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Side-channel Attacks and New Principles
in the Shuffle Model of Differential Privacy

Shaowei Wang, Jin Li, Changyu Dong, Jin Li, Zhili Zhou, Di Wang, Zikai Wen

Abstract—The shuffle model employs a shuffler to anonymize
and permute user messages, thereby enhancing privacy/utility
trade-offs compared to the local model. Ideally, it assumes
perfect message anonymity protection against adversaries, al-
lowing each user to hide among a large population. However,
in contexts like mobile/edge networks or in scenarios where
the shuffler is curious, this assumption is frequently unreal-
istic. In this study, we demonstrate the vulnerability of the
shuffle model to communication side-channel attacks, which
substantially compromise privacy amplification via shuffling. We
categorize side-channel information in the shuffle model into
three types: (i) in-out information, revealing the victim user’s
participation and timing, (ii) message-cardinality information,
indicating the victim’s message count, and (iii) message-length
information, disclosing the victim’s message length(s). Numerical
results indicate these attacks increase privacy loss by 200% to
4100%, revealing secret value with probability more than 90%.
After theoretically analyzing the remaining privacy amplification
effects, we suggest several countermeasures and principles to
alleviate degradation caused by these attacks: (a) appending
padding bits to each message to counter message-length attacks,
(b) maximizing query parallelization to elude in-out attacks and
increase the population for privacy amplification, and (c) sending
dummy messages to exchange communication costs for improved
privacy amplification effects. The newly proposed paradigms and
principles significantly save privacy budget in comparison to
current models under attack.

Index Terms—differential privacy, shuffle model, side channels,
privacy attacks

I. INTRODUCTION

THE shuffle model of differential privacy (DP) [1] has
emerged as a compelling approach to data privacy pro-

tection, combining the benefits of the classical central model
[2] (i.e., relatively high data utility) and the local model
[3]–[9] (i.e., minimal trust in other parties). In the shuffle
model, an intermediary shuffler anonymizes and randomly
permutes messages from a user population before forwarding
them to the server (e.g., data analysts). As the shuffling
operation is data-agnostic and can be executed over ciphertext
space, numerous parties can assume the shuffler’s role in
practice, including anonymous communication networks [10],

Shaowei Wang, Jin Li, Changyu Dong, Jin Li, and Zhili Zhou are with
School of Artificial Intelligence, Guangzhou University. E-mail: Shaowei
Wang (wangsw@gzhu.edu.cn).

Di Wang is with King Abdullah University of Science and Technology.
Zikai Wen is with University of Washington (E-mail: zkwen@uw.edu).
This work is supported by National Natural Science Foundation of China

(No.62372120, 62472116, 62102108, U23A20307, U21A20463), Guang-
Dong Basic and Applied Basic Research Foundation (No.2023A1515030273,
2022A1515010061), Foundation of Yunnan Key Laboratory of Service Com-
puting (No.YNSC24115), and Science and Technology Projects in Guangzhou
(No.2025A03J3182, No.202201010194).

X1 Y1

Randomize

X2
Y2
Y'2

Xn Yn

Shuffle Analyze

Fig. 1. An illustration of the shuffle model under communication side-channel
attacks (the shuffler can be an honest-but-curious adversary).

secure hardware [11], [12], and other cryptographic tools [13].
Moreover, since potential privacy adversaries (e.g., the server)
only observe anonymized and shuffled messages, each user can
hide within a large population. Consequently, adding a min-
imal amount of noise to local messages sufficiently protects
data privacy in the released view of shuffled messages. This
phenomenon is known as privacy amplification via shuffling
[1]. For example, in the single-message shuffle model where
each user sends one message satisfying local ϵ0-differential
privacy (LDP), the shuffled messages from n users actually
preserve Õ(

√
eϵ0/n)-DP [14]; in the multi-message shuffle

model where each user sends multiple messages, as long as
these messages are carefully calibrated, the overall shuffled
messages can achieve DP. Due to its potential to achieve
excellent privacy-utility-efficiency trade-offs in decentralized
settings, the shuffle model has been applied across various
domains, including count/summation queries [15]–[23] and
machine learning [24]–[30], and was deployed in Apple and
Google’s Exposure Notification Privacy-preserving Analytics
[31].

Despite the success of the shuffle model in decentralized
private data analysis, it relies on several unrealistic security
assumptions in such environments. Ideally, privacy adver-
saries in the shuffle model are assumed to lack intermediate
information about a victim user during protocol execution,
having only access to the crowd’s shuffled messages. We argue
that this assumption is easily violated in mobile computing,
edge computing, or cable networking environments where the
shuffle model is applied (see Figure 1 for an illustration).
For example, in wireless/cellular networks, privacy adversaries
can precisely infer a victim user’s communication activities
at a negligible cost [32]–[36]. Adversaries can effortlessly
deduce the victim’s communication timing with the shuffler,
potentially ascertain the message payload size, and infer the
number of messages contributed by the victim at high preci-
sion (e.g., with over 90% accuracy as reported in [33], [34]).
The situation is even worse when the intermediate shuffler is
curious: the shuffler observes almost certain side information
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about messages from each user (e.g., message cardinality,
approximate message lengths, and the communication timing
of a user), even if each message is encrypted by the public
key of the server/analyzer.

A. Our Contributions

In this work, we analyze the side-channel vulnerabilities
of the shuffle DP model and propose mitigation strategies
with formal guarantees. Despite many efforts in the litera-
ture on communication side-channel analyses (especially for
anonymous channels [37]–[39]), we are the first to provide
formal analyses in the differential privacy sense. Additionally,
due to differences in privacy goals, we demonstrate that
conventional countermeasures (e.g., sending dummy messages
[40]) for anonymous networks can induce infinite DP loss or
be inefficient in the shuffle model. The contributions of this
work are as follows:

Privacy degradation analyses due to side-channel infor-
mation. We demonstrate that side-channel information, easily
inferred by privacy adversaries, significantly impacts privacy
amplification effects. Intuitively, a victim user’s communica-
tion timing reveals the specific task (e.g., the specific gradient
descent iteration in federated learning) they participated in,
allowing the victim to hide only among the sub-population
of that particular task, which comprises only several tens or
hundreds of users. If privacy adversaries know the length of
the victim’s contributed message, they can filter out many
other messages with different lengths in the shuffled messages,
substantially reducing the number of messages/users the vic-
tim can hide among. In certain multi-message protocols, the
number of messages sent by a user can be directly related
to the user’s true value. Consequently, the knowledge of mes-
sage cardinality by privacy adversaries completely undermines
privacy amplification through shuffling. Numerical results on
typical settings show that communication timing (termed as
in-out attacks) and message-length attacks increase the victim
user’s differential privacy loss by 200% to 4100%, revealing
the victim’s secret value with probability more than 90%; for
several state-of-the-art multi-message protocols, the message-
cardinality attack increases privacy loss to +∞, revealing the
victim’s secret value with probability more than 95%.

Defending against side-channel attacks. We conducted
formal analyses of privacy degradation in widely-used shuffle
models (e.g., shuffle-then-randomize model [1], [14], [41] and
randomize-then-shuffle model [15], [24], [43]) under side-
channel attacks and developed new shuffle models resistant
to such attacks. In the proposed model, users make their own
participation choices, reducing trust assumptions regarding the
shuffler/server. To minimize privacy loss due to participation
timing, the original data analysis task is first represented
as a directed acyclic graph (DAG). Based on this, multiple
independent queries are issued simultaneously, while sequen-
tial dependent queries are addressed using dummy messages
from users, ensuring indistinguishable participation timings.
To counteract privacy loss resulting from message payload
size/length, each user’s message is padded to a fixed length
(as the traditonal defensive methods in the literature [44] for

anonymou channels). To address severe privacy leaks from
message cardinality where traditional defenses fail, domain
transformation can be employed specific to the multi-message
protocol. These techniques form new principles for the shuffle
models under side-channel attacks. Furthermore, even in set-
tings without attacks, our proposed multinomial-randomize-
shuffle model provides much stronger privacy amplification
effects than existing models.

We summarize the results of in-out/message-length attacks
and defenses in Table I. The amplification population size
denotes the number of users a victim can hide among -
a critical parameter in privacy amplification via shuffling,
where higher values indicate better amplification effects. The
variables include: n, the full population size; nk, the size of
the population in the same k-th batch as the victim user; n∗,l,
the size of the population with the same message length as
the victim user; nk,l, the size of the population with the same
message length and in the same k-th batch as the victim user;
and n(m), the size of the population that selected the same
m-th bin as the victim user. The normal column denotes the
amplification population size when there are no side-channel
attacks; the in-out attacks column represents the amplification
size under in-out attacks; the in-out & length atk. column
signifies the amplification size under joint in-out and message-
length attacks. The adaptive query column indicates whether
the model supports sequentially adaptive queries. The extra
costs column highlights the additional communication costs
compared to the normal model.

