
Enforcing Fine-grained Authorization Policies for Java Mobile Agents

Giovanni Russello Changyu Dong Naranker Dulay
Department of Computing
Imperial College London

South Kensington London, SW7 2AZ, UK
{g.russello, changyu.dong, n.dulay}@imperial.ac.uk

Abstract

The Mobile Agent (MA) paradigm advocates the migra-
tion of agent code to achieve computational goals. MAs
require an executable environment on hosts where mobile
code can be executed. The execution of foreign code on
a host raises security concerns for both the agent and the
host. In [1] it has been recognized that most of the ap-
proaches for providing security in MA suffer from a limi-
tation of expressing complex security requirements. Thus,
approaches have been proposed that introduce the use of a
policy language for specifying security policies to control
MA’s access to host resources. With this paper, we outline a
framework where security policies can be uniformly speci-
fied for protecting both MAs and host resources.

1 Introduction

Current distributed systems involve a large number of
applications which require a variety of security mechanisms
to fulfill their needs. In particular, the use of MAs intro-
duces new challenges and security threats that need to be
carefully considered [4]. On the one hand it is necessary
to protect the host environment where agents are executed
from malicious and buggy mobile code. It is necessary to
protect the host information and resources from illegal ac-
cesses and over-consumption by incoming mobile code. On
the other hand, it is necessary to protect the state and be-
havior of the mobile code from tampering or misuse by ma-
licious hosts. Additionally, it would be desirable that hosts
provide QoS-like guarantees on the resources that are made
available to mobile code. For instance, if an agent moves
to a given host then the host has to make sure that enough
memory and processor time is given to the agent for a cor-
rect execution.

Most of the research in providing security frameworks
for MAs has concentrated only on the first part of the prob-
lem. Sandboxing techniques and type-safe languages can

be used to rigidly control the interaction between the mobile
code and the host. The rigidity of such approaches can be
overcome if a language-based approach is used for specify-
ing authorization policies. For instance, in [1] an approach
was adopted where the Java security architecture was inte-
grated with a policy language. However, all of these ap-
proaches focus on controlling the MA accesses on the host
resources.

In this paper, we propose a framework where it is pos-
sible to specify policies for both the MAs and the host re-
sources. The framework is currently implemented for Java
based MAs. Policies are expressed using an extension of
the Ponder language [2] and are enforced using a Ponder
interpreter. In our approach, the enforcement of policies is
done transparently to the MA code.

The contributions of this paper are twofold. First of all,
we provide the description and implementation of a frame-
work where security policies can be uniformly specified for
both MAs and host resources. Secondly, the framework is
independent from both the actual mechanism used for pol-
icy enforcement and the specific policy language.

This paper is organized as follows. Section 2 reviews
previous research conducted on policy specification for
MAs. In Section 3, we describe our syntax for specifying
policies. We implemented our framework and its detailed
description is provided 4. We conclude in Section 5 and
provide some future directions of our research.

2 Background

Several policy-based approaches have been proposed for
the specification of policies to control the interaction of
agents. KAoS [14] is a collection of component-based poli-
cies and domain management services which provide sup-
port for mobile agent, grid computing and web services.
KAoS relies on a DAML description-logic-based ontology
of the computational environment, application context, and
the policies themselves. It makes it possible to represent
subjects, actions, and situation at multiple levels of abstrac-



tion and to dynamically calculate relations between policies
and environment entities and other policies based on ontol-
ogy relations. Rei [8] is a policy framework designed for
pervasive computing applications, represents policies in a
semantic language like RDF-S, DAML+OIL or OWL. Us-
ing a semantic language allows different systems to share a
model of policies, roles and other attributes. The language
is not tied to any specific application and it permits domain
specific information to be added without modification. In
LGI [10], policies specify which actions the agent has to
enforce upon the receipt or sending of messages. Policies
use a simple Prolog notation. It assumes that policies are in-
terpreted by trusted controllers at each agent’s site. Ponder
[2] is a declarative, object-oriented language that supports
the specification of several types of management policies
for distributed systems. Ponder uses an object-oriented ap-
proach which allows users to define different types of poli-
cies to meet specific administrative and security manage-
ment goals.

