IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

2501

Distributed Differential Privacy via Shuffling Versus
Aggregation: A Curious Study

Yu Wei™, Jingyu Jia™, Yuduo Wu"™, Changhui Hu, Changyu Dong™, Zheli Liu™,
Xiaofeng Chen™, Senior Member, IEEE, Yun Peng, and Shaowei Wang~, Member, IEEE

Abstract— How to achieve distributed differential privacy (DP)
without a trusted central party is of great interest in both theory
and practice. Recently, the shuffle model has attracted much
attention. Unlike the local DP model in which the users send
randomized data directly to the data collector/analyzer, in the
shuffle model an intermediate untrusted shuffler is introduced to
randomly permute the data, which have already been randomized
by the users, before they reach the analyzer. The most appealing
aspect is that while shuffling does not explicitly add more noise to
the data, it can make privacy better. The privacy amplification
effect in consequence means the users need to add less noise
to the data than in the local DP model, but can achieve the
same level of differential privacy. Thus, protocols in the shuffle
model can provide better accuracy than those in the local DP
model. What looks interesting to us is that the architecture of
the shuffle model is similar to private aggregation, which has
been studied for more than a decade. In private aggregation,
locally randomized user data are aggregated by an intermediate
untrusted aggregator. Thus, our question is whether aggregation
also exhibits some sort of privacy amplification effect? And if
so, how good is this ‘“aggregation model” in comparison with
the shuffle model. We conducted the first comparative study
between the two, covering privacy amplification, functionalities,
protocol accuracy, and practicality. The results as yet suggest
that the new shuffle model does not have obvious advantages
over the old aggregation model. On the contrary, protocols in
the aggregation model outperform those in the shuffle model,
sometimes significantly, in many aspects.

Manuscript received 14 October 2021; revised 23 February 2023, 18 July
2023, and 29 October 2023; accepted 27 November 2023. Date of publication
9 January 2024; date of current version 15 January 2024. This work was
supported in part by the National Natural Science Foundation of China
under Grant 62072132 and Grant 62261160651, in part by the National Key
Research and Development Program of China under Grant 2020YFB 1005700,
and in part by the Engineering and Physical Sciences Research Council of
U.K. under Grant EP/M013561/2. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Dali Kaafar.
(Corresponding authors: Changyu Dong; Zheli Liu.)

Yu Wei, Jingyu Jia, Yuduo Wu, and Zheli Liu are with the
College of Cyber Science and the College of Computer Science,
Key Laboratory of Data and Intelligent System Security, Ministry
of Education, Nankai University, Tianjin 300350, China (e-
mail: stoneboat@mail.nankai.edu.cn; jiajingyu@mail.nankai.edu.cn;
doria@mail.nankai.edu.cn; liuzheli@nankai.edu.cn).

Changhui Hu is with the School of Cyberspace Security and the
School of Cryptology, Hainan University, Haikou 570228, China (e-mail:
chu@hainanu.edu.cn).

Changyu Dong, Yun Peng, and Shaowei Wang are with the Institute
of Artificial Intelligence, Guangzhou University, Guangzhou 511370,
China  (e-mail:  changyu.dong@gzhu.edu.cn;  yun-peng@gzhu.edu.cn;
wangsw @gzhu.edu.cn).

Xiaofeng Chen is with the School of Cyber Engineering, Xidian University,
Xi’an 710071, China (e-mail: xfchen@xidian.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3351474

Index Terms— Differential privacy, shuffle model, aggregation
model.

I. INTRODUCTION

ODAY, data are more valuable than ever. Data are a
key driver behind technological innovations that enable
companies to provide more competitive and reliable products
and services. In fact, the success of big name Internet compa-
nies, such as Google and Facebook, is largely due to the vast
amount of data they collect from their users. While collecting
data from users can provide clear benefits for businesses,
it also means hefty privacy risks. With increasingly stricter
privacy laws and regulations, companies are obliged to provide
adequate protection to the data they collect, store, and process.
Differential privacy (DP) [1] has been regarded by many as
a promising Privacy Enhancing Technology (PET). It allows
companies to collect and share aggregated data while main-
taining the privacy of individual users. Traditionally, DP was
studied in the central model where a trusted data collector
collects raw data from the users, then processes the data with
a differentially private algorithm and publishes the results.
Central DP guarantees the privacy of the final published
statistics. However, the assumption that the data collector is
trusted is too strong. In many real-world scenarios, it is just
not possible for the users to trust the data collector. This led to
the development of distributed DP mechanisms. One popular
approach is local DP. In local DP, each user randomizes his/her
data before sending it to the data collector. Under local DP,
data are already differentially private when it leaves the user’s
control. Thus, the data collector cannot see the raw data and
does not need to be trusted. Yet, the randomized data from the
users still allow the data collector to extract useful statistics.
Local DP mechanisms have been deployed by big names such
as Google [2], Apple [3], and Microsoft [4] in their services,
to encourage users to share their data.

While local DP is appealing in many ways, it has one vital
weakness. Compared to central DP, the amount of noise being
added is much larger, which causes excessive obfuscation,
hence the loss of utility. This motivated the recent research of
distributed DP with enhanced utility [5], [6], [7]. One notable
line of research in this direction is DP protocols in the shuffle
model [5], [8], [9], [10]. In the shuffle model, an additional
untrusted shuffler is placed between the users and the data
collector (analyst). Each user randomizes his/her data and

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9562-702X
https://orcid.org/0000-0002-9259-7945
https://orcid.org/0000-0001-9890-9340
https://orcid.org/0000-0002-8625-0275
https://orcid.org/0000-0002-2984-2661
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0001-5595-5099

2502

then sends it to the shuffler. After receiving all users’ data,
the shuffler randomly shuffles the data before sending them
to the data collector. At first glance, it is not obvious what
is the benefit of the shuffle model in comparison with the
local DP model. However, in-depth analysis [8], [10] showed
that introducing the shuffler can provide privacy amplification.
That is, in the shuffle model, to achieve the desired differential
privacy level, less noise is needed to be added by the users
to their data compared to the local DP model. It has been
shown in [8] and [9] that the accuracy of the statistics produced
by the shuffle model is somewhere in between the local and
the central model. Also, the shuffle model does not require a
strong trust assumption as the central model because neither
the shuffler nor the data collector needs to be trusted. Because
of all these advantages, the shuffle model has attracted much
attention from the research community [5], [8], [9], [10], [11],
[12], [13], [14], [15], [16].

What inspired the study we present in this paper is the
observation that the architecture of the shuffle model resembles
that of private aggregation [17], [18], [19], [20], which has
already been studied for more than a decade. In many private
aggregation schemes, each user adds noise locally to his/her
data and then sends it to an untrusted aggregator, who then
outputs a differentially private aggregate to the final data
collector. It is interesting to ask whether aggregation can
achieve the privacy amplification effect, like protocols in the
shuffle model. If so, which is better in various dimensions,
such as privacy, utility, functionality, and efficiency?

Contributions: In this paper, we conducted the first com-
parative study between differentially private protocols in the
shuffle model and those based on private aggregation.

o As the first step, we formally defined the aggregation model
that captures private aggregation and is comparable to the
shuffle model in the architecture, trust assumptions, and
practical settings. As examples, we also gave two concrete
protocols in the aggregation model, which are transformed
from the well-known Gaussian and Laplace mechanisms in
the central DP model.

o Our analysis revealed that protocols in the aggregation
model can provide privacy amplification. Although much
more analysis still needs to be done to fully understand this
effect in the aggregation model, our initial results showed
that protocols in the aggregation model can amplify privacy
at least as well as those in the shuffle model and, in some
cases, can do better.

o We showed that protocols in the aggregation model can
support all algorithms in the Statistical Query (SQ) model.
This is on par with the power of protocols in the shuffle
model (see [9]).

o We compared the accuracy of aggregation protocols and
shuffle protocols for a diverse set of tasks, including summa-
tion, histogram, top-k, sorting, SGD, and PCA. The results
demonstrated the effectiveness of the aggregation protocols
for each task, providing compelling evidence that the itera-
tive use of summation does not render the aggregation model
ineffective. Moreover, we consistently observed superior
performance of the aggregation protocols compared to their

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

corresponding shuffle protocols from both theoretical and
empirical perspectives.

e In terms of practicality, we found that one constraint of
protocols in the shuffle model is that they often require the
user numbers to exceed a lower bound. This is generally not
the case in aggregation protocols. Also, contrary to the claim
in [9], we found private aggregation can be implemented
much more efficiently than secure shuffle with state-of-the-
art cryptographic protocols or trusted hardware.

We hope our findings in this paper could spark further
discussion in the community, provide useful input to the
future design of distributed privacy mechanisms, and help
practitioners make better-informed decisions.

II. PRELIMINARIES
A. Differential Privacy

Differential privacy is a mathematical definition of privacy
with rigorous guarantees. If an individual’s private record is
used as part of the input dataset, the output from a differ-
entially private mechanism has the property that anyone can
learn almost nothing more about the individual than if that
person’s record were absent from the dataset. Informally, this
intuition is captured by requiring that the output distributions
produced by a mechanism should differ only slightly when
accessing any two datasets that differ from each other only in
one element. Formally, differential privacy is defined as the
following:

Definition I (Differential Privacy [1]): Let ¢ > 0 and 6 €
[0, 1). A randomized mechanism M : X" — Z satisfies
(e,8)—DP if for any X, X' € X" that differ in only one
element, and any Z C Z, it holds

PIM(X) € Z] < e P[M(X') € Z] + 5.

Note that in the above definition, the mechanism must be
run by a trusted data collector/owner who has full access to
the raw input dataset. However, in many scenarios, this trust
may not exist. Thus, the notion of local differential privacy
was proposed that requires each piece of data in the dataset to
be randomized. If each individual locally randomizes his/her
own record before handing it to the untrusted data collector,
differential privacy guarantee also holds for the collector.
Formally, local differential privacy is defined as the following:

Definition 2 (Local Differential Privacy [21]): Let ¢ >
0 and § € [0,1). A local randomizer R : X — Y satisfies
(¢, 8)—LDP if and only if for any input x,x' € X and any
Y C Y, it holds

P[R(x) € Y] < ¢’ P[R(x') € Y] + 3.

