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Abstract— Behavior-based Wi-Fi user authentication has
gained popularity in user-centered smart systems. However, its
wide adoption has been hindered by certain critical issues,
including significant performance degradation when the envi-
ronment changes, the inability to handle unknown activities,
and weak security due to basing authentication on the recog-
nition of a single, one-off activity. In this paper, we propose
Wi-Dist, which authenticates a user using a behavior password,
i.e. a pre-chosen sequence of activities. Wi-Dist addressed the
previously mentioned technical challenges through a cross-layer
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joint optimization framework. In particular, we address envi-
ronment dependency by incorporating adversarial learning and
optimizing both the signal layer and the domain adaptation
layer. This enhances the performance of the learned model
across various environments. To effectively handle unknown
behaviors, we utilize an adversarial learning-based network.
This network establishes a pseudo-decision boundary between
samples from known and unknown sources, ensuring robust
authentication. Additionally, for authentication using continuous
activities, we employ double-sliding windows activity monitoring.
This approach, coupled with activity state correction, partitions
activities for accurate recognition. We also conducted extensive
experiments in indoor environments to demonstrate that Wi-Dist
is effective and robust.

Index Terms— Wi-Fi, channel state information, action recog-
nition, cross-environment.

I. INTRODUCTION

USER authentication aims to verify whether a user has
the authority to access private resources, making it

fundamental to ensure the security of a computer system.
However, traditional authentication mechanisms often struggle
to seamlessly integrate into smart homes, offices, and other
“smart” environments due to their rigidity and inconvenience.
There have been notable developments in user authentica-
tion [1], [2], [3], aiming to enhance security and improve
user experiences. Among these developments, behavior-based
user authentication [4], [5], [6], [7], which verifies a user’s
identity based on their daily activities, has garnered significant
attention. These methods are appealing because they strike
a balance between security and user experience. Typically,
wearable devices are employed to achieve user authentication
through human activities [1], [8], [9], [10]. However, carrying
costly wearable devices may not be practical in real-world
authentication scenarios. To achieve device-free behavior-
based user authentication, computer vision is utilized [11],
[12], allowing authentication through the analysis of videos
captured by external cameras. Nonetheless, this approach also
presents inherent issues, including lighting constraints and
privacy violations [13], [14].

The innovation of Wi-Fi technology has garnered signif-
icant interest due to its noninvasive nature, ubiquity, and
cost-effectiveness. In recent years, behavior-based Wi-Fi user
authentication has emerged as an attractive research topic, pro-
pelled by the technology’s predominant advantages, resulting
in a surge of work in this area [5], [15], [16], [17], [18].
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This approach utilizes ubiquitous wireless signals in typical
indoor environments to extract inherent behavioral character-
istics, enabling device-free authentication of users. However,
existing Wi-Fi-based user behavior authentication encounters
the following issues.

• Firstly, mitigating dependency on the environment proves
challenging. As illustrated in [19] and [20], at the core
of Wi-Fi-based behavior authentication systems lies an
activity recognition model. This model extracts features
from Wi-Fi signals and infers user activities. However,
due to the low spatial resolution of Wi-Fi signals,
an activity recognition model trained in one environment
often experiences a significant decline in performance
even with minor environmental changes. Moreover, the
data-driven nature of the model renders it sensitive to
activities not present in the training data, potentially
misclassifying them and leading to decreased accuracy.
Typically, constructing an effective data-driven model
necessitates millions of samples, making it labor-intensive
to gather extensive sensing data. Despite these challenges,
existing Wi-Fi-based behavior authentication systems [3],
[21], [22], [23], [24], [25] fail to address this environ-
mental dependency. Consequently, collecting new data
and training a new model for each environment becomes
impractical in real-world scenarios.

• Secondly, the emergence of new activities presents
a challenge to user authentication. Previous research
in activity recognition [4], [19], [26] has employed
domain adaptation methodologies to mitigate environ-
mental dependency. However, these approaches often
assume activities to be invariant and overlook the possibil-
ity of new activities. In reality, users can engage in various
activities beyond those predefined in the system. Systems
that only recognize a limited number of activities may
encounter difficulty when confronted with new activities,
as they must classify them into pre-existing categories,
potentially leading to incorrect authentication outcomes.
This poses a second challenge that existing Wi-Fi-based
behavior authentication systems struggle to address.

• Lastly, effectively segmenting continuous activities into
individual ones and implementing robust authentication
mechanisms remains a significant challenge. Current
Wi-Fi-based systems [4], [6], [25], [27] authenticate
users through single, one-off activities, rendering them
vulnerable to zero-effort attacks and imitation attacks.
Continuous activities exhibit more substantial spatial and
temporal dynamic relations [21], [22], [28], which can
compensate for the inherent limitations of Wi-Fi and
enable more accurate user authentication. However, par-
titioning continuous activities into a sequence of atomic
activities presents challenges, as various activities or
activities performed by different individuals have differ-
ent durations.

To achieve Wi-Fi-based user behavior authentication and
address the aforementioned issues, we propose Wi-Dist,
a cross-layer optimization-based user authentication frame-
work utilizing off-the-shelf Wi-Fi (as depicted in Fig. 1).

Fig. 1. Wi-Dist system.

The ultimate goal of Wi-Dist is to realize access control to
specific areas through the identification and judgment of users’
“behavioral passwords”. When a user group registers, it needs
to select several activities as the shared password library of
the user group. During verification, identity verification is per-
formed by executing a legal activity sequence, and then access
rights to the area are obtained. The user’s behavior password is
composed of action sequences in the behavior password library
unique to the user group and supports repeated variable-
length actions. This design means that users do not need to
remember complex character combinations but can perform
familiar actions to prove their identity to the system and gain
access to specific areas. Since attackers are not familiar with
the actions in the cryptographic library, we can classify actions
through open domain adaptation, identify unknown actions,
and then deny dangerous access.

We also address the aforementioned challenges as fol-
lows: (1) The issue of the recognition model’s environment
dependency is tackled from both the signal layer and the
domain adaptation layer. Specifically, at the signal layer, joint
antenna selection and conjugate multiplication are performed
to enhance signal quality. An adversarial learning algorithm
is applied to calibrated signals to generate higher-quality
training data. (2) At the domain adaptation layer, an open set
domain adaptation model is employed to reduce environment
dependency and differentiate between unknown activities and
known ones in altered environments. The classification model
consists of two opponents: the feature generator and the
domain classifier. In the optimization process, the feature gen-
erator attempts to deceive the domain classifier by maximizing
classification error, while the classifier aims for accurate
classification. The domain classifier undergoes weak training
to establish a pseudo-decision boundary between samples
from known sources and those from unknown targets. (3) To
address the issue of continuous activity segmentation, dynamic
activity states are effectively captured and partitioned at the
signal layer using double sliding windows activity monitoring
and activity state correction. Real user authentication is then
implemented at the authentication layer using binary logistic
regression classification to determine the legitimacy of a user.
As illustrated in Fig. 2, information flows from the signal
layer to the authentication layer. Through joint optimization,
effective Wi-Fi behavior-based user authentication is achieved.
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Fig. 2. System infrastructure. Wi-Dist contains three layers: signal layer,
domain adaptation layer and authentication layer.

To the best of our knowledge, this is the first cross-layer
framework to achieve cross-environment behavior-based user
authentication. Wi-Dist is evaluated in typical indoor envi-
ronments, showcasing its robustness in user behavior-based
authentication. The contributions of this work can be summa-
rized as follows:
• An adversarial learning-based data synthesizer is pro-

posed to generate high-quality training data.
• An innovative adversarial network model is proposed

to mitigate the model’s environment dependency and
distinguish unknown activities from known ones in the
altered environment.