B. Organization

The remainder of this paper is organized as follows. Section
II reviews related work on the shuffle model and side channels.
Section III provides background knowledge. Section IV identi-
fies several side-channel attacks and numerically analyzes their
impact on privacy. Section V presents theoretical analyses of
the privacy degradation impact of side-channel information.
Section VI proposes defense methods. Section VII recaps new
requirements for the shuffle model, and discusses the implica-
tion for the broader DP-Crypto systems. Finally, Section VIII
concludes the paper.

II. RELATED WORK

A. Side-channel Attacks and Defenses

Side-channel attacks exploit unintended information leakage
through a system’s physical properties or observable character-
istics, such as electromagnetic radiation, power consumption,
and communication patterns.

Side channels of anonymous networks. Anonymous net-
works [10] aim to protect users’ identities and relationships
between communicating parties. Researchers have investigated
various side-channel attacks that target anonymous channels,
including traffic analysis attacks [37], timing attacks [38], and
intersection attacks [39]. These attacks exploit information
leaks from communication patterns, message timings, or user
behavior to undermine the anonymity guarantees provided by
the channels. As countermeasures, researchers propose strate-
gies like padding messages, traffic camouflage [44], sending
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TABLE I
COMPARISON OF THE AMPLIFICATION POPULATION SIZE AND OTHER PROPERTIES OF VARIOUS SHUFFLE MODELS UNDER IN-OUT AND

MESSAGE-LENGTH ATTACKS. CONVENTIONALLY, n ≥ n(m) ≫ nk ≥ nk,l ≫ 1 , INDICATING DISPARATE AMPLIFICATION
EFFECTS OF VARIOUS MODELS UNDER ATTACKS.

shuffle models normal
setting

in-out
attacks

in-out &
length atk. adaptive queries extra

costs
shuffle-then-randomize

[1], [14], [41][Definition 5] n 1 1 ✓ N.A.
divide-randomize-shuffle
[25]–[30] [Definition 6] nk nk nk,l ✓ N.A.

subsample-randomize-shuffle
[24], [42] [Definition 7] n nk nk,l ✓ N.A.

parallel-randomize-shuffle
[1], [43][Algorithm 3] n n n∗,l ✗ N.A.

multinomial-randomize-shuffle
this work [Definition 11] n nk nk,l ✓ N.A.

rectified parallel-randomize-shuffle
this work [Algorithm 4] n n n ✗ padding bits per message

rectified multinomial-randomize-shuffle
this work [Algorithm 5] n n n ✓

padding bits per message
K-time dummy messages

rectified bin-randomize-shuffle
this work [Algorithm 6] n(m) n(m) n(m) ✓

padding bits per message
few dummy messages

dummy messages [40] and disturbing sending times [45] in
anonymous networks.

This work presents the first side-channel attack/defense
study to joint systems of cryptographic tools (i.e., the shuf-
fling/anonymous network) and information-theoretic privacy
tools. We provide formal privacy analyses of side-channel
attacks in the shuffle model within the DP context. We
also propose defense methods incorporating both classical
countermeasures (e.g., padding messages and sending dummy
messages [40]) and tailored approaches. Specifically, due to
the differences in privacy goals, we demonstrate that certain
classical countermeasures for anonymous networks can induce
infinity DP loss (see Section VI-D) or being inefficient (see
Section VI-C) in the shuffle model.

B. Shuffle Model of Differential Privacy

The shuffle model of DP anonymizes user messages through
an intermediate shuffler before sending them to a server for
analytics. The model’s foundation lies in privacy amplification
analysis [15], [41], [43], ensuring the global privacy level of
shuffled messages. Depending on the number of messages a
user can send, the shuffle model can be categorized as either
multi-message [21], [46] or single-message [1], [15], [41].

Various shuffle model variants exist in the literature. For
convenient theoretical analysis of privacy amplification, stud-
ies such as [1], [14], [41] utilize the shuffle-then-randomize
model, in which user data are first shuffled and then fed into
adaptive local randomizers sequentially. Practical approaches
to support multiple adaptive queries in decentralized setting
is to divide the user population into non-overlapping parts
(e.g., in [25], [27], referred to as the divide-randomize-shuffle
model), or letting the shuffler to perform user subsampling
(e.g., in [24], [42], referred to as the subsample-randomize-
shuffle model). Another approach is to let each user randomly
select (at most) one query to check in [16], and then choose
one user (from checked-in users) for each query slot.

We demonstrate that aforementioned shuffle models are all
susceptible to side-channel attacks. Their privacy amplification

degrades to the intra-batch level or even to the local level (i.e.,
no privacy amplification), refer to Table I for summarized
results. Worse still, for several protocols in these shuffle
models, such as SOTA multi-message summation protocols
[17], [19], [46], [47], the differential privacy loss under side-
channel attack increases to +∞.

C. Security Attacks of Differential Privacy
Differential privacy, as the de facto standard for data pri-

vacy, is widely adopted in industry for sensitive databases
[48] and decentralized data collection/analyses [49]. Although
DP provides rigorous data privacy in theory, its practical
implementation may encounter unexpected security issues. For
example, improper implementations of floating-point numbers
for the prevalent Laplace/Gaussian mechanism compromise
the intended DP [50], [51]. There can also be side-channel
timing/global state attacks in central DP database engines [52].
Besides, a small portion of adversarial users may completely
undermine the aggregation results of locally private protocols
[53] and shuffle private protocols [18]. There also might be
collusion between the shuffler and other parties [54]. To the
best of our knowledge, this work is the first to study side-
channel security issues of decentralized DP, and challenges
the honest-and-not-curious assumption on the shuffler in the
shuffle model. As comparison, in the local model of DP
[3], where each user trusts no other party, there is limited
vulnerability to side-channel attacks, as the plaintext data
leaving the user/device is publishable, and thus side-channel
information related to it is also publishable.

III. PRELIMINARIES

This section presents definitions of differential privacy and
shuffle models. Notations are listed in Table II.

A. Divergences and Differential Privacy
Definition 1 (Hockey-stick divergence): The Hockey-stick

divergence between two random variables P and Q is:

Deϵ(P∥Q) =

∫
max{0, P (x)− eϵQ(x)}dx,
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TABLE II
LIST OF NOTATIONS.

Notation Description
[i] {1, 2, ..., i}

[i : j] {i, i+ 1, ..., j}
n the number of users (data owners)
K the number of sequential queries
Uk the users participated in the k-th round query
X the domain of input data
Y the domain of a single message
Z the domain of an analyzing algorithm
ϵ0 the local privacy budget
δ the failure/violating probability
S the shuffling procedure
R the randomization algorithm
A the data analyzing algorithm
iov the participation information of user v

numv the number of messages from user v
len(y) the message length (bits) of message y

where P and Q denote both the random variables and their
probability density functions.

Two variables P and Q are (ϵ, δ)-indistinguishable if
max{Deϵ(P∥Q), Deϵ(Q∥P )} ≤ δ. For two datasets of equal
size that differ only by a single individual’s data, they are
referred to as neighboring datasets. Differential privacy limits
the divergence of query results on neighboring datasets (see
Definition 2). Similarly, in the local setting that accepts a
single individual’s data as input, we introduce the local (ϵ, δ)-
differential privacy in Definition 3. When δ = 0, the concept
is abbreviated as ϵ-LDP.

Definition 2 (Differential privacy [2]): A protocol R :
Xn 7→ Z satisfies (ϵ, δ)-differential privacy if, for all neigh-
boring datasets X,X ′ ∈ Xn, R(X) and R(X ′) are (ϵ, δ)-
indistinguishable.

Definition 3 (Local differential privacy [3]): A protocol
R : X 7→ Y satisfies local (ϵ, δ)-differential privacy if, for
all x, x′ ∈ X, R(x) and R(x′) are (ϵ, δ)-indistinguishable.

B. The Classic Shuffle Model

This part reviews the classic one-round shuffle model.
Single-message shuffle model. Following the conventions

of the randomize-then-shuffle model [15], [55], we define
a single-message protocol P as a list of algorithms P =
({Ri}i∈[n],A), where Ri : X → Y is user i’s local ran-
domizer, and A : Yn → Z is the analyzer on the data
collector’s side. The overall protocol implements a mechanism
P : Xn → Z as follows. User i holds a data record
xi and a local randomizer Ri, then computes a message
yi = Ri(xi). The messages y1, . . . , yn are shuffled and
submitted to the analyzer. We denote the shuffling step as
S(y1, . . . , yn), where S : Yn → Yn is a shuffler that applies
a uniform-random permutation to its inputs. In summary, the
output of P(x1, . . . , xn) is represented by A◦S ◦R[n](X) =
A(S(R1(x1), . . . ,Rn(xn))).