B. Gaussian and Laplace Mechanisms

Now we briefly review the Gaussian mechanism and the
Laplace mechanism in the central model. These two mecha-
nisms achieve differential privacy by adding noise drawn from
Gaussian (Laplace) distribution to query results. Since the
noise added is closely related to the notion of global sensitivity,
we first recall it as follows.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

Definition 3 (Global Sensitivity [1]): Given any function
f X" = RY for any X, X' € X" that differ in only one
element, the global sensitivity of the function f is:

Af =max || f(X) = f(XD)]lp.
X, X'

where || - ||p is the I, norm.

The value of the global sensitivity is decided by the query
function f and the input domain. For instance, for real-valued
summation function f(xj,---,x,) = > x; with x; € [—a, al,
the value of the global sensitivity of f is Af = 2a.

The Laplace mechanism [22] adds random noise drawn
from the Laplace distribution to the results. We first recall
that the Laplace distribution is defined as the following:

Definition 4 (The Laplace Distribution): The Laplace dis-
tribution (centered at 0) with scale b is the distribution with
probability density function:

x|

1
L b)y=—
apx | b) =7 5P\~
We use Lap(b) to denote the Laplace distribution with scale

b and the variance of Lap(b) is 252,

Theorem 1 (Laplace Mechanism): Given any function f :
X" — R, Af measured by the I distance, Laplace Mecha-
nism defined as

Mp(X)=f(X)+(Nr,1,Nr2, -+, NLq)

provides ¢-DPF, where {N| ;}ic|a) are random variables inde-
pendently drawn from Lap(Af/e).

The Laplace distribution has a property called infinite
divisibility [23] (Proposition 2.4.1), which says a Laplacian
random variable can be expressed as a sum of i.i.d random
variables (that follow a certain distribution). Later we will use
this property to implement the distributed Laplace mechanism
in Section III-C.

Theorem 2 (Infinite Divisibility of Laplace Distribution):
Given a Laplace distribution Lap(b), for any n € N7, there
exists a Gamma distribution Ga(n, b) with probability density
function:

1/n
A/b) ™ iy
r(1/n)

’

n
such that > (yi1 — vi.2) follows Lap(b), where v; 1, yi 2 are

i=1
independently drawn from Ga(n, b).
The Gaussian mechanism adds random noise to results. The
noise follows the Gaussian distribution.

Definition 5 (Gaussian Distribution): Gaussian
2

distribution with expectation 0 and variance o~ is the
distribution with probability density function:
1 x?
N(x|o) = —— exp (—=—). (1)
2ro P50

We use N(0, 02) to denote the Gaussian distribution with
expectation 0 and variance o2 in the rest of the paper.

Theorem 3 (Gaussian Mechanism): Given any function f :
X" — R4, global sensitivity Af measured by the I, distance,
the Gaussian Mechanism defined as

Mg(X) = f(X)+ (Ng,1, NG2, -+, NG,a)

2503

provides (e, 8)-DP, where {Ng.i}ic[a] are random variables

independently drawn from N'(0, 02) with o = 2[y20s(125/0) Vzm‘gl'zs/‘s).

C. Local Model

In [24] a so-called local model was defined to capture
private computation with local differential privacy. In the local
model, algorithms cannot access the raw dataset, but only via
local randomizers:

Definition 6 (Local Randomizers [24]): An e-local ran-
domizer R : X — Y is an e-differentially private algorithm
that takes a database of size n = 1. That is, P[R(x) = y] <
ePR(x) = y] for all x,x' € X and all y € Y. The
probability is taken over the coins of R (but not over the choice
of the input).

Definition 7 (Local Oracles [24]): Let X = (x1,...,Xx,) €
X" be a database. An LR oracle LRx(-,-) gets an index
i € [n] and an e-local randomizer R, and outputs a random
value y € Y chosen according to the distribution R(x;). The
distribution R(x;) depends only on the entry x; in X.

Definition 8 (Local Algorithms [24]): An algorithm is e-
local if it accesses the database X via the oracle
LRy with the following restriction: for all i € [n],
if LRx(i,Ry),...,LRx(i, R;) are the algorithm’s invoca-
tions of LRx on index i,where each R; is an ¢j-local
randomizer, then €1 + --- + &, < &.

D. SQ Model

To obtain differential privacy, noise often needs to be added
to the data. One frequently asked question is whether the
output is still useful. An often-used theoretical framework to
answer this question is the Statistical Query (SQ) model [25].
In the SQ model, computational tasks are formulated as learn-
ing algorithms. Let C be a class of {—1, +1}-valued functions
(also called learning concepts) over an input space X. The
aim of a learning algorithm is to learn a concept c. Normally,
a learning algorithm is given examples randomly chosen from
some unknown distribution P over X and should produce a
hypothesis of c. In the SQ model, a learning algorithm (or
SQ algorithm for short) instead of having access to examples,
has only access to statistical properties of the distribution
‘P. Formally, the ability to access statistical properties is
abstracted as SQ Oracle:

Definition 9 (SQ Oracle [24]): Let P be a distribution
over a domain X. An SQ oracle S Qp takes as input a function
g: X — {—1,41} and a tolerance parameter t € [0, 1]. Its
output v satisfies

lv— E [gw)] <,
u~P
where u denotes a random sample.

In the above definition, the SQ oracle takes as input a
statistical query of the form (g, t), where g is a {—1, +1}-
valued query function on input # from domain X, and 7 €
[0, 1] is a tolerance parameter. It outputs an estimation for
the expectation of g over the P that is accurate with additive
error 7. An SQ algorithm can only access the distribution P
indirectly via the SQ oracle SQp. The significance of the

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2504

trust
boundary

trust
boundary

Randomizer
X] —> XY *" Yr()y
Randomizer
X —> Xpos —*»H _ > Ym@] i, Analyzer
v
Yy Yne) - Yrm

Y7t v
Yaayt- Y

Randomizer
Xn > Xp—Yn

Fig. 1.

Shuffle model.

SQ model is that any SQ algorithm can be automatically
converted to a learning algorithm in the presence of certain
noise, thus leading to noise-tolerant algorithms. It has been
shown in [24] that the Local model (Section II-C) is equivalent
to the SQ model, i.e., a concept class is learnable by a local
differentially private algorithm if and only if it is learnable in
the SQ model. Similarly, we will prove in Section V-A that
private aggregation is sufficient to support any SQ algorithms.

Computation Tasks Supported by the SQ Model: In the SQ
model, we can compute the bounded real-valued statistical
query. We can compute almost every learning algorithm that
works in the Probably Approximately Correct (PAC) model
(with the exception of parity learning algorithms). For exam-
ple, we can compute singular value decomposition, principal
component analysis, k-means clustering, decision tree, and
gradient descent.

III. SHUFFLE MODEL AND AGGREGATION MODEL

In this section, we will introduce the shuffle model and
aggregation model. In both models, there are n users, and
each holds a piece of data x; € X. We denote the n users’
record using the vector X = (xq,---, xp).

A. Shuffle Model

The architecture of the shuffle model is illustrated in
Figure 1, and we review the definition of the protocol in the
shuffle model as the following:

Definition 10 (Shuffle Model [5], [9]): A protocol P in the
shuffle model consists of three randomized algorithms:

o A randomizer R : X — Y™ that takes as input a
single user’s record x; and outputs a set of message
Yil, s, Yim € Y. If m = 1, then P is in the
single-message shuffle model.

o A shuffler S : Y* — Y* that takes a set of messages
and outputs these messages in a uniformly random order.
Specifically, on input y1,--- , yn, S chooses a uniformly
random permutation 1 M1 — [N] and outputs
Yr)s s Yr(N)-

o An analyzer A : Y* — Z that takes a set of mes-
sages yi, - , YN and attempts to estimate some funtion
f(x1,---, xy) from these messages.

With this setup, we review the following definition of

differential privacy in the shuffle model.

Definition 11 (Differential Privacy in the Shuffle Model):
A protocol P = (R,S,A) is (e, d)-differentially private

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

trust
boundary

trust
boundary

Randomizer

XI — > X171 *ﬁ

Randomizer

Xy —> X&) 74’

yit..+yn = Analyzer

|

Randomizer yitetyn

X —> X OV, ——>

Fig. 2. Aggregation model.

in the shuffle model if, for n € N7%, the algorithm
(S o RMY(X) := S(R(x1), -+, R(xp)) is (e, 8)-differentially
private.

B. Aggregation Model

Figure 2 illustrates the aggregation model, whose architec-
ture is similar to that of the shuffle model. We define the
protocol in the aggregation model as the following:

Definition 12 (Aggregation Model): A protocol P in the
aggregation model consists of three randomized algorithms:

o A randomizer R : X — Y that takes as input a single

user’s record x; and outputs a message y; € ).

o An aggregator G : Y" — Y that takes n messages and

aggregates messages. Specifically, on input y1,--- , yn, G
n

outputs 7 = Y yi.

o An analyzerlzl : Y — Z that computes statistic f(z)

upon the obtained aggregate.

We further define the definition of differential privacy in the
aggregation model as the following:

Definition 13: (Differential Privacy in the Aggregation
Model) A protocol P = (R, G, A) is (e, d)-differentially
private in the aggregation model if, for all n € NT, the
algorithm (G o R")(X) := G(R(x1), -+, R(xp)) is (¢, 0)-
differentially private.

C. Concrete Protocols

To facilitate discussion, here we show two concrete proto-
cols in the aggregation model. The two aggregation protocols
presented here are the Gaussian aggregation protocol Ag ao
and the Laplace aggregation protocol Aﬁ, a.p» Named after
the noise distributions they use for randomizing the result.
In Appendix B of the full version [26] of our paper, we also
include three shuffle protocols from [8] and [9], for computing
the sum of bits or real numbers in the range of [0, 1].

The Gaussian aggregation protocol Af,a’o is shown in
Figure 3. Each Randomizer in Aga’a adds noise following
Gaussian distribution. A,?‘a,(,(X) is (e, §)-DP for any ¢ > O,
8e€(,1),n e Nt and X = (x1,---,x,) € [—a, a]", when
o = 2av/210g1.25/3

The LaSlace aggregation protocol A)I;,u, p 18 shown in
Figure 4. It utilizes the infinite divisibility of Laplace distri-
bution (Section II-B) to add Laplace noise to the aggregated
results. A,ﬁa’b(X) is (¢,0)-DP for any ¢ > 0, n € N7 and

X =(x1, -+ ,xy) € [—a,al]", when b = 2a/e.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

Gaussian aggregation protocol AG = (Ry 5, G, A)

n,a,o

Randomizer R, ()
Input: z € [—a,a], 0 > 0,n € NT
Output: y € R
1) Let og = % and sample random variable ng from Gaussian
distribution N(0, 03).
2) Return y = x + ng;

Aggregator G(y1, - ,yn):

Input: (y1, - ,yn) € R™
Output: z € R

n
1) Return z = 3 y;;
i=1

Analyst A receives z;

Fig. 3. Protocol: Agaqa.