In [1] Ponder was used for specifying authorization poli-
cies for mobile code. The authors describe an extension of
the access control mechanism provided by the Java secu-
rity framework [6]. The extension consists of several mod-
ules that have been introduced to map authorization policies
specified in Ponder into Java security structures. With the
use of the Ponder language, it becomes possible to specify
more complex policies. However, the Java security frame-
work is limited to control resource access of the host. Pre-
venting an agent from performing an operation or forcing
the agent to reject the result of a request is out of the scope
of the Java security framework.

Mobile
Agent

Host
Resource

reply

invocation

PEP 2
Inbound request

PEP 1
Outbound request

PEP 4
Inbound reply

PEP 3
Outbound reply

Figure 1. Policy enforcement points.

To fill the gap of the above approaches, we propose a
framework where the Policy Enforcement Points (PEP) can
be specified for both the agent and host resources. As shown
in Figure 1, we specify four points of policy enforcement:

• PEP 1: at this point policies are enforced when the
agent sends out a request to a (more generally to any

local or remote host or agent) host resources. For in-
stance, the agent is not authorized to invoke a resource
of the host unless certain conditions are met. Such con-
ditions could be contextual, such as time of the day or
host location. Conditions can be defined on properties
of either the agent or the target resource on the host.
PEP 1 policy could be used to protect the privacy of
the agent’s data. For instance, the agent is authorized
to invoke the host resource but data passed as param-
eters should be filtered to remove private or sensitive
information. In other words, the enforcement of au-
thorization policies at this point allows us to separately
define and control the execution of operations by the
agent. Only when certain assumptions hold, can the
call be made. We named such policies Subject Autho-
rization (SA) policies.

• PEP 2: this point is used for activating traditional au-
thorization policies for access control on the resource.
Policies are enforced when the host resource receives
a request. We named this type of policies Target Au-
thorization (TA) policies.

• PEP 3: this point allows the host to apply policies
when the resource sends back the reply. For example,
to remove sensitive data from the reply that is sent back
to the agent. Just denying the agent the right to perform
the operation is not sufficient to cover this case. The
resource will provide information to the agent. How-
ever the resource administrator defines the conditions
under which the information is can be given without
compromising confidentiality. We named these poli-
cies Target-Return Authorization (TRA) policies.

• PEP 4: this point allows us to enforce policies when
the agent receives the reply. PEP 4 policies can be used
to protect the integrity of the agent from malicious or
buggy data sent from the resource. We named such
policies Subject-Return Authorization (SRA) policies.

Figure 1 shows an agent that is the initiator of a request.
However, it could be the case that the agent provides some
functionality to the host environment. If this is the case,
then the agent becomes the target of an invocation. There-
fore, PEP 2 and 3 are also used to enforce authorization
policies on the functionalities exposed by the agent.

If specified at the application level, the enforcement
points may look different for each application. Such points
can be uniformly abstracted as method invocations when
seen at the system level (e.g., at the level of the Java vir-
tual machine) where we can intercept any method invoca-
tion (and also replies), and it is transparent to the applica-
tion.

An intercepted method invocation or reply can provide
most of the information for policy evaluation. For instance,



most access control policies-base their decisions on (sub-
ject, target, action) tuples. This information is included im-
plicitly in the method call or the reply. In addition, the pa-
rameters of the method call and the return value of the reply
can provide more information if needed. Our approach is in-
dependent from the policy language, as long as the language
offers a syntax to express the types of policies required by
each PEP.

In the following sections, we discuss in more detail the
policy language and interpreter used in our framework.

SA auth+/- subject.action(p)→target
TA auth+/- subject→target.action(p)
TRA reply+/- subject→target.action(r)
SRA reply+/- subject.action(r)→target

Figure 2. Mobile Agent Authorization Policy
Syntax.