Multi-message shuffle model. In contrast to sending a sin-
gle message, the multi-message shuffle model allows each user
to release multiple messages to the shuffler. The Ri : X→ Y∗

is user i’s local randomizer. The output P(x1, . . . , xn) of the

overall protocol is A◦S◦R[n](X) = A(S(R1(x1)∪R2(x2)∪
· · · ∪ Rn(xn))).

The shuffle model strives to ensure the privacy of
P(x1, . . . , xn) for any analyzer A. Owing to the post-
processing property of Hockey-stick divergence, guaranteeing
that the shuffled messages S ◦ R[n](X) exhibit differential
privacy suffices. We formally delineate differential privacy in
the shuffle model in Definition 4.

Definition 4 (DP in the shuffle model): A protocol P =
({Ri}i∈[n],A) satisfies (ϵ, δ)-DP in the shuffle model iff for
all neighboring datasets X and X ′ ∈ Xn, the S ◦R[n](X) and
S ◦ R[n](X

′) are (ϵ, δ)-indistinguishable.

C. Prevalent Variants of Shuffle Model

Several variants of shuffle model exist in the literature,
depending on the organization of users to respond to multiple
adaptive queries.

1) Shuffle-then-randomize Model: We revisit the ideal
(single-message) shuffle model based on shuffle-then-
randomize [1], [14], [41]. Given an input dataset X =
{x1, . . . , xn}, a uniform-random permutation π : [n] 7→ [n]
is first applied to obtain S(X) = {xπ−1(1), ..., xπ−1(n)},
followed by a series of adaptive randomizers {Ri}i∈[n]. The
i-th randomizer Ri takes the i-th datum xπ−1(i) in S(X)
and the previous i − 1 randomization results as input (see
Definition 5). Since π is not revealed to the server, each user’s
message can hide among all n messages. Specifically, when
every Ri satisfies ϵ0-LDP (not unnecessarily identical), the
messages R[n]◦S(X) satisfy (Õ(eϵ0/2/

√
n), δ)-DP [14], [41].

This model serves as an ideal one that supports fully adaptive
queries while providing the strongest privacy amplification
effects (amplified by n users).

Definition 5 (Shuffle-then-randomize model [1], [14], [41]):
Let Ri : Z0 × Y1 × · · · × Yi−1 × X → Yi for i ∈ [n]
be a sequence of algorithms, where Z0 denotes the range
space of global information. A protocol Ps-r : Z0 × Xn →
Y0 × · · · × Yn with global information z0 in the shuffle-
then-randomize model proceeds as follows: given a dataset
x[n] ∈ Xn, it samples a uniform-random permutation π and
then sequentially computes zi = Ri(z[0:i−1], xπ−1(i)) for
i ∈ [n] before outputting z[0:n].

2) Divide-randomize-shuffle Model: In decentralized set-
tings, a more realistic approach is letting the analyzer divide
users into multiple groups and employ each group for one
query sequentially, see Definition 6. This model is adopted
by many works for federated learning [27], and for ban-
dit/reinforcement learning [25], [28]–[30]. Since the division
is known to the analyzer (i.e., a potential adversary), a user
i ∈ Uk can only hide among users in the same group, thus
privacy can only be amplified by |Uk|. This is considerably
weaker than the ideal shuffle model.

Definition 6 (Divide-randomize-shuffle model [25], [26]):
Let U[K] denote a division of set [n] such that Uk ∩ Uk′ = ∅
for all k, k′ ∈ [K] that k ̸= k′, and U1 ∪ · · · ∪ UK = [n]. Let
R(k) : Z0×Z1×· · ·×Zk−1×X→ Y(k) denote the randomizer
in the k-th round, where Zk = Y|Uk|

(k) and Y(k) is the range
space of R(k). The z(0) ∈ Z0 is global information. A protocol
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Pd-r-s : Z0 × Xn → Z0 × · · · × ZK in the divide-randomize-
shuffle model operates as follows: given a dataset x[n] ∈ Xn,
it sequentially computes z(i) = S(R(k)(z(0:k−1), xi)i∈Uk

) and
outputs z(0), z(1), . . . , z(K) along with U[K].

3) Subsample-randomize-shuffle Model: Rather than letting
the analyzer (i.e., a potential adversary) to perform user
division, a more practical method involves having the shuffler
randomly sample users in each round independently, as illus-
trated in Definition 7. This approach is commonly employed
for federated learning, as seen in [24], [42].

Definition 7 (Subsample-randomize-shuffle model [24],
[42]): Let {Uk}k∈[K] denote a list of subsets that each has size
s and is uniform-randomly sampled from [n] without replace-
ment. Let R(k) : Z0×Z1×· · ·×Zk−1×X→ Y(k) denote the
randomizer in the k-th, where Zk = Y|Uk|

(k) and Y(k) is the range
space of R(k). The z(0) ∈ Z0 is global information. A protocol
Pd-r-s : Z0×Xn → Z0×· · ·×ZK in the subsample-randomize-
shuffle model operates as follows: given a dataset x[n] ∈ Xn,
it independently samples {Uk}k∈[K] as described previously,
then sequentially computes z(i) = S(R(k)(z(0:k−1), xi)i∈Uk

)
and outputs z(0), . . . , z(K).

Given that only a relatively small batch of users, with
a size of s, is randomly selected for each round, privacy
is also amplified by subsampling [56]. Assuming that local
randomizers satisfy ϵ0-LDP, and when combined with privacy
amplification via shuffling and the advanced composition
theorem of differential privacy, the overall privacy loss is
(Õ( s

n

√
Keϵ0/s), δ) [24], [42].

IV. SIDE-CHANNEL ATTACKS IN THE SHUFFLE MODEL

In this part, we show privacy amplification is severely
damaged by side-channel knowledge, which can be readily
divulged to privacy adversaries in decentralized settings.

A. Threat model of side-channel attacks

We assume that the internal shuffling process S is perfectly
secure, with adversaries only able to observe the victim users’
communication activities (with the shuffler) and the output
P(X) of the shuffle model. Typically, every user in the shuffle
model encrypts their messages Ri(xi) using the analyzer’s
public key before sending them to the shuffler. Privacy adver-
saries (including a potential adversary, the curious shuffler) do
not have access to the values of these encrypted messages, but
only to their side information, such as communication timing,
the number of messages, and message length(s).

The aim of privacy adversaries is to deduce the secret xi

of victim users, utilizing either the success probability of
inferring xi or the differential privacy loss of xi as a metric.

B. Categories of Side-channel Information

In the shuffle models described above, we define the follow-
ing three types of side-channel information about the victim
user v (v ∈ [n]):

I. (In-out information) In-out information indicates the vic-
tim’s participation in multiple rounds of a shuffle proto-
col. We denote it as iov ∈ {0, 1}K , where the k-th value

iov(k) is 1 if the victim participated in the k-th round,
and 0 otherwise.

II. (Message-cardinality information) In a multi-message
protocol, message-cardinality information indicates the
number of messages from the victim. We denote this
as num(Rv(xv)), representing the number of messages
output by Rv(xv).

III. (Message-length information) Message-length informa-
tion indicates the length of the victim’s message. We
denote this as len(Rv(xv)), representing the number
of bits in Rv(xv). In a multi-message protocol, this
represents the length of each message from Rv(xv).

We argue that in decentralized settings, such as mobile
computing and wireless networks, privacy adversaries can
easily infer in-out, message-cardinality, and message-length
information. The in-out information is strongly correlated with
the communication patterns of the victim user, which are
almost public information in wireless networks or cellular
networks [57], [58]. Adversaries can sniff the number of
packets sent from the victim to the shuffler through network
activities and by examining packet headers, even when packets
are delivered over the prevalent HTTPS [59]. Furthermore,
the length of TCP/IP packets from the victim can be mon-
itored by sniffing network traffic [60]–[62]. Relatively, the
in-out information is easier to be inferred. The side-channel
information pertaining to message number or length might
often be imprecise. This lack of accuracy is predominantly due
to the implementation of techniques such as packet padding
and packet slicing by modern wireless or cellular networking
protocols. Additionally, this imprecision is posed by modern
encryption schemes, which encrypt payloads on a block-by-
block basis. Notably, when the shuffler is a curious party,
since the shuffler observes encrypted message(s) from each
individuals, the leaked side-channel information can be quite
precise, regardless of the communication media between each
user and the shuffler.