Laplace aggregation protocol A}, , = (R% ,, G, A)

Randomizer R? ,(z):
Input: = € [—a,a], b > 0,n € NT
Output: y € R
1) Sample random variables 1,72 from gamma distribution
Ga(n,b)
2) Return y = = +v1 — 7y2;

Aggregator G(yq, - -
Input: (y1,--- ,yn) ER"
Output: z € R

n
1) Return z = 3 y;;

i=1

s Yn):

Analyst A receives z;

Fig. 4. Protocol: Aﬁa b

IV. PRIVACY AMPLIFICATION

One attractive property of protocols in the shuffle model
is that they can achieve privacy amplification. That is, the
output of the local randomizers satisfies only a weaker notion
of differential privacy, but after shuffling, the output satisfies a
stronger notion of differential privacy. Privacy amplification is
the key reason why the shuffle model can achieve better utility
than the local model. Can protocols in the aggregation model
also achieve some level of privacy amplification? If so, how
can we compare the level of privacy amplification between
protocols in the shuffle and aggregation models? This is our
first question.

A. Concrete Aggregation Protocol Privacy Amplification
Analysis

To start with, we first investigate whether the two concrete
aggregation protocols can amplify privacy. The answer is yes.

The following theorem states that for the Gaussian aggrega-
tion protocol, the differential privacy that the whole protocol
can achieve is better than what the local randomizer alone
achieves. More specifically, if the randomizer’s output satisfies
(/nea, 8)-differential privacy, then the whole protocol is

2505

(¢4, 8§)-differentially private. The amplification factor depends
on n, the number of users. Therefore, the more users partici-
pating in the protocol, the stronger the amplification will be.

Theorem 4: Let A,ﬁa,a be the Gaussian aggregation pro-
tocol and RZ,J (x) : [—a,a] — R be the local randomizer,
as defined in Figure 3. If A,?’a)(, satisfies (€4, 6)-differential
privacy, then Ry  (x) is (/nea, 8)-differentially private.

The theorem follows directly from how noise is distributedly
generated in the protocol and the differential privacy of the
central Gaussian mechanism. The proof is straightforward and,
thus, is omitted.

The analysis of the Laplace aggregation protocol is more
involved because the noise distribution is rather complex.
Yet, we can still show that the output of the whole protocol
can be better in terms of privacy than that of the local
randomizer. We summarize the amplification theorem of the
Laplace aggregation protocol in Theorem 5 (Proof is available
in Appendix C of the full version [26] of our paper).

Theorem 5: Let Aﬁ,a,b = (Rfl’b,G,A) be the Laplace
aggregation protocol and RZ,h . [—a,a] — R be the local
randomizer, as defined in Figure 4. If Aﬁ,a,b satisfies €4-
differentially private, RZ’,b is (er, 6)-differential privacy such

that eq < ¢ep, and 0 < § < A for some A € (%, 1).

B. Comparison Analysis With the Shuffle Model

We have proved that the two concrete aggregation protocols
can achieve privacy amplification. Then, we are interested
in asking can we compare the level of privacy amplifica-
tion between shuffle protocols and the aggregation protocols.
In particular, is there a separation of the privacy amplification
ability between the protocols in the two models. We report
two interesting observations as the following.

Informally, Theorem 6 says that if an aggregation protocol
uses the same local randomizer as a shuffle protocol, then the
aggregation protocol can achieve at least the same privacy as
the shuffle protocol. In turn, it equals to say that adopting
the same local randomizer in the aggregation model and the
(single-message) shuffle model, the privacy amplification of
the resulting aggregation protocol is at least as strong as that
provided by the resulting shuffle model.

Theorem 6: Let Ps = (R, S, A) be a single-message shuffle
model protocol and Py = (R, G, A) an aggregation model
protocol. The randomizer R : X — )Y satisfies (er,0)-
differential privacy. For n € N7, if Py is (es, 8)-differentially
private, then Py is (s, 8)-differentially private.

Proof: Recall n is the number of users participating in the
shuffle protocol Ps and the aggregation protocol P4. Without
loss of generality, we fix n € NT as an arbitrary positive
integer in the following.

Let 7 be the range of the aggregation protocol P4, and
let W be the range of the shuffle protocol Ps. By theorem’s
condition, if Pg is (eg, 6)-DP, we have for every neighboring
input X, X’ € X" which only differ by one coordinate and
every event W € W, the following inequality holds

P[Ps(X) € W] < eP[Ps(X') € W] +6. 2

7xn—laxn) e
, Xn—1,%,) € X" be an arbitrary pair of

Without loss of generality, let X = (x1,---
Xt X = (xq, -

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2506

datasets, which differs at the n-th coordinates, and let T C
7T be an arbitrary event. Using event T, we define the event
n

W = {(r1,---,rp) € Y"| > ri € T}, which is the set of all
=

n-elements tuples whose slum is in the set T. Then, we have

P[Ps(X) € W] =P[P4(X) € T]. This is because

P[Ps(X) € W]

=P[S(R(x1), -+, R(xp)) € W]
(by protocol’s Definition (Def. 10))
=P[(R(x1), -+, R(xy)) € W]

(event W is not sensitive to uniformly random permutation)
n
= ]P’[Z R(x;) e T] (by event W’s definition)
i=1
=P[Pa(X) e T].

Similarly, we have P[Ps(X') € W] = P[Pa(X') € T].
Combining with Inequality 2, we can see that, if Ps is (g5, §)-
DP, then for every neighboring input X, X’ € X™ which only
differ by one coordinate and every event T € 7, the following
inequality holds

P[PA(X) € T] < *P[Po(X') € T]+ 6.

That is, P4 is (gg, §)-DP. O

Theorem 7 provides a separation of the privacy amplification
ability between protocols in the aggregation models and the
shuffle models. Theorem 7 says that there exist aggregation
protocols that can provide meaningful e-differential privacy
amplification. In comparison, it has been shown in [27] (claim
4.2) that if the protocol has to satisfy e-differential privacy
(rather than (e, §)-differential privacy), then (single-message)
shuffle model cannot offer privacy amplification.

Theorem 7: Let R : {—1,1} +— {-2,—1,1,2} be a ¢-
differential private randomizer, which takes as input x from
the set {—1, 1}, and outputs x with probability ef;ﬁ, or a
value from {—2, —1, 1, 2}\ x with probability ﬁ Then, the
aggregation protocol Py = (R, G, A) satisfies ¢a-differential
privacy, where

2eL + 1 e*L 4+ 3
, In
3 e2eL 4 efL + 2

}.

ea = max{ln

Proof: We first construct a randomizer R : {—1,1} —
{—2, —1, 1, 2} which works as the following: it takes a value
x € {—1, 1} as input, and then with probability ﬁ returns
x, with the rest of probability it uniformly returns a value from

{—2, -1, 1,2\ {x}.
Without loss of generality, let X = (x1, -+, Xy, Xy41) €
XX = (k- ,xn,x,’lH) € X"*1 be an arbitrary pair of

datasets, which differs at the (n-+1)-th coordinates. We further
fix x,+1 = —1 and x’ w1 = 1, which does not harm the proof’s

generality. Let n + 1 be the number of users, Y, = Z R(x;),

Z R(x,,+1) 7 = R(an) For every k € {— 2n—2 —2n—
,2n + 1, 2n + 2}, the probability ratio evaluating at the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

point k is

IS R(x) + R(vas1) = K]
i=1

n
Pr[>. R(x) + R(x,’l+1) = k]
i=1
_ PrlYya+Z =k]
© Pr[Y, 4+ Z =k]
et PriYa =k —j1PriZ = j] )
> jeiataa PriVa =k = IPrZ = ]I
To show that ¢4 < ¢, it suffices to show for every k €
{(-2n—-2,-2n—1,--- ,2n+1,2n+2} and every assignment
of (xy,---,xy—1,%,), one of the quantities Pr[Y, = k +
2], PrlY, = k — 1], Pr[Y, = k — 2] is larger than 0 when
Pr(Y, = k + 1] > 0. Because for the case —2n —2 < k <
—2n—1and2n+1 <k <2n+2 (when Pr[Y, =k+1]=0),
we have

(3) < max{l, e %L} < L

For the case —2n —2 <k <2n+2and —2n <k+1<2n
(when Pr[Y, = k + 1] > 0), we know that when n > 1,
one of the quantity k + 2,k — 1,k — 2 must be in the set
k € {(-2n,—-2n+1,---,2n — 1,2n}, and hence one of the
quantities Pr[Y, = k + 2], Pr(Y, = k — 1], Pr[Y, = k — 2]
must be larger than 0. So far, we conclude that ¢4 < ¢f.

We are interested in how large the privacy amplification in
this aggregation protocol can be, in other words, how large
the difference between ¢; and €4 can be.

Let f(n, k) be the probability ratio evaluating at the point
k for the neighboring dataset X, X’. Formally,

PriPa(X) = k]

T00 = Py = 41

n
Recall Y, = Zl R(xi), Z = R(xp+1), Z' = R(xr’l+l), then
i=

we have
Pr[Pa(X) = k]
Fou k) = 5 X =&
Pr[Pa(X’) = k]
- 3 PriY,—1+Z=k — j1Pr[R(xp) = j]
el PriYami+Z =k = jIPr[R(x) = j]
Pr(Y,— Z=k—j
= e T Lol Al e
jet=2,-1,12) [ Pr[Yy—1 +Z' =k — j]
Let h(n — 1,k — j) = #m, which is the inner

expression of the right hand-side of Inequality 4. We observe
that the maximum probability ratio for the neighboring dataset
X, X’ is obtained at n = 2. This is because

{f(n, k)}

max
ke{—2n-2,--- 2n+2}

= hn—1,k—j by I lity 4
_ke{—ZnI—nza}-%,an}{ (n )} (by Inequality 4)
jel-2.-11.2)
= —1,k)}.
ce|Tax ,M{f(n )}

Therefore, the value of ¢4 will be obtained at n = 2 for
some k, i.e. f(2,k). f(2, k) achieves its maximum (minimum)

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

at k = —3@) with X = (—1,—1,-1), X = (—-1,-1,1).
Then, we have the following expression of €4:
2e°L + 1
%, 0<eL <1+2V2,
e&‘A — e3gL +3

2Lt 2 8LZ]+2\/§.