• A dynamic dual sliding window activity state tracker
is proposed to partition continuous activities into single
activities. Achieve user authentication through continuous
activity recognition, thereby achieving access control in
specific areas.

• Wi-Dist is implemented and extensive experiments are
conducted to evaluate its performance. The results
demonstrate the feasibility, robustness, and effectiveness
of the system.

The remainder of the paper is structured as follows: Sec. II
surveys and presents related work. Sec. III introduces Wi-Dist,
a cross-layer, jointly optimized user authentication framework
based on off-the-shelf Wi-Fi. Sec. IV outlines the experimental
environment settings, and evaluation metrics, and details the
comprehensive experiments conducted. In Sec. V, the limita-
tions of Wi-Dist and future prospects are discussed. Finally,
the conclusion of the entire text is provided in Sec. VI.

II. RELATED WORK

A. Wi-Fi-Based User Authentication

In recent years, significant advancements have been made in
contactless human behavior recognition using Wi-Fi, leading
to the development of numerous valuable applications such as
gestures [20], [27], gait [29], [30], and respiration [31]. Taking
advantage of the rapid development of Wi-Fi technology,

researchers have begun exploring Wi-Fi-based user authen-
tication. Wi-Fi Channel State Information (CSI) is influenced
by behavioral changes, embodying characteristic information
that reflects these alterations while encapsulating fine-grained
details regarding the propagation environment. Employing
diverse data processing techniques, such as signal feature
extraction and analysis, facilitates the effective detection of
human presence and behavior identification. For instance,
in [32], WiWho is proposed to implement user authentication
through sensing human gaits. In [22], FingerPass leverages
surrounding Wi-Fi signals’ CSI to authenticate users continu-
ously via finger gestures. Additionally, in [6], an adversarial
learning-based model is proposed to identify individuals using
Wi-Fi signals independently of gestures. However, when using
Wi-Fi, changes in the environment where the activity is
conducted can lead to the deterioration of the system’s per-
formance. In this research, we propose a novel framework to
achieve cross-environment user authentication.

B. Data Augmentation

A practical approach to address the issue of data scarcity
is through data augmentation. This deep learning technique
expands the original dataset by generating new training data
from the existing dataset. Yang et al. [33] utilize a limited
subset of paired Kinect and RFID data to augment their dataset
for subsequent model training. Building on this, Wang et
al. [34] refine the previous work by introducing a forward
kinematics layer, which generates synthetic Kinect poses using
simulated human skeletal pose data and quaternion data. Patel
et al. [35] propose the use of conditional GAN (CGAN) for
data enhancement in the context of automatic modulation
classification (AMC). They adopt a small portion of real
data to generate high-quality, labeled radio modulation data
conditioned on auxiliary information. Additionally, Yang et
al. [36] address the issue of sensitivity diversity by mapping
measurements of signal strength and utilizing the short-time
Fourier transform (STFT) to construct generalized tensor data.
Unfortunately, these approaches mainly apply data augmenta-
tion to the raw signals, limiting their effectiveness.

III. ATTACK MODEL & SYSTEM DESIGN

A. Attack Model

In real-world scenarios, Wi-Dist may encounter two types
of attacks: brute force attacks and observation attacks.

1) Brute Force Attacks: The adversary does not know the
user group’s action password library. Brute force attacks entail
the guessing of behavioral passwords through the trial of
various activity combinations. However, unlike conventional
passwords which are vulnerable to exhaustive methods, the
Wi-Dist system needs a user to perform the activities contin-
uously consuming considerable time and effort. Additionally,
abnormal behavior by the attacker is more prone to detection,
impeding the successful execution of brute force attacks.

2) Observation Attacks: The adversary attempts to observe
user behavior to infer the activity base of user groups. In real-
life environments such as home or office, systems are often
isolated from the outside world. This closed nature makes
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Fig. 3. Antenna selection.

it very challenging for an attacker to collect the password
through observation, This will reduce the risks of observation
attacks effectively.

Wi-Dist system aims to authenticate a user group. The users
in the group share the same behavioral password library. Each
one can randomly pick up the activities from the library and
make a behavioral password with any length and combination.
The typical scenario of Wi-Dist is the indoor environment,
such as an office or household. There are two steps to authen-
ticate a user in the group. Firstly, the user informs Wi-Dist
that he belongs to the group. Secondly, Wi-Dist checks if he
belongs to the group by his behavioral password. It is assumed
that the first stage is completed. Wi-Dist system focuses on
group-based user authentication. Wi-Dist effectively thwarts
unauthorized user access to hazardous zones by scrutinizing
user activity sequences.

B. System Overview

The schematic of the Wi-Dist system framework is depicted
in Fig. 2, consisting of three layers: signal layer, domain
adaptation layer, and authentication layer. Wi-Dist initially
acquires CSI data either from the same domain or across
domains (Scenario 1 and Scenario 2 depicted in the figure),
which is subsequently processed at the signal layer. This layer
comprises two components. The first component conducts
preliminary processing on the incoming CSI, encompassing
Antenna Selection, Conjugating Multiplication, PCA, Activity
Partitioning, Data Augmentation, and Doppler Shift Extrac-
tion. These processes are responsible for data calibration and
activity segmentation. The second component involves data
augmentation, where the calibrated data is employed to syn-
thesize high-quality virtual data. This procedural framework
encompasses two pivotal models: the generative model and its
counterpart, the discriminative model. The generative model
gains knowledge of the underlying distribution of a subset of
the real samples and synthesizes more virtual samples with
the same distribution as the real ones. The discriminative
model aims to determine whether a sample is genuine or
not. Through the adversarial optimization between them, the
generated samples progressively approach the characteristics
of the real ones.

The domain adaptation layer comprises an adversarial neural
network, which includes a feature generator and a domain
classifier. The feature generator is composed of the base
network and attentional feature fusion, used for feature extrac-
tion and subsequent feature fusion, respectively. The domain
classifier strives for accurate classification, while the feature
generator adopts an adversarial approach to trick the domain

classifier. At the user authentication layer, a user authentication
mechanism using logistic regression is leveraged to verify user
legitimacy through continuous behavior recognition, and then
determine whether to grant access rights to the corresponding
area. There is an action library for each specific area, and
there is a user group. All users in this user group know all the
actions in the legal action library. Each user can select any
number of repeatable actions from the library as the user’s
unique behavioral password.

C. The Signal Layer

1) Antenna Selection, Conjugating Multiplication and Prin-
cipal Component Analysis(PCA): The received CSI can be
articulated as follows:

C SI ( f, t) = Anoise ( f, t)e− jθoffiet ( f,t) (Hs( f )+ Hd( f, t))

(1)

where Anoise represents the amplitude noise, θoffiet is the
random phase offset and Hs( f ) + Hd( f, t) represents static
and dynamic components, respectively. In the experiment,
each transmitter or receiver has two antennas, in total of four
antenna pairs for one transmitter-receiver pair. Fig. 3 shows
the amplitude distribution of four sets of CSI on one receiver
of the same action. A larger amplitude is apt to result in a
greater static response, and a more significant variance is apt
to result in a greater dynamic response. Pair IV has the highest
amplitude, but the dynamic information is not obvious, and
Pair I and II have the lower amplitude but the most obvious
dynamic information. Moreover, noise or errors in the raw
CSI data may hinder the use of Wi-Fi signals for activity
sensing. Therefore, the relative CSI is derived through the
computation of conjugate multiplication applied to the CSI
of two contiguous antennas.