Note that in-out information is especially vulnerable in
interactive queries with substantial download overheads, such
as federated machine learning. Users download the latest
model parameters only when participating in a round. The
correlated heavy-loaded downloading traffic, along with up-
loading traffic to the shuffler, significantly increases the risk
of in-out information exposure.

C. Privacy under Message-cardinality Attacks

Message-cardinality attacks occur in multi-message proto-
cols, where the number of messages a user sends to the shuffler
might depend on the actual value the user holds (e.g., in [17],
[19], [27], [46], [47], [63]). If message cardinality is observed
by adversaries, privacy can be compromised.

As an example, we show a message-cardinality attack to the
state-of-the-art ∆-summation protocol [19]. In this protocol,
each user holds an integer xi ∈ [0,∆], and the analyzer obtains
the sum satisfying (ϵ, δ)-DP. The algorithms of the local
randomizer and the analyzer are shown in Algorithm 1 and
2. The local randomizer randomizes the user’s input in three
steps: (1) each user i sends xi if it is non-zero (line 1-2); (2)
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it sends unary noise messages (i.e. z+1
i copies of +1 and z−1

i

copies of -1 following negative binomial distributions) whose
sum is equal to the Discrete Laplace noise commonly used
algorithms in the central DP model (line 3-4); (3) it defines
a sub-collection S of all multisets of {−∆, · · · ,+∆}\{0}
whose sum of elements is equal to zero (e.g. {−1,−1, 2}),
and for each multiset s ∈ S, zsi is sampled and zsi copies of
every element in s are sent (line 5-8). The analyzer simply
sums up all messages.

Algorithm 1: ∆-Summation Randomizer [19]

1 if xi ̸= 0 then
2 Send xi

3 Sample z+1
i , z−1

i ∼ NB(1, e−(1−γ)ϵ)/n
4 Send z+1

i copies of +1, and z−1
i copies of −1

5 for s ∈ S do
6 Sample

zsi ∼ NB(3(1 + log(2/δ)), e−0.1min(1,γϵ)/4)/n
7 for m ∈ s do
8 Send zsi copies of m

Algorithm 2: ∆-Summation Analyzer [19]

1 T ← multiset of messages received
2 return

∑
y∈T y

For simplicity, let us consider the case ∆ = 1.
Now the zero-sum messages collection S simply con-
tains one message set, i.e. S = {{−1, 1}}. Let Z1 ∼
NB(1, e−(1−γ)ϵ)/n, Z2 ∼ NB(1, e−(1−γ)ϵ)/n, and Z3 ∼
NB(3(1 + log(2/δ)), e−0.1min(1,γϵ)/4)/n, then when xi = 0,
the total number of messages is num0 = Z1+Z2+2Z3 where
Z1 + Z3 is the number of +1, and Z2 + Z3 is the number
of -1. On the other hand, when xi = 1, the total number of
messages is num1 = 1 + Z1 + Z2 + 2Z3 because the local
randomize also sends xi in addition to the noise messages.
Our observation is that num0 can be 0 and num1 cannot,
and in typical settings, numb = b with a large probability.
In short, the number of messages exposes the user’s private
data value. To demonstrate this, in Figure 2(a), we plot the
probability distributions of num0, num1 under the following
parameters: n = 104, ϵ = 1.0, δ = 0.01/n, and γ = 0.1. As
we can see in the figure, P[numb = b] ≥ 95.1% for b ∈ {0, 1}.
So if an adversary can observe the message cardinality, it can
deduce almost certainly the user’s private data value. A similar
conclusion holds for multi-message protocols in [17], [27],
[46], [47], [63].

D. Privacy under In-out Attacks

This section focuses on the privacy degradation of shuffle
models under in-out attacks. We start with the ideal shuffle
model: shuffle-then-randomize, and then give results about the
prevalent subsample-randomize-shuffle model.

Shuffle-then-randomize model under in-out attacks [no
privacy amplification]. The shuffle-then-randomize model,
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Fig. 2. The probability mass distributions of message numbers num0 =
num(R(0)), num1 = num(R(1)) and privacy curves due to message-
cardinality attack on [19].

introduced by the seminal work [1] and refined by recent
studies [14], [41], provides the best results to date in terms of
privacy amplification. In this model, there are multiple rounds.
In each round, the analyzer sends a query to the shuffler, who
then chooses a user to answer the query according to a random
permutation π. The i-th user answers the query in the π(i)-th
round by sending the locally randomized data to the shuffler.
The query and the local randomizer may vary in each round.

In this model, privacy amplification can be achieved because
the users can hide themselves in a crowd while answering
queries. However, if the adversary can observe a user partic-
ipating in a particular round (i.e. an in-out attack), privacy is
then reduced to whatever the local randomizer can provide and
amplification is no longer achievable. We can demonstrate the
difference through an example. Consider a scenario in which
an analyzer queries a crowd of n = 10, 000 users, and each
of them holds a bit. In each round, the analyzer asks a user
to submit her bit through the shuffler. Each user can use a
local randomized response mechanism to perturb her bit before
submitting it to the shuffler:

Ri(xi) =

{
xi, with probability 1− p;
1− xi, with probability p.

where p = 1
eϵ0+1 and ϵ0 is the local privacy budget. Suppose

the global privacy goal is (ϵ = 0.2, δ = 10−6)-DP, then the
local level only needs to be ϵ0 = 2.81 based on the analysis
in [14]. An in-out attack means that the adversary can recover
the user’s data much easier: the i-th user submitted her data in
the π(i)-th round, which is observed by the adversary. Since
the local randomizer’s budget is ϵ0 = 2.81, the probability p ≈
0.057. Hence, the adversary knows that with a high probability
1 − p = 0.943, the i-th user’s bit is the one submitted in the
π(i)-th round.

Similar attacks apply to binary randomized response used
in [1] for streaming data aggregation, generalized randomized
response used by [14], [41] for histogram estimation, or any
other local randomizers in the shuffle-then-randomize model.

Subsample-randomize-shuffle model under in-out at-
tacks [intra-batch amplification]. In the subsample-
randomize-shuffle model, a randomly sampled sub-population
report their data in each round. Privacy amplification in this
model relies on the fact that the analyzer does not know who
participated in which round, hence can amplify privacy also
by subsampling [56]. However, if an adversary possesses the
victim user’s in-out information, the victim’s privacy will be
weakened significantly. Assuming the victim participated in
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Fig. 3. The damage of in-out attack on privacy amplification of protocol [24]
in subsample-randomize-shuffle model.

the kv-th round, although the adversary cannot identify the
exact message sent by the victim, due to the fact that Ukv is a
smaller sub-population and is known by the adversary, privacy
amplification via subsampling is no longer available.

To demonstrate, let us consider an example from [24]. In
this example, subsample-randomize-shuffle is used for training
neural networks through federated learning. To jointly train a
classifier using MNIST dataset, each user holds a gradient
vector xi ∈ {−0.01, 0.01}d, where d = 13170. In each
round, s = 1000 users are selected from a total n = 60000
population. They sanitize their gradient vectors using random-
ized response on a randomly selected dimension with budget
ϵ0 = 2. Without the in-out attack, a single round gradient
aggregation consumes a DP budget (i.e. incurs a privacy loss)
of (0.0064, 10−5) (using the near-optimal shuffle amplification
upper bound in [14, Theorem 3.1] and subsampling amplifica-
tion bound in [24, Lemma 3]). However, when the adversary
possesses the in-out information of a victim participated in a
round, the actual privacy budget increases by over 41 times to
(0.27, 10−5) (using the shuffle amplification lower bound for
s = 1000 users with randomized response in [43, Theorem
5.1]). Figure 3 shows more privacy loss comparisons with
and without in-out attacks. In the worst-case, if a user v is
selected for Ω(K) rounds, the accumulated privacy loss is
Ω(

√
Keϵ0/s), creating a gap of s/n from the expected privacy

loss without in-out attack.

E. Privacy under Message-length Attacks

This section studies the impact of message-length leakage
on privacy in the shuffle model, analyzing both local privacy
and shuffle privacy amplification impacts.