3 Mobile Agent Authorization Policies

In our approach a positive authorization policy defines
which subjects are granted the permissions to execute ac-
tions of a given target. We also support negative authoriza-
tion policies. In our examples, subjects typically map to
mobile agents and targets to host resources. However, MAs
can be targets and host resources can be subjects. A nega-
tive authorization policy can be seen as a refinement of more
general positive authorization policies. Negative authoriza-
tion policies are also particular useful when permissions (in
the form of a positive authorization) need to be removed to
a group of subjects.

When dealing with policy based systems, it is unavoid-
able that conflicts arise in the set of policies. This issue is
more acute in the case of agents migrating through differ-
ent hosts. As a matter of facts, policy administrators cannot
be aware of the policies that agents take along during their
migrations. Conflict resolution is fundamental for policy
based systems, as discussed in [9]. The study of conflict
resolution is one main area of our future research.

The main contribution of this paper that differentiates
our approach from previous research is that for a given ac-
tion authorization policies are uniformly applied to subjects
as well as to targets. Figure 2 presents the authorization
policies that can be specified in our framework.1 The key-
word reply± specifies that the authorization policy is to
be applied on the reply of the action. In this case, the result
of the action is explicitly indicated by the parameter r of
the action.

1Although in the syntax we explicitly identify each type of policies, the
position of the action in the policy self-explains whether the policy is to
apply to a subject or a target.

In the following, we provide several examples of autho-
rization policies for both MAs and host resources.

3.1 Examples of Policy Specifications

In this section we provide examples of policies that it is
possible to specify using our approach. The policies that we
consider are for mobile agent for healthcare applications.

Policy 1 shows a “refrain” policy that prevents a mobile
patient agent requesting treatment to a medical service pro-
vided by the host when the medical service cannot provide
a valid certificate signed by the National Health Service
(NHS).

Policy 1 Negative authorization policy for the patient
agent to issue a request of a treatment to a medical service.

auth- patientAgent.requestTreat()→MedService
when !MedService.isNHSCertified()

Policy 2 is another negative authorization policy applied
on the patient agent. However, this policy denies to the
agent access to the treatment returned by the medical ser-
vice when the returned treatment is signed by a GP that is
not recognized by the NHS.

Policy 2 Negative authorization policy for the patient
agent to receive the result of a request issued to a medical
service.

reply- patientAgent.requestTreat(prescription)
→MedService

when !prescription.GP().isNHSCertified()

Positive authorization policies can be used for applying
filters to the data that is supplied or returned. The filter
is specified by using the filter keyword in the action
clause. Filtering policies must be positive authorization be-
cause no transformation needs to be applied if the action is
forbidden. Policy 3 shows a filtering policy for an agent of
an employee. The agent of an employee has to provide to
the GP of the company where the employee works her med-
ical record. The data is stored on the data base of the com-
pany. For privacy reasons, the employee psychiatric data
must be removed from her medical record. The policy ap-
plies a filter that nullifies the sensitive field from the record.
The filter is executed before the action is performed.

Policy 3 Filtering policy for an agent when providing
sensitive data to a database on a host.

auth+ employeeAgent.ins(record)→employeeMedDB
filter myRecord.psych := NULL

It should be noted how the use of our framework real-
izes a complete separation of concerns [11]. In fact, all the



details about checking the credentials of the target, the tar-
get’s reply, and the application of filters on sensitive data are
specified outside the logic of the application. These details
are isolated and captured in the policy specification.

Policy 4 provides an authorization policy for a nurse
agent that has to perform accesses on the patients’ medi-
cal records in a hospital. According to this policy, a nurse
agent can access the medical records of a patient when the
nurse is on duty on the ward where the patient is assigned.

Policy 4 Authorization policy for granting access right to a
nurse agent on the medical records of patients in a hospital.

auth+
nurseAgent→medicalRecordDB.accessFor(patient)
when (nurseAgent.ward = patient.ward)

The policy interpreter organizes the entities (agents and
resources) that are specified in a policy in hierarchical do-
mains of objects. Domains can be used to specify the sub-
ject and target in a policy. When an agent arrives in a host,
the local policy interpreter authenticates the agent and adds
it in a local domain. The domain where the agent is added
depends on the agent’s credentials. Using this approach,
we can specify the previous authorization policy in terms
of domains as shown in Policy 5. In this case, agents rep-
resenting hospital personnel and patients are organized in
domains. Each domain represents the different wards of the
hospital. When the nurse starts her shift in a ward, her agent
is inserted in the appropriate ward domain (ward10 in our
example).