H( f,t) = CSI1( f, t)C SI2( f, t)

= Anoise ( f, t)2 (Hs1( f )+ Hd1( f, t))

×

(
Hs2( f )+ Hd2( f, t)

)
= Anoise ( f, t)2(Hs1( f )Hs2( f )︸ ︷︷ ︸

(1)

+ Hs1( f )Hd2( f, t)︸ ︷︷ ︸
(2)

+ Hs2( f )Hd1( f, t)︸ ︷︷ ︸
(3)

+ Hd1( f, t)Hd2( f, t))︸ ︷︷ ︸
(4)

≈ Anoise ( f, t)2(Hs1( f )Hs2( f )+ Hs1( f )Hd2( f, t)

+ Hs2( f )Hd1( f, t)). (2)
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Fig. 4. CSI waveforms.

Meanwhile, the antenna Pair I and II are chosen to retain
more dynamic information [6], shown as Eq. (2), where (1) is
a time-invariant term; (2) and (3) are time-varying terms.

Next, Hampel filtering is adopted to detect and remove
outliers, as indicated by the red circles in Fig. 4 (b). Then,
the utilization of a Butterworth filter is implemented for the
purpose of attenuating high-frequency noise. At the carrier
frequency of 5 GHz, the sampling rate of 1000 Hz and with
a maximum speed of 3.2 m/s for the seven basic activities,
the Butterworth filter’s cutoff frequency is set to ωs =

120/ ( fn/2), where fn represents the sampling rate. Fig. 4
(c) illustrates the result after applying the Butterworth filter.
The results demonstrate the effective removal of significant
noise from the raw CSI measurements using the Butterworth
filter. Fig. 4 (d) illustrates the first principal component after
PCA.

2) Consecutive Activity Partition: The consecutive activity
partition aims to identify the initiation and termination points
of individual activities within a time series of successive
motions. In this section, the local and global sliding double
windows are employed to locate the duration of the consec-
utive activity. This process is crucial for extracting features
related to single movements. The CSI amplitude is the most
sensitive to human motions. The amplitude fluctuates when
there are human motions. Hence, the amplitude variance is
chosen as a state change indicator for monitoring.

There is a global sliding window X1 and a local sliding
window X2. The sampling frequency is f packet/s, and the
size of X1 is set to be five times of f . There is a 2-second
overlap between each of the two adjacent global windows.
Meanwhile, the size of the local window X2 is set to be 1/2 f ,
and its sliding frequency is 1/4 f .

At the ith slide of X1, the variance σ 2
i (Xn

2 ) (n represents the
nth slide of X2 in X1) of time series in each X2 is calculated,
and get its average variance µi (σ )2

i (Xn
2 )) and its standard

deviation of variance σi (σ )2
i (Xn

2 )). The segmentation threshold
φi is set to be α ∗µi ((σ )2

i (Xn
2 ))+ β ∗ σi ((σ )2

i (Xn
2 )), here the

weight values are set to be α = 2/3 and β = 1/3 according to
the experience. When σ 2

i (Xn
2 ) > φi , the lower bound of the

current interval in the local sliding window C1 is recorded.
On the contrary, σ 2

i (Xn
2 ) < φi the upper bound of the local

sliding window C2 is recorded.
There is a problem that the current state A is identified as a

motion, while its preceding state A− and its succeeding states
A+ are identified as non-motion. At this moment, the current
segment is converted to its neighbor’s state. An enhanced
method is proposed to tackle this problem while the pseu-
docode is provided in Algorithm 1. All the time series of

segments are checked one by one and corrections are made
when necessary.

As presented in Fig. 5, where X1 and X ′1 represent two
adjacent global sliding windows, X2 represents the local
sliding window. There are five single activities distinguished.

Algorithm 1 Sequential Activity Partition
input : The time series H , the sampling frequency f , the

size of X1 5 f , the size of X2 1/2 f , the sliding
frequency of X2 1/4 f , α = 2/3, and β = 1/3

output: The segmented segments [C1, C2]

1 for i = 1 to |H | By X1 do
2 for n = 1 to X1 By X2 do
3 calculate the variance σ 2

i (Xn
2 ) //n represents the

nth slide of X2 in X1

4 calculate average variance µi (σ )2
i (Xn

2 )) and standard
deviation of variance σi (σ )2

i (Xn
2 ))

5 Threshold φi = α * µi (σ )2
i (Xn

2 )) + β * σi (σ )2
i (Xn

2 ))

6 for n = 1 to X1 By X2 do
7 if σ 2

i (Xn
2 ) > φi then

8 C1 ← the lower bound of X2
9 else

10 C2 ← the upper bound of X2

11 for n = 2 to X1-X2 By X2 do
12 if (A == motion && A− == non-motion &&

A+ == non-motion) then
13 current segment ← non-motion
14 C2 ← the upper bound of A

15 if A == non-motion && A− == motion && A+

== motion then
16 current segment ← motion
17 C1 ← the lower bound of A

3) Doppler Shift Extraction: The Doppler effect quantifies
the alterations in the frequency of observed waves resulting
from the relative motion between a transmitter and a receiver
[37]. The Doppler frequency shift(DFS) is represented as
follows:

fD = −
1
λ

d
dt

p(t) (3)

where λ represents the signal’s wavelength, and p(t) repre-
sents the distance traveled by the reflected signals. However,
in a real-world environment, signals undergo multiple reflec-
tions from the transmitter to the receiver, and reach the
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Fig. 5. Activity monitor.

destination through diverse pathways. Therefore, the response
at the frequency f and time t received by the receiver is a
superposition of the individual path responses, expressed as
follows:

H( f, t) =
L∑

i=1

ai (t)e− j2π f τi (t) (4)

where ai (t) is the composite attenuation factor of the k path,
τi (t) is the kth path from the transmitter to the receiver, L is
the number of paths.

The flight time τi (t) for the kth path corresponds to the
duration it takes for the signal to traverse the path length
di (t), i.e., di (t) = cτi (t), where c denotes the speed of light.
The representation of the channel response involves the DFS
associated with each path, formulated as follows:

H( f, t) = Hs( f )+
∑
i∈Nd

ai (t)e j2π
∫ t
−∞

fDi (u)du (5)

where Hs( f ) is the sum of CSI responses caused by static
invariant paths, and Nd is a set representing dynamic CSI
paths. In fact, ai (t) and fDi (t) are almost the same in a short
time interval so that the spectrum can be acquired in the
following manner:

DF S( f, t) ≈ Hs( f )+
∑
i∈Pd

ai (t)B
(

fDi (t)
)

(6)

where B(·) represents a window function employed to extract
the signal segment of interest.

The partitioned CSI values are obtained. Subsequently, the
first principal component goes through an STFT to generate
the spectrogram. A Gaussian window with a duration of
0.1 s is employed in the STFT to ensure a constant time-
of-flight and attenuation factor within a short time interval.
Zero padding is applied to enhance spectrogram resolution.
Non-overlapping CSI fragments are then stitched to form a
complete spectrogram ultimately. Fig. 6 presents the result-
ing Doppler frequency shift. Different body parts move at
varying speeds during motion, leading to distinct Doppler
frequency shifts. Consequently, the spectrum diagrams of
different actions exhibit noticeable differences. The above
results verify that each activity has its underlying unique signal
representation, providing a solid foundation for behavior-based
Wi-Fi user authentication.

Fig. 6. Spectrograms of different actions. (a) Squat; (b) Jump; (c) Wave
arms; (d) Run in place.