When ¢ is set in the common range, the difference between
e and g1 does not converge to 0. O

V. FUNCTIONALITY

In this section, we explore the question of ‘what functional-
ities can be computed in the aggregation model’ and compare
its capabilities with those of the shuffle model. Initially, the
shuffle model appears to provide the analyzer with a richer set
of functionalities, as it outputs a vector of randomized data,
while the aggregation model only offers a single sum (with
noise). However, upon closer examination, we carefully review
the concrete computation tasks that existing shuffle protocols
can perform and discover that all of these tasks are achievable
in the aggregation model as well. This finding raises doubts
about the speculation that the shuffle model is inherently more
functionality-rich than the aggregation model.

From a theoretical perspective, literature [9] demonstrates
that functionalities computable in the SQ model can also be
privately computed in the shuffle model. As a comparison,
we prove in section V-A, and all computation tasks in the
SQ model can also be privately computed in the aggregation
model. An astute reader might question why we chose the
SQ model for comparison. The reason is simple; currently,
no other computational model are known to capture the classes
of functionalities that current shuffle protocols can achieve.
Section V-B provides a few concrete examples showing aggre-
gation protocols can do some complex tasks, hence justifying
these counter-intuitive theoretical results.

A. Theoretical Results

In the SQ model, the algorithm learns by accessing sta-
tistical properties provided by the SQ oracle. To show that
aggregation protocols can support all algorithms in the SQ
model, it is sufficient to show that aggregation protocols can
simulate the SQ oracle. That is, whatever the SQ oracle can
do, the aggregation protocol can do as well, with a high
probability. Thus, the SQ algorithms can query an aggregation
protocol instead of the SQ Oracle and should produce the same
quality output.

For any statistical query (g, t), the SQ oracle can output
an estimation for the expectation of g over the domain X that
is accurate with additive error £t. Following [28], here we
consider g to be a real-valued function g : X — [—a,a]
that is more general than Boolean. The global sensitivity of
g is thus 2a. We can construct an algorithm Ag, as shown in
Figure 5, that simulates the SQ oracle using an aggregation
protocol Agym. Corollary 1 guarantees that A, produces the
same quality output of the SQ oracle with probability at least
1 — B, where $ can be arbitrarily small given enough samples.

Corollary 1: Algorithm A, approximates E,.p[g(u)]
within additive error £t with probability at least 1— B, if input

2507

Algorithm Ag4(n,¢€,d, g, Asum) that simulates an SQ
Oracle
Input: uy,u2, -+ ,un € X, query g : X — [—a,a], Asum which

can be a aggregation summation protocol.
Output: %Asum(g(ul): < g(un))-

Fig. 5. Algorithm Ag that simulates an SQ Oracle.

azlog% N a /log%log%

database z has n = Q(— = ) entries sampled
i.i.d. from a dzstrlbutzon 79 on domain X for Agqm = AY

a log alog
orn=Q(—L + ﬂ)forAsum_Aﬁab
Proof: To prove the Corollary 1, we first recall the
accuracy of the two aggregation protocols An a0 and An’a’ p i
Claim 1 and 2, separately. The proof can be found in Appendix
D in our paper’s full version [26].
Claim I1: For any €8 € (0,1, n € Nf, X =
(x1,++,x) € [—a,al” and 0 < B < 1, with probability
at least 1 — B:

n

4a | 1 1.25

|Anaa(X)— E xi|§? logglog—5 .
i=1

Claim 2: For any ¢ € (0,1), n e N*, X = (x1,---
[—a,al® and 0 < B < 1, with probability 1 — B:

nam

7xn) €

n
2a 1
Ay o p(X) = in‘ = —log 5

i=1
Let v = E,~p[g(u)] denote the expectation of function g
over the domain X. Recalling the Hoeffding’s inequality, for

any ﬂo € (0, 1)'
2 _l g - 1 — /31)
< Zd (0] >

[ Zg(u ) —v
i=1
e 1 2 .
Substituting 2a,/ﬂlog% with

above inequality, we have

1 n
p[_
n

i=1

T and By with £ in the

> gu) —v| =

'(211

Solving the equation 26731172 = /2, we obtain that without

. . 8a? log
adding random noise, = e5 examples are enough to approx-

imate E,~p[g(u)] within additive error £5 with probability
at least 1 — g
Recall the relationship of A, and Agyy, shown in Figure 5:

1
_Asum(g(ul)s s

Ag(uy, -+ ,up) = , &(un)).
In the case of Agym = An a.0> Dy the result of Claim I,
Al s 1w 4a 2 125
—_— - — < —. /log —log —.
" nl;g(ul)_ng g 5 log =
8 1 1 1.25
Substltutlng log 2 i log == 125 — 5, we have %

samples are sufﬁ01ent to ensure the noise added through
gausian-based aggregation algorithm lies outside 5 with

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2508

probability at most g Combining the above, we have that
A, estimates E,~p[g(u)] within additive error =t with prob-

8a,/log 2 log 125
vV B 5
+

TE

- . 8a%log %
ability at least 1 — 8 if n = rzg £

L . 8a® log%
When Agm = An’a’b, with the same method, —
4a log%

—. samples are enough to draw the result that A, estimates
E,plg(u)] within additive error =t with probability at least
1 - 8. O

The proof of Corollary 1 is quite general and similar
argument can apply to any aggregation protocols, except the
number of samples required would change depending on the
noise added in the sum. From Corollary 1, it follows directly
that an SQ algorithm can be simulated by an aggregation
algorithm. Furthermore, the simulation also preserves the
differential privacy property of the underlying aggregation
protocol.

Theorem 8: Let Agg be an SQ algorithm that makes at
most t queries to an SQ oracle SQp, each with tolerance
at least t. The simulation above is e-differentially private
(resp. (e, 8)-differentially private) when A, parameterized
with Agum = A,Llﬁa’b (resp. ASG ). If dataset X has n’ = tn =

n,a,o

ta® log % talog % ta®log % ta,/log é log %

Q( e ) (resp. 2( -+ — )) entries
sampled i.i.d. from the distribution P, then the simulation
above gives the same output as Agg with probability at least
1 -8

Proof: On the aspect of privacy, it provides e-differential
privacy (resp. (e, §)-differential privacy) because each piece
of data in X is independent. On the aspect of probability of
failure, the SQ algorithm queries an SQ oracle SQp at most
t times, and the aggregation algorithm simulates each query
(g, t) by running A, on n samples. The allowed probability
of failure for each query is B/ = g By the union bound,
the probability of any of the queries not being approximated
within additive error 7 is bounded by f. (]

B. Concrete Examples

The crux of the discrepancy between the theoretical results
and the intuition is that although the aggregator outputs a
single sum in each run of the aggregation protocol, the
functionality can be decomposed, and the analyzer in the
aggregation model can obtain a vector of data values through
multiple (possibly parallel) runs of the aggregation protocol.
Hence, the analyzer can compute any SQ algorithm in the
aggregation model. As concrete examples, in the following,
we show how to obtain histograms, compute sample variance,
and optimize using the Stochastic Gradient Descent algorithm.

We start by introducing a vector aggregation protocol Ay
(See Figure 6), which is essentially composed of multiple
instances of the aggregation protocol Ag,y, that privately sums
scalar values. Ay satisfies (g, §)-differential privacy if the
aggregation protocol Agm satisfies (e, §)-differential privacy
and the elements in the vector are independent (Proof is
available in Appendix A of the full version [26] of our
paper). Ay satisfies (g, §)-differential privacy if Agym satisfies
(5. %)—differential privacy and d out of k dimensions in the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Vector aggregation protocol Ay

Randomizer: R(X):
Input: X = (21, ,73) € XF,
Output: Y = (y1,--- ,yx) € RF
1) For 1 < i < k, randomize each x; by using the
randomizer in Agym, and produce y;=Agum.R(x;)
2) Return Y = (y1,- -+, yx)

Aggregator G(Y7,---,Y,):
Input: Y;,---,Y, € RF
Output: Z = (z1,,--+ ,2) € RF

1) For each 1 < i < k, sum the ¢-th value in vectors
Y1 to Y, and set z; = Aqum . G(Y1,i,- -+, Ynu);
2) Return Z = (z1,, -+, 2k);
Analyzer receives Z;

Fig. 6. Protocol: Ay.

vector are dependent (by the sequential composition theorem
of differential privacy [1]).

The following examples all use Ag. At a high level, each
user uses a local encoding algorithm to encode his/her record
into a vector and runs Ap, then the aggregator outputs a
perturbed aggregated vector, and the analyzer can use the
vector as the input to an estimation algorithm (depending on
the randomizer) to compute the desired statistics.

1) Histogram: For n users each hold a record, we show
how to privately generate a histogram through aggregation.
Let Q : X — Z¥ be a histogram query that partitions the data
values into k bins. For convenience, we also define predicates
qi, ..., qk such that ¢; : X — {0, 1} evaluates to 1 if the data
value falls into the i-th bin, and 0 otherwise. To generate a
histogram, each user encodes its record x as a vector U =
(ug, - ,ux) = (q1(x), -+, qr(x)). It is clear that U is a
standard basis vector whose elements are all 0, except one
that equals 1. Then, all the users run the vector aggregation
protocol Ay that aggregates their vectors. The sum of those n
standard basis vectors gives the histogram, and the histogram
is protected by the noise added by the randomizers.

2) Sample Variance: For n users such that each user i holds
a real value x; € R, the sample variance is defined as §2 =

n n
n+1 S (xi—x)? = nﬁ(z xl.z—nf2), where the sample mean
i=1 i=1

n
X = }l > x;. To do so, each user encodes its record x; as a
i=1

vector U; = (u;1,ui2) = (xl.z, x;) and uses U; in the vector
aggregation protocol Ay. Ay outputs ¥ = (y1, y2) to the
analyzer, which outputs z = n—ll(y1 - % y%).

