified TPM secret
key sku. In the reduction, we have to be able to simulate the TPM without
knowing the secret sku. The issuer’s zero-knowledge proof πI for the correctness
of the master secret and public key pair allows the simulator S extracts the
master secret key. Furthermore, the zero-knowledge proof of the group member-
ship credential πD helps S extract the TPM’s secret key sku for corrupt TPM
and create signatures on behalf of the TPM as in the real world scenario. Let
r be a randomly sampled key from {0, 1}n that will be used to generate sig-
natures on behalf of honest TPMs rather than using the real TPM secret key
sku. Since the issuer’s secret key msk can be extracted from πI due to the
soundness of the proof πI and getting access to Fcrs, then a credential can be
created on et′u = F (r, gid) by running the signing algorithm of F-SPHINCS+,
sign(et′u,msk, gp). After getting a credential on et′u, slt and sst are calculated
as functions of r, i.e. slt = F (r, lid) and sst = F (r, sid). Then all other parts
of the signature follow exactly the same as the real-world protocol (i.e. when
using the TPM’s sku). The commitment com is calculated as our defined sign
algorithm and the proof πD can then be perfectly simulated using the random
secret r. Due to the zero-knowledge property of the proof πD and the pseudoran-
dom outputs of the function F , we argue that an external environment cannot
distinguish between 1) a signature generated using the TPM’s (sku, etu). 2) a
signature generated by a random (r, et′u). Therefore, Game 9 ≈ Game 8.

Game 10 (F performs key consistency checks): When storing a new
sku, F checks CheckTtdHonest(sku) = 1 or CheckTtdCorrupt(sku) = 1. We want
to show that these checks will always pass. In fact, valid signatures always satisfy
slt = F (sku, lid), etu = F (sku, gid), (gru,S) ← F-SPHINCS+.sign(etu,msk, gp)
and sst = F (sku, sid). By the soundness property of πD, there exists only
one secret sku satisfying the slt construction, and there exists one sst that
matches this signature by the soundness of the hk = MPC_H1(�sst�). Thus,
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CheckTtdCorrupt(sku) = 1 will always give the correct output. On the other
hand, the keys for honest TPMs are chosen uniformly at random from an expo-
nentially large group {0, 1}n, due to the large min-entropy of the uniform dis-
tribution the probability that sampling a selected sku is negligible for large
n with probability equal to 1/2n, thus with overwhelming probability, there
does not exist a signature already using the same sku, which implies that
CheckTtdHonest(sku) = 1 will always give the correct output. Hence, Game
10 ≈ Game 9.

Game 11: (F checks the correctness of the protocol): In this game F
checks that any honestly generated signature Σ = (str, slt, com, πD) is always
valid due to the completeness property of πD and the correctness of the F-
SPHINCS+ signature. A valid proof πD on the credential ensures that the
credential has the correct structure, follows the correct authentication path,
and always leads to the issuer’s public key rpk due to the soundness of πD

and the correctness of the F-SPHINCS+ signature. Second, F makes sure
identify(Σ,msg, bsn, sku) = 1, this is also achieved in the real-world protocol due
to the soundness of πD. F checks, using its internal records ML and DomainKeys
that honest users are not sharing the same secret key sku. If there exists a key
sk′

u �= sku in DomainKeys such that slt = F (sk′
u, lid) = F (sku, lid), then this

breaks the collision resistance property of the function F . Therefore Game 11 ≈
Game 10.

Game 12 (F checks that valid signatures are deterministic):
Add Check (ix) to ensure that there are no multiple sku values match-
ing to one signature. A signature Σ includes slt = F (sku, lid), com =
H1(F (sku, sid)||pkh|| · · · ||rpk) and πD. Due to the soundness of the function
F and the proof πD, and also due to the collision resistance and second-preimage
properties of H1, two different keys cannot create the same signature and two dif-
ferent signatures cannot share the same sku. Therefore a valid signature should
be identified to one sku only. Hence, Game 12 ≈ Game 11.

Game 13 (F checks the unforgeability of the credential): To prevent
accepting a signature that was not generated by using a group membership
credential issued by an honest issuer, F adds Check (x). A credential is an F-
SPHINCS+ signature on mtu||idx, using the tweakable hash functions H1, H2

and H3. Following the proof of Theorem 1 in Sect. 4, the F-SPHINCS+ signature
scheme is unforgeable due to the security properties of H1, H2 and H3, so this
check is always passed and Game 13 ≈ Game 12.

Game 14 (F checks the unforgeability of signatures): Check (xi) is
added to F to prevent an adversary from forging signatures using honest signer’s
credential key gsku = (sku, gru, S). As discussed before, a DAA signature Σ is
proof of the correct construction of slt, com and πD, which form a NIZK proof
of an F-SPHINCS+ signature associated with a single key sku. If the signature
is verified, due to the unforgeability of F-SPHINCS+, the binding property of
the commitment scheme used to generate com = H1(F (sku, sid)||pkh|| · · · ||rpk),
and the soundness of the function F used to compute slt and com, sku belonging
to an honest TPM must be involved. If the adversary uses a different key sk′

u to
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create this signature. Due to the soundness of πD analyzed in Sect. 5, the proof πD

cannot be simulated with overwhelming probability unless sk′
u = sku, so Game

14 ≈ Game 13.
Game 15 (F checks the correct revocation): Check (xii) is added to F

to ensure that an honest TPM with sku are not being revoked. If there exists
a matching revoked key sk∗

u (�= sku) ∈ keyRL such that slt = F (sk∗
u, lid) =

F (sku, lid), then this breaks the collision resistance property of the function F .
For the same reason, there does not exist (slt′,msg′, bsn′) ∈ linkRL such that
slt′ = F (sk′

u, lid′) = F (sku, lid′) and sk′
u �= sku. Therefore, our protocol ensures

the correct revocation. So Game 15 ≈ Game 14.
Game 16 (F checks the linkability): Checks (xv and xvi) of the ideal

functionality F that are related to link queries are now included. The output
of F based on these checks is still consistent with the output which the link
algorithm would give: If there is an sku that matches two signatures signed
under the same bsn, by the soundness of πD we have that the pseudonyms based
on the same sku must be equal, resulting in link outputting 1. If there is an sku

that matches one signature but not the other, by the soundness of πD we have
that the pseudonyms slt that are not generated using sku must also differ from
those generated by a different key sk′

u �= sku which results in link outputting 0.
Therefore, Game 16 ≈ Game 15. This concludes the proof.

8 Conclusion

This paper proposes the first DAA scheme from symmetric primitives and this
scheme has some interesting features. We make use of a modified SPHINCS+
signature as a group membership credential and use of a Picnic-style signature
to prove the possession of that credential. Our DAA scheme splits the signer role
between a TPM and its host and allows the TPM to have a much smaller work-
load than the host. This scheme can handle a large group size (up to 260), which
is suitable for rapidly increasing trusted computing applications. This research
topic is still in its early stage. Improving the performance of this DAA scheme
is challenging and it will be possible if either a more efficient stateless hash-
based signature scheme than F-SPHINCS+ or an efficient Picnic-style signature
scheme is developed.
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