4) Data Augmentation: The learning models suffer from
poor performance when there is insufficient training data.
To address this issue, the sensing data after data calibration are
utilized to do the data augmentation. This improves the quality
of generated sensing data. The process can be regarded as a
stack of multiple GAN networks, with each GAN network
learning information at different scales or blocks. By apply-
ing this approach to the calibrated data, the generated CSI
spectrograms with arbitrary time lengths can be synthesized.
There are multiple generators, denoted as Gn , and multiple
discriminators, denoted as Dn, n = 1, 2,. . . . . .. The generator
G synthesizes virtual data that closely resembles the real train-
ing data, albeit with a different distribution. The discriminator
D verifies if a sample is real or not. The adversary ensures
that the generated data closely matches the distribution of real
sensing data. The functions of the generator and discriminators
are as follows:

min
Gn

max
Dn

Ladv (Gn, Dn)+ αLrec (Gn) (7)

where Ladv is the adversarial loss, which introduces a
penalty that regulates the distribution misalignment between
the authentic sample and the synthetic sample. Lrec represents
the reconstruction loss, ensuring the existence of a specific set
of noise maps capable of generating data.

In this scheme, the training data set is defined as Xr
=

{xr1 , xr2 , . . . , xrM }, the corresponding label is defined as Y ki ∈

Y =
{

y1, y2, . . . yK }
where K is the action category number,

the testing data set is defined as Xu
= {xu1 , xu2 , . . . , xuN },

and the testing data set has no data labels. The synthetic signal
X g
= {xg1 , xg2 , . . . , xgL }, the generator G is synthesized by

the label of Y . In the above description, the values of M , N ,
and L are not necessarily equal; an entire data set is denoted
as X , which is the union of Xu , Xr , and X g , as follows.

X = Xr
∪ Xu

∪ X g. (8)
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The model consists of multiple stacked generators
{G0, . . . , G N } and multiple discriminators {D0, . . . , DN }.
Each generator Gn is trained to deceive the corresponding
discriminator Dn , which aims to distinguish between real and
synthetic signals. As shown in Fig 8, the generation process
starts from the N th generator and then passes through the
generators of the previous layer to a finer scale. As the
layers ascend, the receptive field size diminishes, resulting in
composite signals that adhere to the desired specifications.

The objective is for the generator Gn to take a random
noise vector zg as input, along with a corresponding label y,
and produce synthesized data that closely resembles real data,
which is challenging to distinguish. In other words, we aim
for the mapping Gn : (zg, y) → xg . However, the wireless
signal synthesized by the signal synthesizer is susceptible to
noise and might be distorted during the generation process,
even though the sensing data are preprocessed.

The specific features can be extracted automatically with
convolutional operations. The convolution operations for auto-
matic feature extraction are incorporated to enhance the
generator’s ability to generate synthetic data consisting of the
real data distribution. After the convolution operation, the syn-
thetic data is enhanced by retaining the essential features and
removing the noise interference. A least squares smoothing
filter is then applied to eliminate residual noise further:

Lg = −
1
m

∑
(zg,y)

log
(
D

(
G

(
zg, y

)))
. (9)

The discriminator D is presented with both authentic data
in the form of < xr , y > and synthesized data represented as
< xg, y > during its input phase, and calculates the likelihood
that the input data is synthetic. In order to enable the discrim-
inator to work more effectively, convolution operations are
introduced to improve the accuracy of discrimination. In addi-
tion to training the discriminator to differentiate between
genuine and synthetic data, batch signals are employed to
enhance the antagonistic effect. The parameters are updated
with the following:

Ldg = −
1
m

∑
xg,y

log
(
1− D

(
xg, y

))
+

∑
xr ,y

log D
(
xr , y

)
(10)

where D(x, y) = R/F represents the probability of the input
data being a synthetic signal, and 1 − D(x, y) represents the
probability of it being a real signal. R indicates that the data
source is real data, and F indicates that the data source is
synthetic data.

Finally, the network model iteratively updates its parameters
in the training phase until the minimum overall loss function
is obtained. The generation and discriminative adversarial
process of the network model terminates when the discrim-
inator can no longer distinguish between synthetic and real
signals. The network parameters undergo optimization through
stochastic gradient descent (SGD) employing the learning rate
set at 0.0001.

The t-SNE [38] method is used to analyze the distribution
of synthetic data. Fig. 7 presents the data visualization result

Fig. 7. (a) The visualization result of the acquired partial processing
doppler shift map after dimensionality reduction; (b) The visualization result
of real data and an equivalent quantity of generated data after dimensionality
reduction.

after dimensionality reduction processing on the synthetic data
generated from the real processed CSI measurements. Seven
basic activities are conducted for the experiments; different
colored dots represent different activities. Fig. 7 (a) represents
the visualization result of spectrograms. Fig. 7 (b) is the
visualization result of real data spectrograms. For each activity,
the real and synthetic data are well aligned. As a result, the
virtual data distribution is consistent with the real Wi-Fi data’s
distribution, and data diversity is expanded.

D. Domain Adaptation Layer

Due to the insufficient spatial resolution, the features
derived from the movement induced CSI dynamics are specific
to the environment where movement occurs. The classifier’s
performance may deteriorate when trained in one scenario
and applied in the other. In addition, the unknown activities
conducted in the new scenarios will be mistakenly regarded as
known activities. These issues are addressed in this section.

A domain adaptation model based on adversarial net-
works is proposed to distinguish between known and unknown
samples in a new environment. It comprises two primary
components: a classifier C and a feature generator G F . The
Generator G F consists of base network and attentional feature
fusion(AFF). The base work model drives features from the
spectrograms, and the attentional feature fusion model gener-
ates the corresponding feature enhancement. The classifier C
is trained to set the pseudo decision boundary that separates
known and “unknown” classes. The feature generator G F is
trained to generate features difficult for classifier C to classify
accurately, thereby deceiving it. The classifier C maximizes its
classification error by leveraging the ability of the generator
G F to manipulate the probability of the unknown class, either
increasing or decreasing it. The proposed adversarial-based
model trains the classifier and feature generator in this adver-
sarial manner together to mitigate the negative impact caused
by environmental changes and identify suspicious users based
on their unauthorized activities.

The proposed AFF model combines local and global
non-linear features and integrates multi-scale feature contexts
within the attention module. Furthermore, the model puts
forward the scale-related issue in channel attention through
pointwise convolution. This approach promotes the fusion of
features driven by attention. Each domain has two mutually
perpendicular sensing links for the data collection. The inputs
of generator G F are spectrograms from the horizontal link
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Fig. 8. Domain adaptation model, which is composed of two parts, the generator G F and the classifier C , as depicted in Fig. 8. The generator contains the
base network and attentional feature fusion model, and the inputs of the base network are spectrograms from the horizontal link (indicated by the solid blue
line), as well as the perpendicular link (indicated by the dotted blue line). It also contains a gradient reversal layer for facilitating the simultaneous update of
both classifier and generator parameter. The output of the model contains two parts: the known label and the unknown label.

(indicated by the solid blue line in Fig. 8), as well as the
perpendicular link (indicated by the dotted blue line in Fig. 8).