3) Stochastic Gradient Descent: Stochastic gradient descent
(SGD) is popular in machine learning and is one of the
most fundamental components in Neural Networks. It is an
iterative approach that can be used to learn linear classifiers
and regressors. We here describe how to implement mini-batch
SGD, the most common form of SGD, in the aggregation
model. Without the loss of generality, there are n users each
has a labeled example (x,[/), where record x € RY, and

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

label [ € {—1, 1}. The analyzer begins with an initial vector
wo € RY. At step ¢, it randomly chooses b users and sends
w; to them, where w; is the vector computed from wq after
t —1 times update. Each of these users computes (sub)gradient
U = V(wy, x,l) and sends this d-dimension vector to Ay,
which outputs ¥ = (y1, -+, y4) to the analyzer. Finally, the
analyzer updates w;4+1 = w; — n;(Aw; + %Y), where 1, and A
are some fixed learning algorithm parameters.

Beyond these examples, in the aggregation model, the
analyzer can compute various statistics based on the output
of aggregation protocols. For example, with the sum, mean
can be easily computed. Also, with histograms, median or
most frequent items can be computed. More complex func-
tions, e.g., k-means, can be computed by iteratively calling
the aggregation protocols. In principle, since all SQ queries
can be answered in the aggregation model, the aggregation
protocols can be used to compute a fairly wide range of func-
tions, including complex ones like expectation-maximization,
SVM, linear/convex optimization, MCMC, simulated anneal-
ing, and so on [29]. Real-world private analytics, such as what
Apple [3] and Google [2] do, can all be computed in the
aggregation model.

VI. ACCURACY ANALYSIS

In this section, we analyze and compare the accuracy of
concrete protocols in both the shuffle and aggregation models.
We begin with the summation task, evaluating it from both
theoretical and empirical perspectives. Our analyses from both
angles consistently demonstrate that the aggregation protocols
have better accuracy. Subsequently, we delve into more com-
plex tasks, including histogram, top-k, sorting, SGD, and PCA.
The empirical evaluation reveals that aggregation protocols
consistently outperform shuffle protocols in those statistical
analyses. This experimental validation also demonstrates the
usefulness of the aggregation protocols, as the iterative use
of summation can achieve acceptable utility levels even for
complex tasks.

A. Theoretical Analysis on Summation Task

We measure the accuracy of protocols using two metrics:
mean square error (MSE) and («, B)-accuracy. Both metrics
are commonly used in the analysis of shuffle protocols. The
MSE quantifies the average noise introduced during protocol
execution. On the other hand, (¢, 8)-accuracy bounds the
worst-case noise added, guaranteeing that it remains below
a threshold o with a probability of at least 1 — .

We focus on the summation protocols, which calculate the
sum of binary or real-valued data. We compare seven shuffle
protocols' and two aggregation protocols (AS  _ and A,ﬁa, b),2
and the results are presented in Table I.

Table I highlights the Laplace aggregation protocol An ab
as the most accurate among all protocols with the same privacy

n,a,o

IWhile some of the shuffle protocols’ accuracy is analyzed using one
metric in the original paper, we also compute the other metric (marked with
“*” in Table I) whenever possible. The detailed calculations are provided in
Appendix D and E of the full version [26] of our paper.

24L satisfies e-differential privacy, and others protocols satisfy (e, §)-
differential privacy.

2509

TABLE I
ACCURACY COMPARISON OF SHUFFLE AND AGGREGATION PROTOCOLS

Protocols MSE «

[9]-bit O(EL2 log %) % log % log %*
[9]-real O(gi2 log? 5 %2 log % log %*
[8]-real O(né logi 3 ) 2"7% log% % %

€3 e3
[27]-bit - 32 log 2 + Y200, /log 2 10g 2

[30]-real-1 0(‘“%#”)2 log 1)

[30]-real-2 O(%) \/% (E% +14 5n23—%>
[31]-real O(E%log %) \/% (ﬁ + QE#IOg %)*
Agaa O(Llog%) % logl'T%log%*

AL b O() < log 5+

guarantee. Following closely is the shuffle protocol [30]-real-2.
These two protocols stand out because they distributively add
Laplace noise and discrete Laplace noise, respectively, which,
as it turns out, are the most effective noise distributions for
the DP summation task.

The deeper and more intuitive reason why aggregation
protocols outperform shuffle protocols can be attributed to
the noise addition paradigm. From the central view, all nine
summation protocols follow the paradigm of outputting the
true summation plus a noise random variable. The Gaussian
and Laplacian mechanisms have already demonstrated their
utility in the central model and can be efficiently implemented
in the aggregation model. Compared to other methods of
adding randomness in the shuffle model, it is no surprise that
the aggregation protocols perform better.

We also observed that multiple-message shuffle protocols
exhibit higher accuracy compared to single-message shuffle
protocols. This advantage stems from the flexibility offered
by multiple-message protocols in their design. Single-message
protocols [9]-bit, [9]-real, [8]-real employ a technique known
as the “privacy blanket” [8], where some individual records are
randomly replaced with noise. Multi-message protocols [27]-
bit and [30]-real-1 extend the “privacy blanket” technique to
the multi-message case. Notably, [30]-real-1 adopts a recursive
approach, leveraging the single-message protocol to bootstrap
the privacy amplification it can achieve. As a result, the
multi-message version adds less noise while ensuring the same
privacy guarantee, leading to improved utility.

On the other hand, multi-message protocols such as [31]-
real and [30]-real-2 employ a different technique. They utilize
an analog of secret sharing in the distributional DP setting,
splitting each individual record into a set of random look-like
messages. This technique is exclusive to the multi-message
model, allowing for more effective noise management and
further enhancing accuracy.

B. Experimental Validation on Summation Task

In this subsection, we present the results of empirical exper-
iments conducted on both aggregation and shuffle summation
protocols. Our experiments take into account three factors that

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2510

dataset~U({0,1}, n), bit protocol

dataset~U([0-1], n), real summation protocol

regation

MSE

10¢ 10° 106 104 10° 106
n€(10%,10%) n€(10%,10%)

dataset~N(0.57, 0.1, n), real n protocol protocol

dataset~B(p=0.001, n), bit
L

MSE

10¢ 10° 106 104 108 106
n€(10%,10%) n€(10%,109)

Fig. 7. MSE under different n values and dataset.

can influence performance: the differential privacy parameters,
data distribution, and dataset size. For the Laplace aggregation
protocol, we set € = 1, while for other protocols, we fixed the
privacy parameters at € = 1 and § = 2730, The input dataset
size varied from 10,000 to 1,000,000.

Regarding data distribution, we considered two options for
real summation protocols: uniformly chosen inputs from the
real domain [0, 1], and inputs following a normal distribution
with mean 0.57 and standard deviation 0.1. For bit summation
protocols, we explored two dataset distributions: uniformly
chosen inputs from the binary domain 0, 1, and inputs follow-
ing a Bernoulli distribution with a probability of 0.001 being
1 and O otherwise.

Figure 7 presents the results, with each point representing
the empirical MSE of the respective protocol, averaged from
1000 protocol executions. Notably, the MSE of both the
Laplace aggregation protocol and the multi-message shuffle
protocol [30]-real-2 is significantly lower, by orders of mag-
nitude, compared to that of other protocols. As discussed in
Section VI-A, these two protocols add (almost) the same noise
distribution from the central view, resulting in comparable and
better accuracy compared to other protocols.

Our second observation is the consistency of accuracy
for the two aggregation protocols and the shuffle proto-
col [30]-real-2 across different dataset sizes (n) and dataset
distributions. In contrast, the accuracy of other shuffle proto-
cols is dependent on these factors, validating the theoretical
results discussed earlier. This observation further highlights
the potential for more stable and reliable performance from
aggregation protocols.

We also observe multi-message shuffle protocol [30]-real-1
and [27]-bit don’t always outperform single-message shuffle
protocols, as shown in Figure 7 (bottom figures). We first
look at the protocol [27]-bit in the bottom left figure. The
dataset used here only has a small fraction of 1, and the
rest is 0. When the sum x is much smaller than the dataset
size n, protocol [27]-bit outputs O as the estimate of x with
high probability. This probability increases as n increases
and x decreases. Consequently, when we set x = 4/n and
n sufficiently large, the MSE for [27]-bit becomes O(n).

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Notably, the MSE of [8]-real is O (n!'/3), and [9]-bit does not
depend on n. This difference reveals that the distribution of
the added noise in [27]-bit can vary depending on the data
distribution, and that is one reason why, in some cases, the
accuracy can be worse than single-message shuffle protocols.

Figure 7 (bottom right figure) shows that the accuracy of
the multi-message protocol [30]-real-1 is worse than that of
its single-message version [8]-real. The errors in both [8]-
real and [30]-real-1 arise from the noise for privacy guarantee
and the rounding error used to convert real data into integer
data. The multi-message protocol incurs more rounding errors
than the single-message one, as each data piece is split into
multiple messages, each requiring rounding. Consequently, the
overall rounding error is larger for the multi-message protocol.
In scenarios where the rounding error dominates the overall
error, the utility of the multi-message protocol is worse than
that of the single-message protocol.

C. Experimental Validation on Complex Computation Tasks

In this subsection, we evaluate and compare the performance
of aggregation and shuffle protocols designed for a diverse
set of computation tasks, including histogram, top-k, sorting,
Stochastic Gradient Descent (SGD), and Principal Component
Analysis (PCA). The results show that the aggregation proto-
col provides useful results for each specific task. The utility
of the aggregation protocols is satisfactory even for SGD
with multiple iterations. Moreover, in comparison with their
corresponding shuffle protocols, the aggregation protocols
consistently demonstrate superior performance. We present
the problem settings, utility metrics, and detailed protocol
performance results for each task in the following.

1) Histogram, Top-K, and Sorting: The evaluated aggre-
gation histogram protocols are instantiations of protocol Apy
(Fig. 6). The summation protocol Agym within Ay is instan-
tiated with Aﬁ’ ap and A,(Z a.0» respectively. Similarly, the
shuffle histogram protocols are instantiations of the histogram
protocol presented in [27] (Fig. 2), using the summation
protocols [9]-bit and [8]-real. We conducted these protocols
on the Fire dataset [32], which contains 681,174 user calls to
the San Francisco Fire Department, classified into 272 “Alert”
types. We use privacy parameters ¢ = 0.05,0.1,0.5,1 and
8 = 107>, The histogram query results in 272 noised counters,
each representing an “Alert” type. To evaluate the error of the
query results, we measure the empirical MSE of the obtained
counters, averaged from 100 protocol executions.