Privacy amplification degradation. Intuitively, if privacy
adversaries know the victim’s message lengthRi(xi), they can
filter out messages in S ◦ R[n](X) with unmatched lengths.
Thus, the victim’s message can only hide among a subset users
with the same length. Specifically, message length information
reduces the population size for privacy amplification to:

#{Ri(xi) | i ∈ [nk]\{v} and len(Ri(xi)) = len(Rv(xv))}.
(1)

For instance, the seminal work [1] on shuffle privacy amplifi-
cation considers longitude data xi ∈ {0, 1}d aggregation over
a period of time [1 : d]. To avoid Θ(d) errors in estimators, a
common practice is representing xi by its hierarchical residue
and having users report one hierarchy level. Assuming periods
time as d = 2H , the k-th value in the h-th hierarchy is
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Fig. 4. The damage of message length attack on privacy amplification of the
single-message protocol [1].

given by Vh,k = xi(k · 2h) − xi((k − 1) · 2h) (assumed
xi(0) = 0), where h ∈ [0 : H], k ∈ [1 : d/2h]. The study lets
users uniformly select one hierarchy level h ∈ [0 : H] and
employ binary randomized response with full ϵ0 to sanitize
ternary vector Vh,∗ ∈ {−1, 0, 1}d/2

h

, obtaining a message
Yh,∗ ∈ {−1, 1}d/2

h

. Depending on the hierarchy level h se-
lected, the message length of Yh,∗ varies significantly, ranging
from 1 to d. Consequently, the victim can only hide among
approximately n/(log2 d+ 1) users. In Figure 4, we compare
remaining privacy protection under message-length attacks
with claimed privacy levels in [1]. The actual privacy loss
increases by over 200%, and the gap grows with d. Similar
issues exist in other prevalent aggregation tasks (e.g., for range
queries [64] and marginal queries [65]) employing sampling-
based query selection or compressed binary randomized re-
sponse [3]. In these protocols, while len(Ri(xi)) follows the
same distribution Plen for any input data xi, message length
may vary widely with high entropy. When adversaries possess
the message length len(Rv(xv)) = l of the victim user v, the
user can only hide among a much smaller randomized sub-
population (of size |U∗,l| ≈ 1 + (n− 1) · Plen[l]).

Local privacy loss. When local randomizers’ outputs are
compressed (e.g., via list representation of sparse vector in
RAPPOR [49], key-value data randomizer [66]) for transmis-
sion efficiency as in [27], the compressed message length
might probabilistically reveal information about the message
value, thus incur severe local privacy loss (see Appendix A).

Joint in-out and message-length Attack. The timing of
message transmission (in-out information) and the size of
transmitted messages (message-length information) are often
simultaneously leaked to adversaries. Consequently, the pop-
ulation a victim can hide among is further restricted to those
sharing the same message length in the same round, and the
privacy amplification effect under joint in-out and message-
length attacks can be further diminished.

V. THEORETICAL ANALYSES OF SIDE-CHANNEL ATTACKS

This section presents formal analyses of the detrimental
impact of side-channel information on privacy guarantees in
shuffle models. To facilitate theoretical characterization, we
introduce some properties of distance measures employed in
DP. The data processing inequality asserts that the privacy
guarantee cannot be weakened by further analysis of a priva-
tization mechanism’s output.

Definition 8 (Data processing inequality [67]): A distance
measure D : ∆(T) × ∆(T) → [0,∞] on the probability
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distribution space satisfies data processing inequality if, for
all distributions P and Q in ∆(T) and for all (possibly
randomized) functions g : T→ T′,

D(g(P )∥g(Q)) ≤ D(P∥Q).

In the shuffle model, a plethora of sources of randomness
exists (e.g., randomness of users’ participation choices and
randomness of query results from previous rounds). We put
forth two instrumental tools for scrutinizing the distance
measures under intricate sources of randomness: separability
property (refer to Definition 9), and conditioning increasing
property (refer to Definition 10).

Definition 9 (Separability property [67]): A distance mea-
sure D : ∆(T) ×∆(T) → [0,∞] on the space of probability
distributions satisfies separability property if, for all distribu-
tions P and Q that are joint densities over T = T1 × T2

with the same marginal density with respect to T1, i.e.
P = PT1 · PT2|T1

and Q = PT1
·QT2|T1

,

D(P∥Q) = Et1∼PT1
[D(P |t1∥Q|t1)],

where P |t1 and Q|t1 denote the conditional variables PT2|t1
and QT2|t1 , respectively.

Definition 10 (Conditioning increasing property [67]): A
distance measure D : ∆(T)×∆(T)→ [0,∞] satisfies condi-
tion increase property if, for all distributions P and Q over T
that are generated by P =

∫
PT |T1

dT1 and Q =
∫
QT |t1dT1

with the same variable T1,

D(P∥Q) ≤ Et1∼PT1
[D(P |t1∥Q|t1)].

It is crucial to note that all f -divergence measures, including
the Hockey-stick and Rényi divergences, adhere to these
three properties [67, Proposition 7.1, Theorem 7.2]. When
the distribution of the marginal/randomness source variable
T1 is the same for P and Q, we use D(P∥Q|t1) to represent
D(P |t1∥Q|t1) for simplicity.

A. Privacy Damage of In-out Attacks

In Theorem 1, we formally demonstrate that the privacy of
the shuffle-then-randomize model under in-out attack deterio-
rates to the local level (no privacy amplification). In Theorem
5 (see Appendix D), we reveal that the privacy of subsample-
randomize-shuffle model under in-out attack degrades to the
intra-batch level (amplification by |Uk| = s users). Similar
results applies to other shuffle model variants.

Theorem 1 (Shuffle-then-randomize model under in-out
attack): Given two neighboring datasets X = {x0, . . . , xv =
a, . . . , xn}, X ′ = {x0, . . . , xv = b, . . . , xn} ∈ Xn, and a
protocol Ps-r in the shuffle-then-randomize model. Let iov de-
note the in-out information about user v that iov(k) = 1, then
for any distance measure D that satisfies the data processing
inequality and separability property:

D(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1)

≥ min
z[0:k−1]∈Z0×···×Yk−1

D(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b)).

B. Privacy Damage of Message-length Attacks

Using divide-randomize-shuffle model as an example, we
illustrate the destructive power of message-length attacks in
Theorem 2. The victim user can only hide among users
with the same message length in the same division. For
the shuffle-then-randomize and subsample-randomize-shuffle
models, the privacy amplification population under message-
length attacks is limited to U∗,l, which represents users with
identical message lengths across all rounds. When joint in-out
and message-length attacks occur, the privacy amplification
population further deteriorates to the same level as divide-
randomize-shuffle model: Uk,l (see Appendix F).

Theorem 2 (Divide-randomize-shuffle model under
message-length attack): Consider a protocol Pd-r-s and
non-overlapping complete user divisions {Uk}k∈[K]

in the divide-randomize-shuffle model, and two
neighboring datasets X = {x0, . . . , xv = a, . . . , xn},
X ′ = {x0, . . . , xv = b, . . . , xn} ∈ Xn that differ
at the v-th user data. Assuming v ∈ Uk and
len(R(k)(z(0:k−1), a))

d
= len(R(k)(z(0:k−1), b)), let l

denote the observed message-length information about user
i. Define Uk,l as the set of users with the same message
length (i.e., Uk,l = {i | for i ∈ Uk and len(R(k)(xi)) = l}),
and let S = {X(i)}i∈Uk,l

, S′ = {X ′(i)}i∈Uk,l
∈ X|Uk,l|

denote neighboring datasets w.r.t. Uk,l then for any distance
measure D that satisfies the data processing inequality and
the separability property:

D(Pd-r-s(X)∥Pd-r-s(X
′)|Uk,l, lenv = l)

≥min
z0

D(Ps-r(S)∥Ps-r(S
′)|z0),

whereR[|Uk,l|] = R(k) are local randomizers of a shuffle-then-
randomize protocol Ps-r and z0 is the global information.

When the condition that message lengths are distributionally
equal given whether xv = a or xv = b:

len(R(k)(z(0:k−1), a))
d
= len(R(k)(z(0:k−1), b))

does not hold in the theorem, there is also local privacy loss
due to message length (see Section IV-E).

VI. DEFENDING AGAINST SIDE-CHANNEL ATTACKS

In this section, we present countermeasures for defending
against side-channel attacks. These countermeasures give rise
to new principles in the shuffle model that offer robustness
to potential attacks and yield stronger privacy amplifica-
tion effects. Prior to discussing the specifics, we introduce
a novel model: the multinomial-randomize-shuffle (MRS)
model, which possesses several advantages in decentralized
settings and serves as a foundation for defense against side-
channel attacks. For other variants of the shuffle model, the
defense techniques are essentially the same.

A. Multinomial-randomize-shuffle Model

In this model, each user randomly selects one query ki from
[K] according to a distribution PK ∈ ∆K and then responds
with Rki

(z(0:ki−1), xi) in the ki-th round. The shuffler uni-
formly permutes messages received in the ki-th round and
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releases them to the analyzer. The query selection of each
user is private and is not exposed other parties. Consequently,
this model has similar privacy amplification effects as the ideal
model (the privacy amplification population is n, see Theorem
4, proved in Appendix B).