1) Generator G F : The generator G F includes the base
network module and the attention feature fusion module.
In Wi-Dist, a deeper auto-regressive base network with a
ResNet-34 encoder is leveraged to derive the fine-grained
features from the spectrograms. The base network takes the
spectrograms from source and target domains as inputs, pre-
trained on the spectrogram network [20]. Residual learning is
implemented in each stacking layer, and the residual block can
be expressed as:

y = F (x, {Wi })+ x (11)

where x denotes the input vector, and y represents the output
vector of the layers. F (x, Wi ) signifies the residual mapping
to undergo learning. Before feeding into Resnet-34, the spec-
trogram is preprocessed by arbitrarily sampling its shorter side
in the range of [256, 480] for scale augmentation. A random
224 × 224 crop is sampled from either a spectrogram or its
horizontally flipped counterpart, with per-pixel mean subtrac-
tion applied. Batch normalization (BN) is applied immediately
after each convolution and prior to activation. The resulting
spectrogram serves as input for the base network.

Resnet-34 is excellent at deriving non-linear features and
is chosen as the basic feature extractor. The network takes a
spectrogram input with three channels and a size of 224 ×
224 from the input layer. Then, a convolutional layer with a 7
× 7 kernel size is employed for spectrogram enhancement.
Next, the feature extractor captures the basic linear relationship
and passes it through a 3 × 3 pooling layer. At this time, the
extractor size becomes 56 × 56, and the number of channels
is 64. The model consists of 4 residual parts in total. The
first part contains three residual modules and does not use
convolution for downsampling. Each residual block comprises
64 convolutional kernels, each with a size of 3 × 3, a stride
of 1, and padding of 1. The remaining three parts comprise 4,
6, and 3 residual blocks, respectively, with downsampling
occurring in the first residual block, as illustrated in Fig. 8.
The initial convolutional layer in the residual block employs
a 3 × 3 convolutional kernel with a stride of 2, a padding
of 1, and doubles the channel count. The second convolutional
layer within the residual block uses a 3 × 3 convolutional
kernel with a stride of 1, and a padding of 1, and retains
the same number of channels. To align the residual bypass

component with the convolutional layer, a 1 × 1 convolution
with a stride of 2 is employed in the downsampling layer,
doubling the channel count. The remaining residual blocks
cannot be downsampled.

After the feature extraction, the features derived are
further refined by the attentional feature fusion model. It seeks
to add attention weights to the high-level input features with
the least overhead. The attentional feature fusion efficaciously
combines high-level features, enhancing their overall quality.
In the multi-scale channel attention module, complete global
information is acquired through global average pooling, while
more precise local information is obtained through pointwise
convolution. Two branches channel attention to identifying
global features as well as local features. Local features are
derived as follows:

L(X) = B (PWConv2 (δ (B (PWConv1(X))))) (12)

where X is the input feature, B is the regularization layer, δ

represents ReLU activation function.
In the attention feature fusion module, X corresponds

to features in the horizontal direction, and Y corresponds to
features in the perpendicular direction. WX and WY represent
the fusion weights M(X ⊎ Y) and X + (1 − M(X ⊎ Y)),
respectively. X′ are derived as follows:

X′ = X⊗M(X) = X⊗ σ(L(X)⊕G(X)) (13)

where G(X) represents channel attention, mainly used to
calculate global features. First, the input feature X undergoes
global average pooling, followed by a calculation similar
to L(X). M(X) denotes the attention weight generated, ⊕
signifies broadcast addition, σ is the activation function, and
⊗ indicates element multiplication.

Then, the attentional feature fusion model fuses the
features obtained from the aforementioned module, as shown
below:

Z =M(X ⊎ Y)⊗ X+ (1−M(X ⊎ Y))⊗ Y (14)

where Z represents the fused feature, ⊎ represents the initial
feature fusion. So far, the enhanced features can be provided
to the classifier C for the action classification.

2) Classifier Module: The classifier C extracts features
from the generator G f and classifies them into K + 1 cat-
egories. Here, K represents the number of known or source
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categories, and the (K + 1)th index signifies the probability
for the unknown category. A structure that comprises a fully
connected layer followed by an activation function is employed
to transform the feature matrix into a lower-dimensional
vector. Then, each value of this vector is converted into a rep-
resentation of probability. The final outputs are the logarithm
{l1, l2, l3 . . . li . . . , lK+1} for each data sample, where i denotes
one class. The normalized exponential function. Softmax is
employed to convert the logarithm into probabilities for each
class. The probability of data sample x being assigned to
category j can be formulated as:

P(y = j | x) =
exp

(
l j

)∑K+1
i=1 exp (li )

(15)

where l is the logit vector, P(y = j | x) is a K+1-dimensional
probability associated with x .

As the target domain data are unlabeled during training,
the proposed method endeavors to establish a pseudo-decision
boundary between known source samples and target samples
via the weak training of the domain classifier C . This results in
assigning the target samples to the unknown category. Simul-
taneously, C is trained to output P(y = N + 1 | x t

j ) = T for
the unknown class. Subsequently, G F undergoes adversarial
training to deceive C . It equips G F with the capacity to
manipulate the ‘unknown’ class probability, denoted as P(y =
N + 1 | x t

j ), to maximize the error of classifier C and align
target samples with either known or unknown classes. It is
assumed that the generative model is guided in constructing
an effective boundary between known and unknown samples
by the empirical threshold value, with T set to 0.5.

E. Authentication Layer

In the domain adaptation layer, the result logarithm
{l1, l2, l3 . . . li . . . , lK+1} generated by the model is converted
into the probability of each category through the softmax
function. For the result of each behavior recognition in user
authentication, The category with the top probability is chosen,
a set of tuples (Pn, An) (n = 1,2. . . N ) is derived, where
P is the probability of the action, A is the action type, and
N represents the number of authorized actions. This tuples
(Pn, An) needs to be transformed to a triple Pn, Tn, Sn (n
= 1,2. . . N ), so that the activity identification results can
be brought to the authentication layer. The variables can be
explained as follows: Pn refers to the probability that user
behavior is recognized as a certain type. This probability
value is calculated by the adversarial network and indicates
the confidence level for each action. Tn indicates whether
the action recognized is consistent with the actual activity
performed. If they are consistent, Tn is 1; otherwise, Tn is 0.
Sn indicates whether the user is legitimate. This label is used
to build a binary classification model to predict the legitimacy
of a user. A user is considered legitimate when Sn is 1.

In order to set appropriate thresholds and achieve accurate
user authentication at the authentication layer, a logistic regres-
sion linear classifier is employed for the threshold calculation
and binary classification. The decision function of linear

classification can be defined as:

y(x) = wTx+ b (16)

The logistic sigmoid function is utilized to compute the
posterior probability of category C, as shown in the following
expression:

P (C | x) = y(x) = σ
(
wTx+ b

)
(17)

where x represents the input vector, w denotes the weight
vector, and b stands for the bias. Among them, σ(.) is a logistic
sigmoid function, characterized by the following expression:

σ(x) =
1

1+ e−x (18)

During the training phase, Sn is a known label and is
used to train the confidence threshold t . In the testing phase,
we use Pn and Tn in the triples (Pn, Tn, Sn) as input features of
logistic regression, and the final output is Sn . If P (C | x) ≥ t,
the user is verified to be a legitimate user, Sn is set to 1.
Otherwise, the user will be an illegal user.