To obtain the top-k and sorting query results, we perform
post-processing on the histogram query results. For the top-k
query, we extract the first k largest counters and return the
corresponding “Alert” types associated with them. In the case
of the sorting query, we sort the top-k counters in descending
order and retrieve the corresponding “Alert” types accordingly.
To evaluate the error of these query results, we count the
number of types that are in the wrong position in the returned
“Alert” types list. The average accuracy is computed from
100 protocol executions. In experiments, we set k to 20.

Table II presents a comparison of errors between aggre-
gation protocols and shuffle protocols for the histogram,
top-k, and sorting tasks. The results show that the error of

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

TABLE I

ACCURACY COMPARISON OF PROTOCOLS IN THE SHUFFLE MODEL AND THE AGGREGATION MODEL

2511

e =0.05 e=0.1 e=0.5 e=1
Protocols
MSE top k  sorting MSE top kK sorting MSE top kK sorting MSE top kK sorting
[9]-bit 3.02¢6  2.55 12.17 6.66e5 1.43 1.06e4 0.06 0 2.30 2.57e3 0 1.35
[8]-real  7.14e6  3.52 1423 | 1.63e5  0.64 721 | 7.59¢3  0.02  2.13 | 2.54e3 0 1.34
Laplace 3.71e3 0.01 1.19 7.91e2 0 0.83 25.31 0 0.24 8.62 0 0.02
Gaussian ~ 4.70e4  0.18 4.95 1.06e4  0.03 2.22 401.32 0 0.76 107.55 0 0.50
—— Shuffle — Aggregation ‘ 3) Principal Component Analysis (PCA): The aggregation
1 ‘ 1 ‘ ‘ ‘ PCA protocol is a distributed implementation of the cen-
tral PCA algorithm [36], both of which perform the same
0.8 1 ~ 0.8 f » operations. Therefore, the accuracy of the aggregation PCA
> > . .
2 06 18 is the same as that of the central algorithm [36]. We defer
5 5 the introduction of the Principal Component Analysis and the
2 047 1< comparison between the central PCA algorithm and the aggre-

Accuracy
Accuracy

!
40 60 80

| 0 |

0 | |
40 60 80 0 20

0 20
Epoch Epoch
©)e=1.0 (d)e=5.0
Fig. 8. Accuracy of SGD for aggregation and shuffle protocols.

aggregation protocols is consistently lower than that of the
shuffle protocols.

2) Stochastic Gradient Descent (SGD): The aggregation
SGD protocol is an instantiation of the DP SGD scheme of
Abidi et al. [33] in the aggregation model, and the shuffle SGD
protocol is from the work of Girgis et al. [34]. We conducted
these protocols on the MNIST dataset [35] and evaluated their
utility by computing the prediction accuracy rate on the testing
set. For each scheme, training was performed for 80 epochs,
using different privacy parameters, namely ¢ = 0.1,0.5, 1, 5,
and § = 107>,

Figure 8 demonstrates that the aggregation SGD protocol
consistently outperforms the shuffle protocol. The upper left
figure shows that even for high privacy settings (¢ = 0.1), the
aggregation protocol can still achieve an impressive accuracy
rate of up to 75%. In contrast, the shuffle protocol’s accuracy
is around 10%, equivalent to random guessing. These results
serve as a compelling example of the effectiveness of the
aggregation model in handling complex tasks that require
iteratively publishing sums.

gation PCA protocol to Appendix F of the full version [26]
of our paper.

In the experiment, we run the aggregation PCA protocol on
10,000 samples taken from the MNIST dataset [35]. We use
privacy parameters ¢ = 0.1,0.5,1.0,5.0 and delta = 1073,
To evaluate the error of the query result, we calculate the
I, distance between the k normalized raw singular vectors Vi
and the noised singular vectors V with the largest singular
values, denoted as ||VkaT — VkaT||2. For this experiment,
we set k to 10.

As a shuffle PCA protocol was not available for comparison,
we report the errors of the aggregation PCA protocol at
different privacy levels: 0.7436 at ¢ = 0.1, 0.1863 at ¢ = 0.5,
0.0543 at ¢ = 1.0, and 0.0022 at ¢ = 5.0.

Remark: The utility of the aggregation protocols depends
largely on the utility of the corresponding central differential
privacy protocols, especially in scenarios where the data
needs to be queried multiple times. We emphasize that the
DP research community has devoted considerable effort to
addressing the issue of noise accumulation and its potential
impact on utility over the years. Leveraging existing advance-
ments, such as the improved privacy accounting method [33]
used in DP SGD, and noise reduction techniques for counting
queries [37], [38], [39], the aggregation protocols can effec-
tively mitigate the impact of noise accumulation.

VII. PRACTICALITY ANALYSIS
A. Minimal Number of Users

One factor that can restrict the application of the shuffle
protocols in real-world scenarios is that they often require
a large number of users to participate, in order to achieve
adequate privacy. For instance, in [9], the bit sum protocol
can only be proved to be (g, §)-differentially private under
the constraints that ¢ € (@log%, 1) and n > 1410g%.
Therefore, given a particular (e, §) pair, n is lower bounded
by both € and 6. The real sum protocol in [9] also requires
a minimal n because this protocol is essentially realized by
invoking the bit sum protocol multiple times. The lower bound
of n is much worse than that of the bit sum protocol because

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2512

TABLE III

MINIMUM NUMBER OF USERS REQUIRED FOR PROTOCOLS
IN THE SHUFFLE MODEL

R min(n)
[9]-bit [9]-real [8]-real
0.01 130396 1791262 6016518
0.1 13040 179127 60166
0.2 6520 89564 15042
0.5 4259 35826 2407
1.0 4259 17913 602

to achieve a certain (g, §), the base bit sum protocol being
invoked has to satisfy smaller privacy parameters (eg, do).
Similarly, in [8], the real sum protocol has a constraint
W < 1 that lower bounds 7. in Table III, we show
the minimal # calculated under various ¢ for those protocols
in the shuffle model, when & is fixed to 273°. As we can see,
better privacy generally requires more users. In contrast, user
numbers in aggregation protocols generally are not a concern.
For example, the two aggregation protocols in Section III-C
can have an arbitrary number of users, as few as 1, for any
(g, 9).

B. Efficiency Analysis

In the previous sections, we treated the shuffler and the
aggregator as ideal functionalities. In the real world, there are
no such ideal functionalities, and they have to be implemented
somehow. This brings on the question of which model is
more efficient in reality. In this section, we try to answer this
question.

In either model, the shuffler or the aggregator is assumed
to be untrusted. This is because if there is a trusted party, one
can be better off by using the trusted party to realize a central
mechanism for differential privacy. To ensure correctness and
security when utilizing an untrusted shuffler or aggregator,
some technical measures are inevitably needed. In this section,
we show the results obtained via two different routes: by using
a cryptographic protocol and by using trusted hardware.

1) Cryptographic Protocol: A shuffler can be realized via
a mixnet. A mixnet [40] is a protocol involving a sequence of
untrusted nodes. The first node takes as input a set of encrypted
messages and outputs a uniformly random permutation of
those messages (after re-encryption/randomization). The first
node’s output is taken by the second node as input, which will
permute the messages again. As long as there is one honest
node, the messages will be shuffled randomly in this process.
To ensure that the nodes cannot manipulate the messages, each
node also produces a cryptographic proof to show that the
plaintexts of messages in the output set are the same as those
of the input set.

An aggregator can be realized via Multiparty Computation
(MPC). Specifically, the protocol involves several untrusted
nodes as computation parties. The users send their inputs to
the computation parties in an encrypted form, and then the
computation parties compute the sum of the data. It is easy
to use a generic MPC framework such as SPDZ [41], [42]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

to implement the aggregator, and SPDZ guarantees that as
long as there is one honest computation party, the sum can be
computed securely and correctly.

a) A remark: There are three different flavors of aggre-
gation protocols in the literature: (a) the users use MPC
and interact among themselves, without intermediate parties,
to realize a virtual aggregator that computes the sum [19]; (b)
the aggregator is a single physical node, and computes the sum
by running a cryptographic protocol with the users [17], [18],
[20]; (c) the aggregator is a group of nodes, and compute the
sum by running a cryptographic protocol with the users [43].
Here we adopt (c) in the comparison because the shuffler
has to be made of at least two nodes — a virtual shuffler
run by all users is not practically feasible, and a single
node shuffler means we have to trust the shuffler to shuffle
properly. Otherwise, there is no guarantee that the permutation
is random. For this reason, if the aggregator is by approach (a)
or (b), then the comparison is not fair because of the difference
in the trust assumptions.

b) Complexity analysis: We first compare the computa-
tional and communication complexity for protocols realizing
the shuffler and the aggregator. The shuffler protocol is based
on the state-of-the-art verifiable shuffle protocol [44], and the
aggregator protocol is based on the SPDZ framework (the
framework can be found in Appendix H of the full version [26]
of our paper). The results can be found in Table IV. Both
protocols can be divided into an offline and online phase
such that the offline phase is used for pre-processing and the
online phase is used for the actual computation. In particular,
in the offline phase of the aggregator protocol, the computation
parties generate secret shares of random numbers, while in
the offline phase of the shuffler protocol, the mixnet nodes
generate a common reference string (CRS).

For the computational complexity, in Table IV, we count the
number of most computationally costly operations. The shuf-
fler protocol relies heavily on public key operations, i.e., group
exponentiation (scalar multiplication in an Elliptic Curve
group) and pairing. The aggregator protocol in the online phase
involves only modular addition in a small field. Although in
the online phase, the computational costs of both protocols
are linear in the number of nodes and users, the operations in
the aggregator protocols are much cheaper (e.g., see Table V).
In the offline phase, the aggregator protocol requires somewhat
homomorphic encryption whose computation is dominated
by multiplications in a polynomial ring. Note that although
the polynomial multiplication is a more costly operation, the
aggregator can benefit from the SIMD parallelization of the
underlying homomorphic encryption scheme, and reduce the
number of operations by a large factor ¢ (M), which is often
in the order of thousand. Therefore, the aggregator protocol is
more efficient overall.

For the communication complexity, the messages in the
shuffler protocol consist of elements in two elliptic curve
groups G| and G, and the messages in the aggregator protocol
consist of elements in finite field F;, and F, (g > p).
Usually, elements in G; and G2 have to be large enough to
be secure, e.g. ~256-bit (with point compression) to achieve
128-bit security. The size of F, and F, can be much smaller

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

—— Shuffle —— Aggregation

—
o
(=)

—_
=]

0.1 n

0.001 {7

10° 5 x 10% 10°
users number n

|
5 x 10*

users number n

Total computation time/s
Online computation time/s

10°

Fig. 9.