Policy 5 Authorization policy for access control based on
the domain location of the nurse and patient agents.

nurseAgent in /hospital/personnel/ward10/
patientAgent in /hospital/patients/ward10/
auth+ nurseAgent.getRecord()→patientAgent

More details on how this policy is enforce are provided
in Section 4.2.1.

4 Implementation

This section discusses details of the implementation of
our framework. The actual prototype is built mainly in Java,
although our framework is conceptually independent of the
actual programming language. Java was mainly chosen for
a faster integration with our existing policy interpreter.

4.1 MA Migration Details

This section provides insights on some aspects related to
the migration of a mobile agent in our framework.

Figure 3 shows the migration of an agent to its destina-
tion host. In particular, the figure shows that the unit of

Policy Interpreter

Mobile
Agent

Host
Resource

MA Policies
Host

Policies

destination host

invocation

enforcementMobile
Agent

MA Policies

migrating

e
xe

cu
tio

n
en

vi
ro

nm
en

t
po

lic
y 

de
ci

si
on

m
ak

in
g

allocation

loading

Figure 3. The migration of an agent and its
policies.

mobility is composed by the agent logic (that is the exe-
cutable part) and the agent policies. On arrival on the host,
the agent logic is inserted in the executable environment
where it can interact with the host resources. The agent
policies are loaded by the host’s interpreter in its local data
structure. When the agent interacts with the resources in the
host, the interpreter enforces the policies as required.

The basic assumption in our approach is that the host
policy interpreter where an agent moves is trusted. A host
is trusted when it can provide to the agent credentials to
guarantee that the execution will be carried according to the
constrains specified by the agent’s policies. Which are such
credentials and the specific method that an agent has to use
for building enough trust on the host integrity is the subject
of our future research.

We are also considering a more radical approach which
wraps a policy interpreter around the mobile agent.

4.2 Implementing the Policy Enforcement
Points

In this section, we describe the architecture of our pro-
totype that we built to demonstrate the feasibility of our ap-
proach.

Crucial to our approach is the realization of a PEP mech-
anism such that (i) it supports a fine-grained level of en-
forcement point specification and (ii) it is completely trans-
parent to the application logic.

Several techniques could be used for realizing the PEP
mechanism of our approach. For instance, using the stan-
dard Wrapper Pattern, the agent and resource code is
wrapped by a piece of code that intercepts all the inbound
and outbound calls to and from the component. Each time
a call is intercepted, the wrapper passes the necessary infor-
mation to the Policy Interpreter to activate a policy.

A Java-based solution that supports the wrapper pattern
is the Java Management Extension (JMX) [5]. In JMX,
the agent and the resources must be managed by a Man-



aged Bean (MBean). A MBean is a special Java bean that
exposes via a standardized interface (defined by the JMX
specification) attributes and methods of the resource that it
manages. MBeans have the capability to emit notifications
upon certain events. Such events could call the PEPs in our
framework.

Another Java-specific solution is based on the use of the
Java Virtual Machine Tool Interface (JVMTI) [7]. JVMTI
provides an interface that can be used by user code to con-
trol and monitoring Java applications. In JVMTI such user
code is called an agent. To avoid confusion, we will re-
fer to it as ti-agent. Ti-agents use the functionality exposed
by JVMTI to be notified when events occur in the applica-
tion, and to query and control the application during execu-
tion. Among the events that a ti-agent can intercept there
are those that capture when the execution enters and exits
a method. JVMTI allows ti-agents to retrieve information
regarding method call, such as object type of the caller and
the callee, the parameter values passed in the method in-
vocation, and the value that the method returns. Given the
fine-grained control and monitoring capability, and the fact
that it is not required to change any application code, we
implemented the PEP mechanism using JVMTI.