Definition 11 (Multinomial-randomize-shuffle model): Let
PK denote a public distribution over [K], and let k1, . . . , kn
denote n independent samples following PK . Define Uk =
{i | for i ∈ [n] and ki = k} as the k-subgroup of users. Let
R(k) : Z0× · · ·×Zk−1×X→ Y(k) denote the randomizer in
the k-th round, where Zk = Y∗

(k) and Y(k) is the range space
of R(k). The z(0) ∈ Z0 is global information. A protocol
Pm-r-s : Z0 × Xn → Z0 × · · · × ZK in the MRS model
proceeds as follows: given a dataset x[1:n] ∈ Xn, it samples
k1, . . . , kn ∼ PK to obtain {Uk}k∈[K], then sequentially
compute z(i) = S({R(k)(z(0:k−1), xi)}i∈Uk

), finally outputs
z(0), . . . , z(K) and the distribution PK .

The MRS model has some resemblance to the random
check-in approach [16]. However, the random check-in in-
volves complex dummy and uniform selection operations on
received messages in each round, and only provides privacy
amplified by K users, rendering it significantly weaker than
the privacy guarantees of MRS. In benign settings, MRS is also
preferable to the divide-randomize-shuffle model as it offers
greater potential for privacy amplification, yielding asymptotic
savings of (1 −

√
1/K) · 100% in budgets when all local

randomizers comply with LDP. The MRS exhibits similar
asymptotic privacy consumption behavior as the subsample-
randomize-shuffle model [24], [42]. Assuming there are K ≈
n
s queries (i.e., one epoch in federated learning), both models
consume (Õ(

√
eϵ0/n), δ)-DP. Since the MRS ensures each

user participates in exactly one query during one epoch while
the subsample-randomize-shuffle model has higher sampling
variance, the constant factor in privacy loss of MRS is slightly
smaller. Specifically, under the same settings as [24], [42]: n =
60000, s = 1000, ϵ0 = 2, and K = n/s = 60, the subsample-
randomize-shuffle model consumes privacy of (0.0367, 10−5)-
DP (using the near-optimal shuffle amplification [41] and
tight numerical composition with subsampling [68]), while
the MRS consumes only (0.0357, 10−5)-DP (using [41] as
well). More results are listed in Table III, the MRS saves
2%-50% budget than subsampling. Moreover, the subsample-
randomize-shuffle relies on additional trust in the shuffler for
subsampling, whereas the MRS grants control to the user.

TABLE III
AMPLIFIED PRIVACY LEVEL COMPARISON OF MRS AND

SUBSAMPLE-RANDOMIZE-SHUFFLE MODEL (n = 60000, ϵ0 = 2, AND
VARYING NUMBER OF EPOCHS E = Ks/n).

δ = 10−5

E = 1 E = 10 E = 100 E = 500
MRS 0.0357 0.126 0.444 1.070
s=102 0.0393 0.143 0.566 1.584
s=103 0.0367 0.129 0.458 1.132

δ = 10−8

E = 1 E = 10 E = 100 E = 500
MRS 0.0571 0.190 0.635 1.485
s=102 0.0629 0.211 0.769 2.037
s=103 0.0593 0.194 0.651 1.551

B. Defend Against Message-length Attack

In this subsection, we present a countermeasure to defend
against potential message-length attacks. Recall that message-
length information possessed by adversaries threatens both
local privacy and privacy amplification. To avoid local privacy
loss, it is necessary to ensure that the message-length distribu-
tion is independent of the true value xi; to avoid degradation
in privacy amplification as shown in Equation 1, it is necessary
to ensure that the message-length is always the same across
all users. The latter requirement is stricter as it demands
identical concrete message-lengths for all users with various
randomizers and true values.

Padding messages. We employ a straightforward ap-
proach, message padding (e.g., as [69] for anonymous chan-
nels), to defend against message-length attacks. Specifically,
we let lenmax denote the maximum possible message length
outputted from the original local randomizers across all users:

lenmax = max
i∈[n]

sup
x∈X

len(Ri(x)).

Then, for all messages released from each user, the message
payload is padded to lenmax bits.

After implementing the padding, the message length be-
comes global information shared among all parties. Conse-
quently, possessing the victim’s message length information
no longer provides an advantage for privacy attacks.

C. Defend Against In-out Attacks

In this subsection, we present several strategies for defend-
ing against in-out attacks. For non-adaptive queries in the
single-message shuffle model, there is a simple and efficient
strategy: parallelizing queries; for adaptive queries in the
single-message shuffle model, users could sacrifice commu-
nication overheads to regain privacy amplification from in-out
attacks by sending dummy messages (a common approach in
the anonymous channel literature [40]).

1) Non-adaptive queries in the single-message shuffle
model: Many data analysis tasks involve multiple non-adaptive
estimation queries. In the local model of DP, a common
practice for achieving better utility (compared to dividing the
privacy budget ϵ0) is to separate the entire user population
into multiple non-overlapping subsets and assign each subset
to accomplish one query with the full budget ϵ0. For example,
this approach is used in heavy hitter estimation [70], marginal
queries [65], and machine learning [71]. This complies with
the parallel composition theorem of differential privacy in the
central model [2]. In the shuffle model, an (almost) equivalent
approach is to have each user randomly choose one query
among all K queries with a fixed probability distribution
PK ∈ ∆K , and contribute to the chosen query with the full
budget [1], [43]. We illustrate this approach in Algorithm 3.
Since all mechanisms Mk (k ∈ [K]) are ϵ0-LDP, the overall
algorithm is ϵ0-LDP.

Given that every user follows the same distribution PK ,
this implies all users are adopting an identical randomization
algorithm, which ensures that privacy amplification via shuf-
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Algorithm 3: Parallel local randomizer [1], [43]
Params: A distribution PK : [K] 7→ [0, 1], base randomizers

{Mk : X 7→ Yk}k∈[K] each satisfies ϵ0-LDP.
Input: An input x ∈ X.
Output: An output that satisfies ϵ0-LDP.

1 sample k ∼ PK

2 y ←Mk(x)
3 return y

Algorithm 4: Rectified parallel local randomizer
Params: A distribution PK : [K] 7→ [0, 1], base randomizers

{Mk : X 7→ Yk}k∈[K] each satisfies ϵ0-LDP, the
maximum possible length lenmax.

Input: An input x ∈ X.
Output: An output that satisfies ϵ0-LDP.

1 sample k ∼ PK

2 y ←Mk(x)
3 add padding bits to y to form a lenmax-length bit vector y′

4
encrypts y′ with the public key of the analyzer and get
Enca(y

′)
5 return Enca(y

′)

fling still holds. Denote Algorithm 3 as R, one straightforward
conclusion is that:

D(S ◦ R(X) ∥ S ◦ R(X ′)) ≤ D(Ps-r(X)∥Ps-r(X
′)),

where the shuffle-then-randomize model employs R as the
local randomizers.

Parallel as a cost-free defense to in-out attacks. We
emphasize that parallel local randomizers are naturally im-
mune to in-out attacks in the shuffle model. As all K queries
are performed together in one single round (with the parallel
randomizer in Algorithm 3), the in-out information iov = {1}
is trivial, thus maintaining the population size for shuffle pri-
vacy amplification at n. We note that parallelizing queries does
not require the shuffler/server to process all messages from
users within a specific short period of time but rather serves to
obfuscate which specific query the victim participated in. The
message sending and receiving time window can span a wide
range, and the shuffler/server could process these messages in
the virtual timestamp that corresponds to this time window.

Defend joint in-out & message-length attacks. We note
that message-length information must be protected in the
parallel local randomizer, as each base randomizer Mk often
has a different output space Yk, and the message length
leaks information about each query the victim participated
in. We present an implementation that resists joint in-out and
message-length attacks in Algorithm 4, where messages are
padded. Now for the privacy properties of Algorithm 4, since
it can be considered as post-processing upon Algorithm 3 and
both in-out & message-length information are trivial, it enjoys
the same local and shuffle privacy guarantees as the shuffle-
then-randomize model (with identical local randomizers).

2) Adaptive queries in single-message shuffle model:
For adaptive queries, parallelizing queries is not applicable
since the k-th query relies on previous querying results
z(0), . . . , z(k−1). We propose contributing dummy messages
at every round based on the MRS model (see Algorithm 5), at

Algorithm 5: Rectified MRS model
Params: A probability distribution PK : [K] 7→ [0, 1],

adaptive local randomizers {R(k)}k∈[K], the
maximum possible length lenmax, global
information z(0).