F. Training Phase

During training, the source domain samples are utilized
using the following formulas:

EC =
1
ns

ns∑
i=1

LC
(
G F

(
x s

i
)
, ys

i
)

(19)

where LC represents the standard cross-entropy loss function
used to minimize classification errors. ns signifies the feature
count in the source domain. G F (x s

i ) represents the feature
output of the generator G F for the ith feature in the source
domain, and ys

i corresponds to the class label of the respective
ith data sample in the target domain. The loss term EC is
fine-tuned to minimize the error of the classifier C . Subse-
quently, a binary cross-entropy loss is employed to maximize
the error of C adversarially, thereby separating known and
unknown samples, as shown in the following expression:

EC adv = −
1
nt

nt∑
j=1

T log
(

P
(

y = K + 1 | x t
j

))

−
1
nt

nt∑
j=1

(1− T ) log
(

1− P
(

y = K + 1 | x t
j

))
(20)

where x t
j represents the unlabeled instances of the target

domain.
The classifier C aims to make the probability of the

“unknown” class P(y = K + 1|x t
i ) identical to T. Conversely,

differentiation of P(y = K + 1|x t
i ) from T is strived for by

the generator G F in order to maximize ECadv
’s value. The

ultimate training objective is defined as follows:

θC = argmin
θC

EC + ECadv
θG F = argmin

θG F

EC − ECadv
. (21)

To efficiently compute the gradient of ECadv
, we employ a

gradient reversal layer proposed by [39]. During the backward
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Fig. 9. Experiment scenarios.

process, the flipping of the gradient sign is enabled by this
layer, facilitating the simultaneous update of both classifier C
and generator G parameters.

IV. EXPERIMENTS AND EVALUATION

A. Implementation

Currently, there are two kinds of off-the-shelf com-
mercial network interface cards (NIC) available for Wi-Fi
sensing: Intel 5300 and Intel AX210. AX210 NIC is optimized
for modern, complex wireless transmission environments.
It adopts new technologies as well as standards and offers
better noise resistance than 5300 NIC. Therefore, AX210
NIC equipped with two antennas is utilized in this study.
In Wi-Dist, the PicoScenes Toolbox Core [40] is employed on
Ubuntu Desktop 20.04 LTS. Three desktop computers with
Intel AX210 NICs are used, as shown in Fig. 13 (a), one
transmitter Tx, and two receivers Rx1, Rx2 form a coordinate
system. Tx is situated at the origin, while Rx1 and Rx2 are
positioned 5 meters away from the transmitter along the x-axis
and y-axis, respectively. The Tx-Rx1 line is perpendicular to
the Tx-Rx2 line. All the devices are positioned at a height
of 0.8 meters. The Wi-Fi channel frequency is set to 5 GHz
on channel 165, with a bandwidth of 20 MHz and a packet
transmission rate of 1000Hz. The antennas are arranged in a
horizontal line, with a wavelength interval between them at
each receiver. For each data stream, a total of 114 subcarriers
are covered by two receiving antennas, with 57 subcarriers in
each. MATLAB is employed for processing CSI data, and the
Kinect 2.0 camera is used to capture ground truth.

Wi-Dist is assessed in three typical environments, lab,
office, and corridor, as depicted in Fig. 9 (a). The lab mea-
sures 8.1 m × 7.2 m with several tables, chairs, sofas, and
computers. The L-shaped corridor has a maximum width of
9.6 m, and a length of 10.2 m, and includes two doors. The
office measures 8.8 m × 7.4 m and is furnished with four
desks, four chairs, an air conditioner, nine computers, and two
cabinets. Seven common actions are chosen: WA (wave arms),
SQ (squat), JU (jump), RU (run), PU (push), LL (leg lift),
and RH (raise the hand). Participants have different heights,
weights, and body shapes. Participant’s height ranges from
1.65m to 1.88m, and the weight ranges from 50-85kg.

The lab is considered the source domain, while the
corridor and office are treated as the target domains. In total,
3500 samples (10 people × 50 samples × 7 activities) in the
source domain and 1400 samples(10 people × 10 samples
× 7 activities × 2 environments) are collected for the target
domain. What’s more, some UA (unknown activity) samples
such as kick, walk, bend, and so on are collected in the target
domain, a total of 2000 samples (10 people × 20 samples
× 5 additional activities × 2 environments) to evaluate the
cross-domain unknown activity identification. Moreover, syn-
thetic samples(2 × (3500 + 1400 + 2000)) are generated to
expand training data. In the training phase, samples from both
the source and target domains are jointly used. The overall
count of samples after data augmentation is 20700. From this
pool, 18,630 samples are randomly allocated for the training
set, while the remaining 2,070 samples are chosen for the test-
ing set. Simultaneously, we conduct data augmentation after
partitioning the original dataset into training and testing sets.
This ensures that the augmented samples derived from each
original sample are exclusively allocated for either training or
testing, but not both. This practice is crucial for preventing
data leakage and ensuring accurate evaluation results.

B. Overall Performance

1) Experimental Metrics: To evaluate Wi-Dist’s per-
formance comprehensively, True Positive Rate(TPR), False
Positive Rate(FPR), Accuracy(ACC), Receiver Operating
Characteristic Curve(ROC) and Area Under the Curve(AUC)
are adopted for user authentication. TPR is denoted as the
rate at which positive cases are correctly identified, which is
a common method for user authentication [5], [22]:

T P R =
T P

T P + F N
. (22)

FPR can be interpreted as the rate that negative cases that
are incorrectly identified as positive:

F P R =
F P

T N + F P
. (23)

ACC is defined as the overall correctness of the classifi-
cations, expressed as follows:

ACC =
T P + T N

T P + T N + F P + F N
(24)

where T P , T N , F P , and F N represent the number of true
positives, true negatives, false positives, and false negatives,
respectively. Among the four indicators, two types of errors,
FP and FN, need to be considered. These errors exhibit asym-
metric costs and will impact the system and users differently.
For FP, it mistakenly identifies an actual negative sample as a
positive sample, which will have a direct threat to the security
of the system, and unauthorized users may be mistakenly
identified as legitimate users. For FN, positive samples are
not correctly identified, which may result in false alarms or
exception handling. While users may need to invest additional
time and effort to address these issues, they generally do not
affect the overall usability and security of the system.

The ROC curve represents the relationship between the
True Positive Rate (TPR), plotted on the y-axis, and the False
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TABLE I
THE OVERALL PERFORMANCE OF WI-DIST IN THE THREE

TYPICAL ENVIRONMENTS

Fig. 10. (a) ROC curve of the average identification accuracy for one
participant action recognition. (b) The confusion matrix of average action
recognition rate in three environments; (c) The impact of unknown sample
proportions.

Positive Rate (FPR), plotted on the x-axis, of the classifier
at different classification thresholds. The curve closer to the
upper-left corner (0,1) indicates better performance, which
means the model achieves a high TPR while keeping the FPR
low. AUC is an important performance metric, with an AUC
closer to 1 indicating better model performance.

Cross-validation is used to evaluate Wi-Dist’s accuracy
in three environments. Initially, we randomly select half
volunteers, with 2100 samples (5 participants × 7 activities
× 60 samples per activity per participant = 2100) in one
specific environment. Subsequently, we perform k-fold cross-
validation, with k = 10 in the experiment. In order to
ensure the impact of data segmentation, we conducted 10-
fold cross-validation with multiple repetitions (250 times in
the article), and finally obtained 2500 accuracy values to
make the results more accurate. The average results in three
typical environments are shown in Table I. Wi-Dist achieves an
overall user authentication accuracy of 94.72%, 93.03%, and
91.63% in the lab, corridor, and office, respectively. What’s
more, Wi-Dist demonstrates satisfactory performance across
all three scenarios, boasting a mean TPR of 92.97% and a
mean FPR of 9.91%. However, distinctions emerge among
these scenarios. Notably, Wi-Dist performs optimally in the
lab setting, benefitting from consistent training and testing
environments. Conversely, its performance dips in the office
scenario, where intricate layouts and multipath effects pose
challenges, resulting in a TPR of 90.90% and an FPR of
12.83%. Furthermore, the ROC curve delineates the tradeoff
between TPR and FPR across various conditions, as depicted
in Fig. 10 (a). At the equal error rate (EER) point, Wi-
Dist achieves an average TPR and FPR of 92.34% and
8.63%, respectively, in practical applications. These findings
underscore the viability of Wi-Dist for activity recognition.