TABLE IV

EFFICIENCY COMPARISON (k: THE NUMBER OF THE MIXNET
NODES/COMPUTATION PARTIES; n: THE NUMBER OF USERS)

Efficiency Shuffler Aggregator
Online 13kn exp., kn pair. kn add.
Comp.
Offline 4kn exp., 2kn pair. 10kn/¢(M) polymul.
Online | 4kn X G1, 3kn x Go ksz
Comm. - -
Offline | 4kn x G1, kn x G2 WJC{)(MF‘Z + 3p(M)Fy)

TABLE V

CoST COMPARISON OF PRIMITIVE OPERATIONS AND ELEMENTS IN THE
UNDERLYING GROUPS/FIELDS

n 1000 10000
. exp. 0.10s 1.03s
Computation -
§ pair. 0.54s 5.27s
Time
add. 25.1 ns 222.3 ns
polymul. 0.55s 5.84s
G1 254 bits
. G2 254 bits
Size
Fp 70 bits
Fq 249 bits

depending on the plaintext domain (e.g., see Table V). Note
that in the online phase, the communication complexity of the
aggregator protocol is k2, which is due to each computation
party broadcasting one message. Here, k is often a small
number compared to n (a few vs thousands).

c) Experimental evaluation: We also implemented the
shuffler and the aggregator protocols in C++ and measured
the performance based on our implementation. The implemen-
tation of the shuffler protocol is based on the source code’
provide by the authors of [44], which uses libff* library for the
underlying ECC and pairing operations. The particular curve
used is BN-128, a Barreto-Naehrig curve that provides 128 bits
of security. The aggregator protocol’ is implemented on top
of the SPDZ-2° library, in which it implemented the BGV

3 https://bitbucket.org/JannoSiim/hat_shuffle_implementation/src/master/
4https:// github.com/scipr-lab/libff

5 https://github.com/PuzzleEAA/eaa

6https:// github.com/bristolcrypto/SPDZ-2

2513
e
E £
= =]
£100 | 4 3100| -
B= F & =
s | 4 2
=] =
g 101 1 Esof .
E | |
S R g
= 14 £
é ! = 0¥+t
10° 5 x 10* 10° © 10° 5 x 10* 10°

users number n users number n

The computation and communication overhead of the shuffler protocol and the aggregator protocol.

somewhat homomorphic encryption [45]. The parameter of
BGYV was set to | p| = 70-bit, |q| = 249-bit, and M = 8192 to
achieve 128 bits security. In the experiment, we employed two
mixnet nodes for the shuffler and two computation parties for
the aggregator, all of which have the same hardware (an Intel
Core 17-7700 3.60GHz CPU and 16GB RAM). Note that here,
we only used two nodes for each protocol because, in the
aggregator protocol, the summation is done in parallel at all
computation parties non-interactively, while the execution of
the shuffler protocol is sequential, one node after another.
Therefore, the difference would be more significant if more
nodes were employed in the experiment.

Table V shows the computational cost of primitive opera-
tions (total time for 1,000 and 10,000 operations) in the two
protocols as well as the size of the elements in the underlying
groups and fields. The figures can be used in conjunction with
those in Table IV to understand the actual cost of the protocols.

In Figure 9, we show the running time and communi-
cation cost of the shuffler and aggregator protocols, with
different numbers of users ranging from 1,000 to 100,000.
In Figure 9(a), we show the total computation time in seconds
for both protocols and in Figure 9(b), we show the online
computation time. As we can see, the difference is about 2 -
3 orders of magnitude. We can also see that the online com-
putation phase in the aggregation model is very fast. This is
because aggregation only involves the addition operation, and
the addition operation in SPDZ is just an addition operation
in some small fields, which is very fast. On the other hand,
the shuffler protocols involve public key operations and thus
are much slower. We also show the communication cost of the
aggregator and shuffler protocols in Figure 9(c), Figure 9(d).
Figure 9(c) shows the total communication cost. We can see
the aggregator protocol uses much less bandwidth than the
shuffler protocol. Figure 9(d) shows the online communication
cost, from which we can see that the cost is linear to the
number of users in the shuffler protocol but is constant in the
aggregator protocol. It is easy to understand: in the shuffler
protocol, one node has to pass the whole shuffled set to the
other node, while the aggregators can perform the computation
locally (since it is just an addition) and only need to send out
the shares of one value that is the final sum.

2) Protocol Based on Trusted Hardware: We also imple-
mented a shuffler and an aggregator based on Intel SGX.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



2514

2 2

.5 517000 =

g = 800 |-

é é 600 |

S 8 400 | R
2 & 200 |- 8
= o 04

S e 10° 107 < 10° 10° 107

users number n users number n

—— Shuffle —— Aggregation

Fig. 10. The computation overhead of the SGX-based implementation.

The protocols are simple: the shuffler and the aggregator
are programs running in SGX protected memory space, and
the users communicate with the shuffler/aggregator through
an authenticated secure channel and send in the randomized
data, which is stored and processed (shuffle/aggregate) in SGX
protected memory space. For the shuffler, we use the imple-
mentation of the stash shuffle’ [5]. We run the experiments on
a PC with Intel Core i7-7700 CPU and 3.60GHz, 16GB RAM.
Figure 10(a) compares the total running time of shuffle and
aggregation operation. In Figure 10(a), we can see that the run-
ning time of the aggregator protocol is significantly less than
that of the shuffler, mainly because shuffling is a more costly
operation. The stash shuffle requires 2n hash operations, while
the aggregation requires only n addition operations. Note that
when using SGX-based protocol, the users have to establish an
authenticated secure channel with the shuffler/aggregator and
thus need to run a key agreement protocol. This key establish
phase is the same in both shuffler/aggregator protocols and
is actually quite expensive (Figure 10(b)). If taking this into
account, the cryptographic protocols actually need less time
than SGX-based protocols when the number of users is large.

VIII. RELATED WORK

The research on the shuffle model aims to improve
local DP with better utility. Bittau et al. [5] first proposed
an architecture called ESA (Encode, Shuffle, Analyze) for
online monitoring tasks, but without rigorous analysis. Then,
Erlingsson et al. [10] provided a privacy amplification bound
of the shuffle model, quantifying the privacy of protocols in
the shuffle model in terms of the local differential privacy
provided by the local randomizer. The work by Cheu et al. [9]
gave a protocol for the summation of bits, which can be
extended to the real-valued case with an additional cost in
communication. They showed that shuffle protocols provide
strictly better accuracy than local protocols in some cases.
Balle et al. [8] proposed a protocol for real number summation
with better accuracy and communication cost than the protocol
in [9]. In addition, it gave a new privacy amplification bound,
generalizing the results in [10] to a wider range of parameters.

In the literature of private aggregation, there has been a
lot of work on distributed realization of different privacy,
to eliminate the requirement of trusted data collectors. This

7https://github.com/google/prochlo/tree/master/prochlo_stash_shufﬁer

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

line of work follows a similar model, where users perturb their
data locally and upload encrypted noisy data to the untrusted
aggregator, such that the final decrypted result satisfies dif-
ferential privacy. In 2006, Dwork et al. [19] first proposed
a distributed implementation of privacy-preserving statistical
databases, where the users generate Gaussian or exponential
noise to make the database queries differentially private. Later,
Shi et al. [20] proposed a private aggregation protocol, where
the users distributively add geometrical noise to the sum.
Chan et al. [18] proposed an approach, which is resilient
to user failure and compromise. Differential privacy can be
guaranteed even when some users are disconnected, at the
cost of higher communication overhead and estimation error.
Moreover, Acs and Castelluccia [17] proposed a protocol that
realizes distributed Laplace mechanism for differential privacy.
Eigner et al. [43] designed a generic architecture for distributed
private aggregation, which supports the Laplace mechanism,
Discrete Laplace, and Exponential mechanism.

IX. CONCLUSION AND FUTURE WORK

In this paper, we conducted the first comparative study
between the shuffle model and the aggregation model, both
of which can achieve distributed differential privacy. Firstly,
it demonstrates that the aggregation model, in contrast to
the (single message) shuffle model, can provide e-DP ampli-
fication. Secondly, it showcases that the aggregation model
supports a wide range of computation tasks, including those
supported by existing shuffle protocols. Furthermore, it com-
pares the accuracy and efficiency of aggregation and shuffle
protocols for various computation tasks from both theoretical
and empirical perspectives.

Our analysis reveals that protocols in the aggregation model,
despite being considered old fashioned, often outperform the
newer protocols in the shuffle model in many aspects, and
perhaps are more suitable for practical use in the current
state. This observation prompts a research question for the
distributed DP community: Can we design a shuffle proto-
col that outperforms the aggregation protocol, especially for
computation tasks that extend beyond simple aggregations?
To fully understand the strengths and limitations of both
the shuffle and aggregation models in theory and practice,
we believe further research is needed.

ACKNOWLEDGMENT

Yu Wei, Jingyu Jia, and Yuduo Wu are co-supervised
by Prof. Changyu Dong and Zheli Liu and have the same
contribution to this paper.

REFERENCES

[1] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3-4,
pp. 211407, 2014.

[2] U. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: Random-
ized aggregatable privacy-preserving ordinal response,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Nov. 2014, pp. 1054-1067.

[3] A.D.P. Team, “Learning with privacy at scale,” Mach. Learn. J., vol. 1,
no. 8, pp. 1-25, 2017.

[4] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in Proc. NIPS, 2017, pp. 3571-3580.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



WEI et al.: DISTRIBUTED DP VIA SHUFFLING VERSUS AGGREGATION: A CURIOUS STUDY

[5]
[6]

[7]

[8

[t}

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Bittau et al., “PROCHLO: Strong privacy for analytics in the crowd,”
in Proc. SOSP, 2017, pp. 441-459.

B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits,
“BLENDER: Enabling local search with a hybrid differential privacy
model,” in Proc. USENIX Secur. Symp., 2017, pp. 747-764.

A. Beimel, A. Korolova, K. Nissim, O. Sheffet, and U. Stemmer,
“The power of synergy in differential privacy: Combining a small curator
with local randomizers,” in Proc. ITC, vol. 163, 2020, pp. 1-25.