An alternative approach would be to use Aspect-
Oriented Programming [3]. Such an approach is used by
Verhanneman, et al. in [13]. They use Java Aspect Compo-
nents [12] to implement a wrapper to intercept method calls
from the caller to callee and to enforce policies as required.
This technique requires that the agent code is modified with
the injection of aspect-specific code at the host side. Cru-
cial in AOP is the specification of where the aspect code
must been injected. In JAC, this is done transparently to the
application using descriptor files. The descriptor provides
those points to the JAC middleware that then weaves the
aspect code with the application code. This is completely
transparent to the application.

We decided to use JVMTI mainly for two reasons. The
first reason is that JVMTI is a standard Java tool. Using an
aspect oriented approach requires us to rely on non-standard
Java compilers and tools that are not always so thoroughly
developed. The second reason is that the use of JVMTI does
not requires any changes in the application code.

It should be noted however, that the design of our frame-
work is independent of the actual mechanism used for im-
plementing a PEP. In principle, all the above approaches
could be used to implemented a PEP with enough capa-
bilities that would enable our framework to function as re-
quired. This has the main advantage of allowing our frame-
work to enforce policies across systems implemented using
different technologies.

Figure 4 gives an overview of our architecture. Given
that the JVMTI and policy interpreter modules were already
available, the only modules that we implemented are the

ti a.c and the TIAgent.java.

reply

invocation

Policy
Interpreter

ti_a.c

PEP
1

A
g
e
n
t

s
e

n
d

JVMTI

TIAgent.java

Policy
table

Policy
table

native
 code

Java
code

events

JNI

Hierarchical
Domain

Representation

R
e
s
o
u
r
c
e

r

e
c
e
i

v
e

PEP
2

PEP
4

PEP
3

Figure 4. The modules implemented in our
framework to provide a complete control over
authorization.

The ti a.c is the ti-agent written in C that is injected
in the JVM at start-up time as a command line option. Once
the ti a.c has been loaded into the JVM, it registers the
notification callbacks for JVMTI events. In particular, the
agent registers for JVMTI EVENT METHOD ENTRY and
JVMTI EVENT METHOD EXIT to intercept when the ex-
ecution flow enters and exits a method, respectively. For
example, Figure 4 shows an agent that is executing its own
method send to invoke the method receive of the re-
source. In this example, ti a.c is notified by the JVMTI
notification system when the following events occurs:

• entering method send (event 1),

• entering method receive (event 2),

• exiting method receive (event 3),

• and finally exiting method send after the call to
receive (event 4).

Such events are one-to-one mapped to the PEPs that our
framework requires.

Method entry and method exit events are notified every
time a method is called. This requires that ti a.c that has
to filter out all those events relative to methods for which a
policy has not been specified. This means that the ti a.c



needs to be interfaced with the policy interpreter because
the interpreter organizes the policies in its domain hierar-
chy. This task is fulfilled by the TIAgent.java that pro-
vides to the ti a.c information on the policies loaded by
the interpreter. The information that the TIAgent.java
extracts from a loaded policy is concatenated to from a so
called signature. A signature is the concatenation of the
following elements:

• the action that is the name of the method to be invoked,

• the target that is the host object’s full class name that
contains the method,

• and the subject that is the MA object’s full class name
that invokes the method.

The signatures are passed to the ti a.c that can use
them to intercept the appropriate events. The ti a.c and
TIAgent.java maintain policy tables where policy sig-
natures are stored. This enables us to minimize the depen-
dencies of our framework from the policy representation
used by the specific interpreter.

act+tar
key value

... ...

tag

sbj_list:

... ...

... ...

sbj 1 sbj 2

Figure 5. The policy table of the ti a.c.

The policy table maintained by the ti a.c is a hash
table represented in Figure 5. The key column contains the
concatenation of the action and target. The value column
contains structures with the following fields:

• tag, that can have three values: 0 for an authorization
policy on entering the method, and 2 for an authoriza-
tion policy on exiting the method;

• subject list, a linked list subjects for which an
authorization policy is specified.

signature
key value

... ...

... ...