Input: Inputs x1, . . . , xn ∈ X from n users.
Output: The querying results of K adaptive queries.

1 ▷ Sample participation choices on the user side
2 for users i ∈ [n] do
3 sample ki ∼ PK

4 ▷ Run randomization & shuffling
5 for k ∈ [K] do
6 for users i ∈ [n] do
7 ▷ Randomize, pad, and encrypt on the user side
8 if k = ki then
9 yi,k ←R(k)(z(0:k−1), xi)

10 else
11 let yi,k be an empty message

12 pad yi,k to form a lenmax-length bit vector y′
i,k

13
encrypts y′

i,k with the analyzer’s public key to get
Enca(y

′
i,k)

14 ▷ Uniform-randomly permute on the shuffler side
15 Ek = S(Enca(y

′
1,k), . . . , Enca(y

′
n,k))

16 ▷ Decrypt and analyze on the server side
17 Y ′

k = {Deca(ciphertext) | cihpertext ∈ Ek}
18 Yk = {y | y ∈ Y ′

k and y is not empty}
19 z(k) = Ak(Yk)

20 return z(0), . . . , z(K)

the cost of (K−1)-times more communication overhead . We
then show how to trade-off communication and amplification.

Sending dummy messages. To obscure the information
about which round a user participated in and prevent adver-
saries from obtaining meaningful in-out information, we let
every user contribute message(s) at all K rounds. In the true
participating round ki (sampled as in the normal MRS model),
user i contributes a true message R(ki)(z(0:k−1), xi) (line 9);
in the other K − 1 rounds, user i contributes a dummy/empty
message (line 11). To further prevent adversaries from launch-
ing message-length attacks, all messages are padded (line 12)
and encrypted before transmission.

Since every user participates in all rounds, the in-out in-
formation iov = [1, ..., 1] becomes trivial in the new model
presented in Algorithm 5; since all messages have the same
length, there is no degradation due to side-channel message-
length information. Moreover, the observed shuffled messages
E1, . . . , EK can be viewed as adding padded empty messages
at every round to the outputs of Pm-r-s according to the total
number of users n (a public piece of information). Therefore,
the new model resists in-out & message-length attacks and
has the same privacy amplification effects as the normal MRS
model in Theorem 4.

A practical issue in the new model is that the total messages
grows to K times when compared to the original model.
This might pose significant communication burdens on users
with scarce resources (e.g., in mobile devices). To balance
communication costs and privacy amplification, we propose a
flexible, generalized participation model extending the multi-
nomial approach.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3571661

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on June 28,2025 at 03:13:28 UTC from IEEE Xplore.  Restrictions apply. 



11

Algorithm 6: Rectified bin-randomize-shuffle model
Params: Participation bins Q(1:M), probability distributions

P(m) : Q(m) 7→ [0, 1] for m ∈ [M ], adaptive local
randomizers {R(k)}k∈[K], the maximum possible
length lenmax, global information z(0).

Input: Inputs x1, . . . , xn ∈ X from n users.
Output: The querying results of K adaptive queries.

1 ▷ Compute participation choices on the user side
2 for users i ∈ [n] do
3 choose mi ∈ [M ] with an arbitrary (personalized) rule
4 ki ∼ P(mi)

5 ▷ Run randomization & shuffling
6 for k ∈ [K] do
7 for users i ∈ [n] do
8 ▷ Randomize, pad, and encrypt on the user side
9 if k ∈ Q(mi) then

10 if k = ki then
11 yi,k ←R(k)(z(0:k−1), xi)
12 else
13 let yi,k be an empty message

14 pad yi,k to form a lenmax-length bit vector y′
i,k

15
encrypts y′

i,k with the analyzer’s public key to
get Enca(y

′
i,k)

16 ▷ Uniform-randomly permute on the shuffler side
17 Ek = S({Enca(y

′
i,k)}i∈Ul(k)

)

18 ▷ Decrypt and analyze on the server side
19 Y ′

k = {Deca(ciphertext) | cihpertext ∈ Ek}
20 Yk = {y | y ∈ Y ′

k and y is not empty}
21 z(k) = Ak(Yk)

22 return z(0), . . . , z(K)

Bin participation paradigm. The model first defines a
series of bar points {b0, b1, . . . , bM} in [K + 1]. Specifically,
b0 ≡ 1, bM ≡ K + 1, and bm < bm+1 for m ∈ [M − 1].
The model then defines a set Q = {Q(1), . . . , Q(M)} of non-
overlapping, consecutive, and complete subsets (bins) of [K]
where Q(m) = [bm−1, bm− 1] for m ∈ [M ]. It is obvious that
Q(m) ̸= ∅, Q(m) ∩ Q(m′) = ∅ holds for all m,m′ ∈ [M ]
when m ̸= m′, and Q(1) ∪ Q(2) ∪ · · · ∪ Q(M) = [K].
For each Q(m) ∈ Q, it is associated with a probability
distribution P(m) : Q(m) 7→ [0, 1] ∈ ∆|Q(m)|. In the binned
participating model, each user i ∈ [n] select mi ∈ [M ] with an
arbitrary rule. For example, if a user becomes available online
after round k, the user might select a bin Q(mi) such that
Q(mi) ⊆ [k + 1 : K]; the user might also arbitrary-randomly
select a bin Q(mi) from Q. After choosing the bin Q(mi),
the user i samples a true participation round ki from Q(mi)

according to P(mi). The corresponding shuffle model with the
binned participation paradigm is termed the bin-randomize-
shuffle model. Specifically, when Q = [n], the bin-randomize-
shuffle model is equivalent to the MRS model.

We let U(m) ⊆ [n] denote the users that selected bin Q(m) in
the bin-randomize-shuffle model, Uk ⊆ [n] denote the users
that selected query k, and let l(k) denote the bin where k
belongs to (i.e., k ∈ Q(l(k))). Then, by combining the defensive
techniques in the MRS model, we show that user i ∈ U(m)

can hide among U(m), even under in-out and message-length
attacks. We present the overall procedure in Algorithm 6, and

formally state the privacy amplification guarantee in Theorem
3 (see Appendix G for proof). Since U(m) lies between Uk and
[n], the privacy amplification and communication costs can be
flexibly traded off.

Theorem 3 (Rectified bin-randomize-shuffle model): Given
a protocol Pb-r-s, non-overlapping complete bins Q =
{Q(1), . . . , Q(m)}, and non-overlapping complete user divi-
sions {U(m)}m∈[M ] in the binned-randomize-shuffle model
(as in Algorithm 6), and two neighboring datasets X =
{x0, . . . , xv = a, . . . , xn}, X ′ = {x0, . . . , xv = b, . . . , xn} ∈
Xn. Let l denote the message-length information about user
v that v ∈ Uk ⊆ U(m), and let S = {X(i′)}i′∈U(m)

, S′ =

{X ′(i′)}i′∈U(m)
∈ X|U(m)| denote neighboring datasets w.r.t.

U(m) then for any distance measure D that satisfies the data
processing inequality and separability property:

D(Pb-r-s(X)∥Pb-r-s(X
′)|U(m), lenv = l)

≤max
z0

D(Pm-r-s(S)∥Pm-r-s(S
′)|z0),

where {R(k′)}k′∈Qm
are the local randomizers of a

multinomial-randomize-shuffle protocol Pm-r-s that has |Qm|
rounds, z0 is the global information in Pm-r-s and P(m) is the
query selection distribution of the m-th bin.

D. Defend Against Message-cardinality Attacks

Section IV-C highlights that message-cardinality attacks
may result in significant privacy loss for some SOTA protocols
[17], [19], [46], [47]. In this section, we demonstrate the
difficulty and feasibility in securing the ∆-summation protocol
[19] against message-cardinality attacks.

Recall that in the ∆-summation protocol (see Algorithms
1 and 2) with ∆ = 1, if a user has xi = 1, they send a
1 and a random number of −1, 1 messages to the shuffler.
Conversely, if a user has xi = 0, they send only a random
number of −1, 1 messages following the same distribution
as when xi = 1. A straightforward remedy would involve
sending an extra 0 (or any other stub/dummy message) to the
shuffler when xi = 0 to ensure identical message cardinality
distributions for both xi = 1 and xi = 0. However, while this
addresses the message-cardinality issue, the number of 0s or
stubs observed by the analyzer (i.e., potential adversaries) in
shuffled messages directly reveals the number of users with 0,
leading to an infinite differential privacy loss.