B. Balle, J. Bell, A. Gascon, and K. Nissim, “The privacy blanket of the
shuffle model,” in Advances in Cryptology—CRYPTO (Lecture Notes
in Computer Science), vol. 11693. Berlin, Germany: Springer, 2019,
pp. 638-667.

A. Cheu, A. D. Smith, J. Ullman, D. Zeber, and M. Zhilyaev, “Dis-
tributed differential privacy via shuffling,” in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science), vol. 11476. Berlin,
Germany: Springer, 2019, pp. 375-403.

U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and
A. Thakurta, “Amplification by shuffling: From local to central differ-
ential privacy via anonymity,” in Proc. SIAM, 2019, pp. 2468-2479.

J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and S. Yekhanin,
“An algorithmic framework for differentially private data analysis on
trusted processors,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 13657-13668.

B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. Vechev,
“DP-Finder: Finding differential privacy violations by sampling and
optimization,” in Proc. CCS, 2018, pp. 508-524.

J. Hayes and O. Ohrimenko, “Contamination attacks and mitigation in
multi-party machine learning,” in Proc. NIPS, 2018, pp. 6604-6615.

1. Kotsogiannis et al., “PrivateSQL: A differentially private SQL query
engine,” Proc. VLDB Endowment, vol. 12, no. 11, pp. 1371-1384,
Jul. 2019.

A. Sokolovska and L. Kocarev, “Integrating technical and legal concepts
of privacy,” IEEE Access, vol. 6, pp. 26543-26557, 2018.

N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and
A. Bestavros, “Conclave: Secure multi-party computation on big data,”
in Proc. 14th EuroSys Conf., Mar. 2019, pp. 1-18.

G. Acs and C. Castelluccia, “I have a DREAM! (DiffeRentially private
smart metering),” in Information Hiding. Prague, Czech Republic:
Springer, 2011, pp. 118-132.

T.-H. H. Chan, E. Shi, and D. Song, “Privacy-preserving stream aggre-
gation with fault tolerance,” in Proc. Int. Conf. Financial Cryptogr. Data
Security. Cham, Switzerland: Springer, 2012, pp. 200-214.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer,
2006, pp. 486-503.

E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song, “Privacy-
preserving aggregation of time-series data,” in Proc. NDSS, vol. 2, 2011,
pp. 1-17.

T. Wang, N. Li, and S. Jha, “Locally differentially private frequent
itemset mining,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 127-143.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Theory Cryptography Conf.
Cham, Switzerland: Springer, 2006, pp. 265-284.

S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace Distribution
and Generalizations: A Revisit With Applications to Communications,
Economics, Engineering, and Finance. Berlin, Germany: Springer, 2012.
S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What can we learn privately?” SIAM J. Comput., vol. 40,
no. 3, pp. 793-826, Jan. 2011.

M. Kearns, “Efficient noise-tolerant learning from statistical queries,”
J. ACM, vol. 45, no. 6, pp. 983-1006, Nov. 1998.

Y. Wei et al., “Distributed differential privacy via shuffling vs aggrega-
tion: A curious study,” JACR Cryptol. ePrint Arch., vol. 2023, p. 1764,
2023.

V. Balcer and A. Cheu, “Separating local & shuffled differential privacy
via histograms,” in Proc. ITC, vol. 163, 2020, pp. 1-14.

N. H. Bshouty and V. Feldman, “On using extended statistical queries to
avoid membership queries,” J. Mach. Learn. Res., vol. 2, pp. 359-395,
Mar. 2002.

L. Reyzin, “Statistical queries and statistical algorithms: Foundations
and applications,” 2020, arXiv:2004.00557.

B. Balle, J. Bell, A. Gascén, and K. Nissim, ‘“Private summation in the
multi-message shuffle model,” 2020, arXiv:2002.00817.

[31]
[32]
[33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

2515

B. Ghazi, R. Pagh, and A. Velingker, “Scalable and differentially private
distributed aggregation in the shuffled model,” 2019, arXiv:1906.08320.
(2023). San Francisco Fire Department Calls for Service. [Online].
Available: http://bit.ly/336sddL.

M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308-318.

A. Girgis, D. Data, S. Diggavi, P. Kairouz, and A. T. Suresh, “Shuffled
model of differential privacy in federated learning,” in Proc. Int. Conf.
Artif. Intell. Statist., 2021, pp. 2521-2529.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

C. Dwork, K. Talwar, A. Thakurta, and L. Zhang, “Analyze gauss:
Optimal bounds for privacy-preserving principal component analysis,”
in Proc. 46th Annu. ACM Symp. Theory Comput. New York, NY,
USA: Association for Computing Machinery, May 2014, pp. 11-20, doi:
10.1145/2591796.2591883.

W. Qardaji, W. Yang, and N. Li, “Understanding hierarchical methods
for differentially private histograms,” Proc. VLDB Endowment, vol. 6,
no. 14, pp. 1954-1965, Sep. 2013.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accu-
racy of differentially-private histograms through consistency,” 2009,
arXiv:0904.0942.

T.-H.-H. Chan, E. Shi, and D. Song, “Private and continual release
of statistics,” ACM Trans. Inf. Syst. Secur.,, vol. 14, no. 3, pp. 1-24,
Nov. 2011.

D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84-90, Feb. 1981.

I. Damgérd, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in Advances in
Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 7417.
Berlin, Germany: Springer, 2012, pp. 643-662.

M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ great
again,” in Advances in Cryptology—EUROCRYPT (Lecture Notes in
Computer Science), vol. 10822. Berlin, Germany: Springer, 2018,
pp- 158-189.

F. Eigner, A. Kate, M. Maffei, F. Pampaloni, and I. Pryvalov, “Differen-
tially private data aggregation with optimal utility,” in Proc. 30th Annu.
Comput. Secur. Appl. Conf., Dec. 2014, pp. 316-325.

P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac, “An efficient pairing-based
shuffle argument,” in Advances in Cryptology—ASIACRYPT (Lecture
Notes in Computer Science), vol. 10625. Berlin, Germany: Springer,
2017, pp. 97-127.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” in Proc. 3rd Innov. Theor.
Comput. Sci. Conf., Jan. 2012, pp. 309-325.

Yu Wei received the dual bachelor’s degrees in infor-
mation security and law, and the master’s degree in
computer science from Nankai University, Tianjin,
China, in 2018 and 2021, respectively. He is cur-
rently pursuing the Ph.D. degree in computer science
with Purdue University, West Lafayette, IN, USA.
His research interests include differential privacy,
applied cryptography, and data privacy protection.

Jingyu Jia received the dual bachelor’s degrees in
information security and law from Nankai Univer-
sity, Tianjin, China, in 2019, where he is currently
pursuing the Ph.D. degree in computer science. His
research interests include differential privacy and
data privacy protection.

ys
A

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/2591796.2591883

2516

Yuduo Wu received the dual bachelor’s degrees
in information security and law, and the master’s
degree in computer science from Nankai University,
Tianjin, China, in 2019 and 2022, respectively. Her
research interests include differential privacy and
data privacy protection.

Changhui Hu received the B.S. degree in mathe-
matics and the Ph.D. degree in information security
from Shandong University, Jinan, China, in 2007 and
2012, respectively. Since 2018, he has been a
Research Associate with the School of Computer
Science, Newcastle University. He is currently a Pro-
fessor with the School of Cyberspace Security and
the School of Cryptology, Hainan University. His
research interests include MPC, differential privacy,
and privacy in machine learning.

Changyu Dong received the Ph.D. degree from
Imperial College London. He is currently a Profes-
sor with the Institute of Artificial Intelligence and
Blockchain, Guangzhou University. He has authored
over 70 publications in international journals and
conferences. His research interests include applied
cryptography, trust management, data privacy, and
security policies. His recent work focuses mostly
on designing practical secure computation protocols.
The application domains include secure cloud com-
puting and privacy preserving data mining.

Zheli Liu received the B.Sc. and M.Sc. degrees in
computer science and the Ph.D. degree in computer
application from Jilin University, China, in 2002,
2005, and 2009, respectively. After a post-doctoral

i -~
dH ' fellowship with Nankai University, he joined the
—— College of Computer and Control Engineering,

Nankai University, in 2011. He is currently a Pro-

fessor with Nankai University. His current research

) interests include applied cryptography and data pri-
. vacy protection.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Xiaofeng Chen (Senior Member, IEEE) received

the B.S. and M.S. degrees in mathematics from

Northwest University, Xi’an, China, in 1998 and

2000, respectively, and the Ph.D. degree in cryp-

tography from Xidian University, Xi’an, in 2003.

He is currently a Professor with the School of Cyber

Engineering, Xidian University. He has authored or

7 coauthored more than 200 research papers in refer-
Y \ ' eed international conferences and journals. His work
Ea) ! has been cited more than 10000 times on Google
Scholar. His research interests include applied cryp-

tography and cloud computing security. He was the program/general chair
or a program committee member of more than 30 international conferences.
He is on the editorial board of IEEE TRANSACTIONS ON DEPENDABLE AND
SECURE COMPUTING, Security and Privacy, and Computing and Informatics.

‘ — 3~ !,
v\
including SIGMOD, VLDB, The VLDB Journal,

and IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING. His research interests include graph databases, vector
databases, and privacy computing. He has served as a Program Committee
Member for ICDE, IJCAI, and DASFAA, and a reviewer for IEEE TRANS-
ACTIONS ON KNOWLEDGE AND DATA ENGINEERING and 1JIS.

Yun Peng received the B.Sc. degree in computer sci-
ence from Shandong University (SDU) in 2006, the
M.Phil. degree in computer science from the Harbin
Institute of Technology (HIT) in 2008, and the
Ph.D. degree in computer science from Hong Kong
Baptist University (HKBU) in 2013. He is currently
a Professor with the Institute of Artificial Intel-
ligence, Guangzhou University. He has published
several papers in top-tier conferences and journals,

Shaowei Wang (Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Technology, University of Science and Technology
of China (USTC), in 2019. He is currently an
Associate Professor with the Institute of Artificial
Intelligence and Blockchain, Guangzhou University.
He has published over 30 papers in top-tier con-
ferences and journals, such as VLDB, INFOCOM,
IICAI, ICDE, IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS, and IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING. His research interests include data privacy and federated
learning.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on February 25,2024 at 15:23:10 UTC from IEEE Xplore. Restrictions apply.