... ...
reference
to policy
object 1

reference
to policy
object 2

Figure 6. The policy table of the
TIAgent.java.

ti_a.c TIAgent.java

event retrieve action
and target

look up in
the table

retrieve the
subject from

the frame

invoke
isAuthorized

retrieve policy
reference from

table

Policy Object

check subject and
target OIDS

authenticate
subject OID

return truereturn true
let the

invocation
proceeds

Figure 7. The message sequence chart of the
activation of an authorization policy.

The policy table of the TIAgent.java is represented
in Figure 6. It is a hash table where the key column con-
tains signatures. The value column contains a linked list of
references to the actual policy objects as represented by the
policy interpreter.

The main reason of having two separate instances of
the table is to lower the overhead of JNI calls between
the TIAgent.java and ti a.c. For each event, the
ti a.c retrieves the method name (action) and the full
class name (target) of the object that contains the method.
Using this information, the ti a.c looks up a matching
key in its table. If a match is found, the process to activate
the proper policy is started. Otherwise, the ti a.c just ig-
nores the event. By having its local table, the ti a.c can
perform locally the search instead of having to use a costly
JNI call to the TIAgent.java.

Whenever the interpreter updates the set of policies (i.e.,
for loading new policies, disabling or enabling policies), the
TIAgent.java is notified that an update was performed.
This triggers the update on its own table. As soon as the
TIAgent.java changes its table, the ti a.c intercepts
the changes and update its local table, accordingly.

In the following, we explain with an example the details
of the authorization of a method invocation.

4.2.1. An example of Authorization Policy Enforcement.
Let us consider one of the policies presented above. In par-
ticular, let us consider the authorization policy defined in



Policy 5
The policy specifies that the nurse agent is authorized to

get the records of a patient agent when the nurse is on duty
on the same ward where the patient is assigned.

Figure 7 shows a message sequence chart of the policy
execution for authorizing the nurse access. When the exe-
cution flow enters the method readRecord of the patient
agent, JVMTI raises an event captured by the ti a.c. The
ti a.c retrieves the method name (action) that is being
invoked and the agent’s full class name (target) where the
method belongs to. This information is used to look up in
its policy table for a matching element. Once the element is
retrieved, the ti a.c uses the subject list to identify which
agent is invoking the method. For each element in the sub-
ject list, the ti a.c scans the frames of the current exe-
cution stack (provided by the JVMTI) for a match. If no
matching subject is found, then the ti a.c has to notify
the TIAgent.java that an unauthorized access is being
attempted and appropriate actions should be taken (for in-
stance, throwing an exception).

Once the nurse agent is found in the current execution
stack, to complete the authorization it is necessary to au-
thenticate the subject.

As for the authentication, in the current implementation
of our prototype, we use the authentication mechanism pro-
vided by the policy interpreter. As we said, the policy in-
terpreter maintains a domain structure populated with man-
aged objects. Each managed object represents a component
that needs to be managed. In this case, a component can
be either an agent or a resource. When a new component is
discovered, the policy interpreter checks the components’s
credentials. If the component is authenticated, the policy
interpreter instantiates the correspondent managed object
in its domain structure. Each managed object is uniquely
identified by an ID generated by the interpreter, called OID.
Thus the subject can be authenticated if it provides a valid
OID. This holds also for the target.

The ti a.c retrieves the subject and target OIDs.
Afterwards, the ti a.c invokes the TIAgent.java’s
method isAuthorized (using JNI) passing the follow-
ing information:

• the signature, that is the concatenation of subject and
target class name followed by the method name,

• the subject OID,

• the target OID,

• and an array containing the parameters’ values of the
method invocation (in this case the array is null be-
cause no condition clause is specified in the policy).

Using the signature, the isAuthorized method re-
trieves from the policy table the linked list of policy ref-
erences. Multiple policies could be defined for the same

combination of action, target, and subject. All of these poli-
cies are contained in the list. The method goes through the
list until a policy that authorized the execution of the oper-
ation is found.

A policy authorizes an action if the subject and the target
OIDs are valid. This also means that the OIDs must be con-
tained in the specified domains. In this case, the nurse agent
OID must be contained in the ward10 domain for the hospi-
tal personnel, and the patient agent OID must be in ward10
domain for the patients. When the policy that authorizes the
action is found, then the isAuthorizedmethod immedi-
ately returns to the ti a.c that the invocation can proceed.
Otherwise the isAuthorizedmethod returns false to the
ti a.c that does not allow the invocation.