In Fig. 10 (b), the confusion matrix illustrates the average
recognition rates for seven typical and unknown activities
in three different environments. The average accuracy of the
framework is between 89% and 95%. The confusion matrix is
consistent with the overall performance.

Fig. 11. (a) Impact of domain adaptation model; (b) Impact of basic
networks;(c) Impact of AFF modules.

2) Impact of Unknown Sample Proportions: During the
experiments, there are a few unknown activity samples to
train the domain adaptation model. The influence of the
ratio of unknown activity samples in the training data across
three environments is examined. The results, presented as the
average obtained from three environments, reveal in Fig. 10
(c) that with a 30% proportion of unknown samples, the
maximum average accuracy reaches about 93.12%. With an
increase in the proportion of unknown samples, there is a
corresponding decrease in accuracy. This trend is due to the
fact of overfitting during adversarial training. It’s evident that
the user authentication accuracy is affected by the proportion
of unknown samples.

3) Comparison With Baseline Methods: We compare
Wi-Dist with several cross-environment action recognition
methods:

HDA: A cutting-edge unsupervised domain adversar-
ial adaptation method is proposed in computer vision [41].
This approach effectively maintains the balance of achieving
domain invariance while preserving domain-specific informa-
tion through a heuristic search perspective.

WiHF: A split and stitching scheme is utilized to optimize
collaborative learning under dual tasks for DNN and deduces
motion change patterns of actions across different environ-
ments from Wi-Fi signals [27].

EI: EI stands as a state-of-the-art Unsupervised Domain
Adaptation for Human Activity Recognition (UDA-HAR)
model. It introduces a discriminator to learn domain-invariant
features through adversarial training, minimizing the discrep-
ancies between the source and target domains [19].

Wi-Dist undergoes a comparative analysis with three
state-of-the-art baseline methods across three typical indoor
environments, and the results are the averaged outcomes
obtained from these settings, as shown in Fig. 11 (a). The
accuracy for Wi-Dist, HDA, WiHF, and EI are 93.12%,
87.19%, 90.04%, and 90.34%, respectively. Wi-Dist performs
the best since only Wi-Dist takes care of the issue of the
cross-domain unknown activities identification.

4) Impact of Different Basic Networks: In this section,
the basic network is replaced with the VGG network and the
corresponding evaluation is made. In Fig. 11 (b), the depicted
data illustrates the average user authentication accuracy across
three environments for the three networks. Wi-Dist achieves
an average accuracy of 93.12%, 90.13%, and 88.24% with the
ResNet-34, VGG, and AlexNet, respectively. The results show
that the basic network of Wi-Dist is the best.
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Fig. 12. (a) Impact of user; (b) Impact of Syhthetic data; (c) Impact of
sensing area.

5) Impact of AFF Module: The AFF module is used to
refine extracted features. We assess its impact on Wi-Dist.
Fig. 11 (c) shows user authentication accuracy in different
environments with or without the AFF module. We can see
that without the AFF model, the accuracy drops from 94.72%
to 91.89% in the lab, from 93.03% to 90.04% in the corridor,
and from 91.63% to 88.72% in the office. This attestation
substantiates the performance enhancement achieved by the
AFF module.

6) Impact of Users: Numerous physiological character-
istics exhibited by the user, including height, body size, and
weight, have the potential to exert influence on the precision of
user authentication. How a user’s physiological factors impact
performance is studied. There are 207 randomly chosen sam-
ples as the testing set, about 50 samples for each subject, and
none of them are in the training set. Of these, 105 samples are
from the source domain and comprise seven known activities.
The remaining 102 samples are selected randomly from the
target domain. In Fig. 11 (a), the depicted data illustrates the
average accuracy across the three environments for 10 users.
The accuracy of all users is above 90%. This result can verify
that Wi-Dist is strongly activity-related but user-agnostic.

7) Impact of Data Augmentation: Data augmentation
is a technique of artificially increasing the training set by
generating the data using the existing data. A virtual data
synthesizer based on the calibrated data is proposed to reduce
the labor-intensive data collection and obtain high-quality
data. The evaluation of the overall performance encompasses
an assessment of the impact wielded by the proposed data
augmentation scheme. Fig. 12 (b) shows the impact of data
augmentation on user authentication accuracy under three
environments. Without using synthetic data, the accuracy
dropped from 94.72% to 90.15% in the lab, from 93.03% to
89.27% in the corridor, and from 91.63% to 88.65% in the
office. Obviously, the data augmentation scheme can generate
effective training data and improve overall performance.

8) Impact of Sensing Area: To analyze the influence of
sensing area size, three distinct sensing areas are configured
across three scenarios, as depicted in Fig. 9 (a). Tx is located
at a red triangle, and Rx is located at three different positions
represented by yellow, blue, and purple squares, while the
distances between Tx-Rx are 3m, 4m, and 5m, respectively.
Fig. 12 (c) illustrates the results of the sensing area change.
In the lab, Wi-Dist achieves an average TPR of 94.72%,
93.03%, and 91.63% at 3m × 3m, 4m × 4m, and 5m ×
5m, respectively. In the corridor, Wi-Dist reaches an average
TPR of 93.84%, 92.85%, and 91.42% at 3m × 3m, 4m × 4m,

Fig. 13. (a) Different orientations; (b) Impact of user orientation; (C) Impact
of apparel.

and 5m × 5m, respectively. In the office, Wi-Dist achieves an
average TPR of 93.52%, 92.41%, and 91.04% at 3m × 3m, 4m
× 4m, and 5m × 5m, respectively. These experiment results
confirm that the sensing area can result in a slight decrease
in TPR. Since the TPR of all the sensing areas is above 91%,
Wi-Dist can be resilient to the changes.

9) Impact of User Orientation: In this section,
we explore whether user orientation has an impact on authen-
tication. As illustrated in Fig. 13 (a) within a 2D coordinate
system, Tx is situated at the origin, whereas Rx1 and Rx2 are
positioned 5 meters away from Tx along the x-axis and y-axis,
respectively. During the experiment, the devices are fixed, and
the user faces the line of sight (LoS) and switches his location
from 1 to 3. The angles of Rx1-Tx-1, Rx1-Tx-2, and Rx1-Tx-
3 are 30 degrees, 45 degrees, and 60 degrees, respectively.
In each deployment, a total of 100 samples are amassed.
There are some differences in user authentication results.
The optimal location for achieving the highest accuracy in
user authentication is within the vicinity of the perpendicular
bisector of LoS, which is coincident with the conclusion
in [42]. This confirms that Wi-Dist can be resilient to user
orientation changes.

10) Impact of Apparel: The investigation delves into the
influence of apparel across three typical environments. Wi-Dist
is trained using samples from a user wearing winter, spring,
and summer clothes, respectively. Subsequently, it undergoes
testing and evaluation under three distinct seasonal attires.
During the training phase, none of the testing data is accessible
to the learning model. The outcomes, derived via a 10-fold
cross-validation methodology as depicted in Fig. 13 (c), clearly
indicate a substantial impact of clothing on the TP rate. When
subjected to training with winter attire and subsequently tested
with summer attire, Wi-Dist attains its lowest TP rate, approxi-
mately at 91.5%. Despite never being trained on samples of the
other seasonal attires, Wi-Dist consistently maintains a TPR
above 91%.