5 Conclusions and Future Work

In this paper, we presented a framework for authoriza-
tion policy enforcement for mobile agent applications. The
main contribution of our approach is that authorization poli-
cies can be used to protect both the mobile agents and he
host resources. This fills the gap of previous approaches
where policies could be specified and enforced on the host
resources. This paper also described our implementation of
the framework.

As future work, we foresee working in combining a Trust
Management System (TMS) with access control. Since the
interception mechanism is independent from the actual au-
thorization model, we can easily integrate a TMS in our
suite. The TMS will take decisions on whether a given en-
tity should be granted authorization based on the trust level
that the owner of the accessed resource puts on the entity.
This level can change over time, providing a very flexible
framework in comparison with the yes-or-no approach of
classical security models.

Another main area of future research is the introduction
in our framework of conflict resolution strategies to auto-
matically resolve conflicts that could arise between policies.

Acknowledgments

This research was supported by the UK’s EPSRC re-
search grant EP/C537181/1 and forms part of the CareGrid,
a collaborative project with the University of Cambridge.
The authors would also like to thank the members of the
Policy Research Group at Imperial College for their sup-
port.

References

[1] Corradi et al. A flexible access control service for Java mobile
code. In 16th Annual Computer Security Application Confer-
ence (ACSAC’00)s.



[2] N. Damianou, N. Dulay, E. Lupu and M. Sloman. “The Pon-
der Policy Specification Language.” In Proc. 2nd IEEE In-
ternational Workshop on Policies for Distributed Systems and
Networks, pp. 18–38, 2001.

[3] R. E. Filman and D. P. Friedman. “Aspect-Oriented Program-
ming is Quantification and Obliviousness.” Workshop on Ad-
vanced Separation of Concerns, OOPSLA, October 2000.

[4] W. Jansen and T. Karygiannis. “Mobile Agent Security.” NIST
Special Publication 800-19, National Institute of Standard and
Technology, 2000.

[5] Java Management Extension Specifications.
http://jcp.org/aboutJava/communityprocess/final/jsr003/
index3.html

[6] Java Security White Paper. http://java.sun.com/developer/
technicalArticles/Security/whitepaper/JS White Paper.pdf

[7] JVM Tool Interface http://java.sun.com/j2se/1.5.0/docs/guide/
jvmti/index.html

[8] L. Kagal, T. Finin and A. Joshi. “A policy language for a per-
vasive computing environment.” In Proc. 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Net-
works, pp. 63–74, 2003.

[9] E. Lupu and M. Sloman. “Conflicts in Policy-Based Dis-
tributed Systems Management.” IEEE Transaction on Soft-
ware Engineering, pp. 852–869, Vol. 25, No. 6, 1999.

[10] N. H. Minsky and P. Pal. “Law-Governed Regularities in
Object Systems - Part 2: A Concrete Implementation.” Theory
and Practice of Object Systems (TAPOS), John Wiley. 2, 1997.

[11] D. L. Parnas. “On the criteria to be used in decompos-
ing systems into modules.” Communications of the ACM,
15(12):1053-1058, December 1972.

[12] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. “JAC:
A Flexible Framework for AOP in Java.” In Reflection’01,
volume 2192 of Lecture Notes in Computer Science, pages
1–24. Springer-Verlag, September 2001.

[13] T. Verhanneman, F. Piessens, B. D. Win and Wouter Joosen
“Uniform Application-level Access Control Enforcement of
Organizationwide Policies.” In Proc. 21st Annual Computer
Security Applications Conference, pp. 431–440, 2005.

[14] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M.
Breedy, L. Bunch, M. Johnson, S. Kulkarni and J. Lott.
“KAoS policy and domain services: toward a description-
logic approach to policy representation, deconfliction, and en-
forcement.” In Proc. 4th IEEE International Workshop on
Policies for Distributed Systems and Networks, pp. 93–96,
2003.