11) Impact of Environment Changes and Human Inter-
ference: To assess Wi-Dist’s performance when there are
environmental changes and human interference, we conduct
experiments in three scenarios. As shown in Fig. 9 (b). Tx is
represented as a red triangle, and Rx is represented as a purple
square. The distance between Tx-Rx is 5m. The experimental
results are derived from the identical settings outlined in the
previous section (Impact of Sensing Area).

To assess the influence of environmental variations,
adjustments are made in both office and laboratory settings.
This involved opening the room door and repositioning tables
and chairs. As illustrated in Fig. 9 (b), within the sensing area,
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Fig. 14. (a) Impact of environmental changes; (b) Impact of moving subjects;
(c) Impact of number of activities without attacks.

one chair with one table is placed in the lab and three chairs
are placed in the office. As shown in Fig. 14 (a), TP rates with
the environment changes and without environment changes
are compared. The observed minimal impact of environmental
changes on authentication suggests the robustness of Wi-Dist
in cross-environment user authentication.

In accordance with the literature [43], the human comfort-
able walking speed (v) falls within the range of 1 to 1.5 m/s.
To assess the influence of human movement interference,
we design two tests in the corridor and set three distinct
speed levels: slow (below (v − 0.3) m/s), medium ((v − 0.3)
m/s ∼ (v + 0.3) m/s) and fast (above (v + 0.3) m/s). The
participants are instructed to walk back-and-forth at different
speeds (as mentioned above) along two paths, path 1 and
path 2, as indicated by green circles 1 and 2 in Fig. 9, corridor
(b). The approximate distances from both paths to the edge
of the sensing area are 3m. In each test, we collect the same
amount of samples. The results, depicted in Fig. 14 (b), clearly
indicate that the moving subject interference has less impact
on the authentication. Wi-Dist reaches an average TPR of 93%,
91%, and 87% at the low, medium, and high speed, respec-
tively. In particular, when the speed is gradually increased from
medium to high speed, there is a significant decrease in TPR.
Overall, the authentication results are impacted by the speed
of the subject.

12) Impact of Number Of Authorized Activities: To inves-
tigate the influence of the number of authorized activities
on user authentication robustness, we conduct the following
experiment. Prior to the experiment, each participant randomly
chooses a specific number of activities from the activity
library, which is unique to each user group. The experiments
are carried out in three typical environments, lab, corridor,
and office. The experimental results are presented in Fig. 14
(c). Since the authentication accuracy mainly depends on the
authentication accuracy of the actions, we can see that in the
absence of attackers, as the number of activities gradually
increases, the certified TP rate is nearly stable.

Moreover, unknown users (attackers) who do not know
the specific password types in the campaign participated in
the experiment. They are only told the password length. The
experiments are carried out in three typical environments, lab,
corridor, and office. Fig. 15 (a) illustrates TP rates when
behavioral password lengths are different. We observe that
comparable authentication accuracy is achieved in all cases.
When tested with 7 or more activities, the TP rate reached over
90%. This is because as the number of operations increases,

Fig. 15. (a) Impact of number of activities with attacks; (b) Impact of number
of number of repeated activities without attacks; (c) Impact of number of
number of repeated activities with attacks.

it becomes more and more difficult for an attacker to crack the
password through brute force attacks, and the probability of the
behavioral code being cracked decreases. Additionally, when
the number of selected activities exceeds 4, the authentication
TP rate exceeds 80%, Wi-Dist can maintain relatively secure.

13) Impact of Number Of Number of Repeated Activities:
To investigate the impact of the number of activity repetitions
on user authentication accuracy, we conducted the following
experiments. The behavioral password length is 7. The number
of activity repetitions gradually changes from 0 to 7. The
experiments are carried out in three typical environments, lab,
corridor, and office. The results are presented in Fig. 15 (b).
The figure shows that as the number of password repetitions
increases, the overall authentication accuracies are compara-
ble. Therefore, the number of activity repetitions does not
influence the overall authentication accuracy.

Unknown users (attackers) who do not know the specific
password types in the campaign participated in the experiment.
They are only told the password length. The experiments
are carried out in three typical environments, lab, corridor,
and office. The results of these experiments are shown in
Fig. 15(c). The figure indicates a gradual decrease in overall
authentication accuracy as the number of password repetitions
increases. This decline can be attributed to the heightened
repetition rate, which renders passwords more susceptible
to cracking and increases the likelihood of attackers being
falsely authenticated as legitimate users. Conversely, when
the number of password repetitions ranges from 0 to 5, the
overall authentication accuracy remains relatively stable. This
stability arises from the high complexity of the password,
where authentication accuracy is predominantly influenced
by the recognition accuracy of multiple actions. Moreover,
minimal discrepancies in recognition accuracy between actions
contribute to the steady overall accuracy within this range.
At the same time, when the number of repetitions is less
than 6, the overall accuracy of Wi-Dist is higher than 90%.

V. LIMITATION AND FUTURE WORK

Wi-Dist system shows the feasibility of Wi-Fi-based user
authentication that can authenticate a user by his authorized
activities. However, it still has some limitations.

A. Multi-Subject Motion Sensing

One limitation of Wi-Dist lies in its inability to precisely
differentiate the CSI dynamics induced by each subject’s
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activity within the sensing regions. Different frequency off-
sets and phase shifts are observed in the Wi-Fi signals
induced by different moving subjects. This produces complex
superpositions at the receiving end and is a tough issue for
Wi-Fi-based activity recognition. The larger bandwidth [44]
or the transceiver with more antennas [45] may help the
signal separation. The optimal transceiver deployment and the
sensing region extension are proposed to improve the sensing
capability. However, it is challenging to leverage only one
method to achieve multi-subject activity recognition.

B. Model Learning Cost

In the Wi-Dist system, a requisite quantity of train-
ing data is necessitated from both the source and target
domains, though virtual data can be generated to achieve
accurate cross-domain user authentication. To further reduce
data collection efforts, future work will be leveraging more
advanced algorithms such as Few-shot Learning [46] or Zero-
shot Learning [47] to further reduce data collection efforts. The
model is capable of being trained with an even smaller amount
of labeled data in the target domain. Zero-shot Learning can be
applied to the scenario without labeled training data, making
the system more capable and adaptable.

VI. CONCLUSION

By combining Wi-Fi signals and activity sequences for
user authentication, Wi-Dist not only streamlines the authen-
tication process but also significantly strengthens system
security. Unlike conventional authentication methods reliant
solely on passwords, which are susceptible to theft or repli-
cation, the utilization of activity sequences adds an extra
layer of protection. Moreover, the versatility of Wi-Dist
extends beyond traditional authentication systems. Its inno-
vative design allows for authentication across various indoor
environments. Whether in an office setting, household, or other
indoor spaces, Wi-Dist ensures consistent and reliable user
authentication. In a scenario that is relatively closed and
insensitive to observation attacks, Wi-Fi transceivers can be
discreetly installed on the wall to monitor Wi-Fi signal changes
while safeguarding privacy and security. Managers can utilize
the intelligent detection system to ascertain the real-time
safety of specific areas and adjust area size and authentication
methods as needed. As users, individuals can enjoy a smarter
and more convenient working environment without the need
for additional identity verification or operations. Furthermore,
Wi-Dist tackles numerous technical challenges through a
sophisticated cross-layer joint optimization framework. This
framework addresses complexities such as the accurate collec-
tion and analysis of Wi-Fi signal data, as well as the precise
generation and identification of activity sequences. In sum-
mary, Wi-Dist’s adaptability to diverse indoor environments
and the successful resolution of technical challenges under-
score its significant contributions to modern authentication
systems.
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