One feasible approach is transforming the ∆-summation
problem into a (∆ + 1)-summation problem while utilizing
the original protocol as a base. In this approach, given user
data xi ∈ [∆], we first transform it to xi+1 ∈ [∆+1]. These
transformed values are then fed into a (∆ + 1)-summation
protocol from [19]. After retrieving the noisy summation s
from the protocol, we obtain the final unbiased estimator
of

∑
i∈[n] xi by subtracting n from s. By incorporating the

transformation step where we only input xi + 1, which is
always greater than 0, the local randomizer in Algorithm 1
consistently sends xi+1, effectively eliminating the message-
cardinality issue. Since the user population size n is a publicly
known parameter and each user data point increases by 1,
we can still recover the unbiased noisy summation. The only
additional cost incurred is the increased message complexity
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associated with a (∆+1)-summation protocol when compared
to a ∆-summation protocol.

It is important to note that this defense approach cannot be
generalized to other vulnerable protocols in [17], [46], [47]
that only take binary inputs.

VII. DISCUSSIONS

In this section, we summary new privacy requirements
and novel principles for the shuffle model, and discuss their
implications to more broader DP-Cryptography systems.

A. Curious Shuffle Model

Keep in mind that privacy attackers can easily carry out
side-channel attacks on the shuffle model. A typical example
of such attackers is an honest-but-curious shuffler. If we let
SideInfo(i) represent the information that privacy attackers
have about a user i ∈ [n], we can then define a side-channel-
resistant version of DP in the shuffle model like this:

Definition 12 (DP in the curious shuffle model): A protocol
P = ({Ri}i∈[n],A) satisfies (ϵ, δ)-differential privacy in the
curious shuffle model iff for all neighboring datasets X and
X ′ ∈ Xn, the (S ◦ R[n](X),SideInfo(i)i∈[n]) and (S ◦
R[n](X

′),SideInfo(i)i∈[n]) are (ϵ, δ)-indistinguishable.
Usually, SideInfo(i) includes io(i), num(Ri) and

len(Ri) as defined in Section IV-B. In this case, our rectified
proposals in Section VI maintain privacy amplification in the
curious shuffle model.

B. New Principles in the Shuffle Model

To maximize privacy amplification effects and minimize
side-channel risks, we summarize new principles for the
(curious) shuffle model:

(a) Pad every message. As demonstrated in Section IV-E,
message-length information can significantly compromise pri-
vacy. A simple but effective solution is to pad each message to
at least the maximum possible message length [69], lenmax.
Consequently, the message length becomes a public informa-
tion in the system, thus avoid privacy degradation even when
adversaries possess message length information.

(b) Parallelize queries. When handling multiple queries
with no sequential dependence, the best practice in the shuffle
model is to pack them into one parallel query (see Section
VI-C1). This allows users to benefit from privacy amplification
over the full population without sending dummy messages.

(c) Contribute dummy messages. As for adaptive
queries, existing shuffle models fail to fully amplify privacy
across rounds when there are side-channel attacks. An
effective mitigation approach is to have each user contribute
extra dummy messages [40] to the shuffler at every round
(as shown in Algorithm 5), so that users can hide among
the overall population. Alternatively, users may adopt the
bin-randomize-shuffle model (see Algorithm 6) to flexibly
control the trade-off between communication overheads,
privacy amplification effects, and utility.

Combining these principles enables users to achieve opti-
mized privacy-utility-communication trade-offs.

C. New Challenges in DP-Crypto Systems

Stemming from this study, while countermeasures from the
cryptography literature (e.g., padding bits and sending dummy
messages) offer valuable insights, they are not universally
applicable to defending against side-channel attacks in the
shuffle DP model (see Section VI-D) and may be inefficient
(see Section VI-C), due to differences in functionalities and
privacy goals. Our research pivots to a crucial frontier: the
synthesis of information-theoretic privacy tools and crypto-
graphic methods (e.g., anonymous channels, oblivious shuf-
fling, order preserving encryption, and approximate homo-
morphic encryption). This merger seeks not only to balance
privacy and utility/efficiency but also to illuminate and address
novel attack vectors. These attacks, within the DP context,
beckon comprehensive analyses and the genesis of innovative
defenses.

VIII. CONCLUSION

This study presents a novel identification of communica-
tion side-channel attacks associated with the shuffle model
of differential privacy. We classify these attacks into three
categories: in-out, message-length, and message-cardinality
attacks. Additionally, we empirically and theoretically investi-
gate the resulting degradation of privacy due to these attacks.
Our findings reveal that these attacks cause a significant or
even infinity increase in privacy loss, potentially nullifying
the benefits of privacy amplification through shuffling. To
counteract these vulnerabilities, we propose two new variants
of the shuffle model: the MRS model and the bin-randomize-
shuffle model. We introduce new principles within these
models, such as parallelizing queries, padding messages, and
sending dummy messages. As a result, the privacy amplifi-
cation effects are redeemed with minimal additional costs.
Furthermore, these new models are applicable not only for
defending against attacks but also in benign environments,
resulting in significantly stronger privacy amplification effects
compared to existing models.
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APPENDIX A
LOCAL PRIVACY LOSS DUE TO MESSAGE LENGTH

In some commonly-used local randomizers (e.g., RAPPOR
[49], key-value data randomizer [66]), their outputs are often
compressed (e.g., via list representation of sparse vector)
before encryption for transmission efficiency as in [27]. The
compressed message length might probabilistically reveal in-
formation about the message value, thus incur severe local
privacy loss. For instance, in RAPPOR, the secret value xi is
hashed into a Bloom filter of length b using h hash functions
{Hj}j∈[h], and each bit is randomly flipped with probability
p ∈ [0, 0.5]. For transmission efficiency, the randomized
Bloom filter is compressed as a list of non-zero indexes. Mean-
while, the length of the list might correlates with the input
value. Considering x, x′ ∈ X such that 1 = #{Hj(x)}j∈[h]

and h = #{Hj(x
′)}j∈[h], then their probability distributions

of number of 1s (i.e., the length of the index list) in the
randomized Bloom filter largely differ. This induces local
privacy loss of (h − 1) log((1 − p)/p) = h−1

2h ϵ0 (refer to
Definition 13), where ϵ0 is the local budget and is relatively
large in the shuffle model.

Definition 13 (Local privacy loss due to message length):
Considering a local randomizer R : X 7→ Y, let len(R(x))
denote the number of bits of R(x) on a given input x ∈ X.
The local privacy loss of message length information is (ϵ, δ)
if for some x, x′ ∈ X:

Deϵ(len(R(x)) ∥ len(R(x′))) ≥ δ.

APPENDIX B
PRIVACY AMPLIFICATION OF

MULTINOMIAL-RANDOMIZE-SHUFFLE MODEL

Theorem 4 (Privacy amplification of multinomial-
randomize-shuffle model): Given a protocol Pm-r-s and
sampled non-overlapping complete user divisions {Uk}k∈[K]

in multinomial-randomize-shuffle model, and two neighboring
datasets X = {x0, . . . , xv = a, . . . , xn}, X ′ = {x0, . . . , xv =
b, . . . , xn} ∈ Xn that differ at the v-th user data, then for any
distance measure D that satisfies data processing inequality:

D(Pm-r-s(X)∥Pm-r-s(X
′)|{|Uk|}k∈[K])

≤D(Ps-r(X)∥Ps-r(X
′))

where R[n] = R
|U1|
(1) × · · · × R

|UK |
(K) are the local randomizers

of Ps-r in the shuffle-then-randomize model, and the global
information in Ps-r is the same as in Pm-r-s.
We utilize the data processing inequality to prove the theorem.
Specifically, we show there exists a shuffle-then-randomize
protocol Ps-r (where R[n] ∈ {R(1), . . . ,R(K)}n) and a post-
processing function, such that the output from MRS model
(distributionally) equals to post-processed output of Ps-r.

Consider a special protocol Ps-r in the shuffle-then-
randomize model that Ri ≡ R(k) for i ∈ [

∑
k∈[k−1] |Uk| :∑

k′∈[k] |Uk|] and the global information z0 is the same as
in Pm-r-s. Furthermore, we assume there is no adaptivity
within Uk (the k ∈ [K]), meaning that every Ri = R(k) are
independent from {zi′}i′∈Uk and i′≤i. Let z = {z0, . . . , zn}
denote the output variables of such an special algorithm. Since
all users follow the same multinomial distribution PK , and

both P ′
s-r and Pm-r-s uses uniform-random shuffling, due to

the uniformity of all {x1, . . . , xn} in the input, we have the
output distribution of z from the Ps-r equal to the Pm-r-s with
the same input. Therefore, according to the post-processing
inequality (with an post-processing function of identical map),
we have the conclusion.

We examine the conditional cases of the multinomial-
randomize-shuffle model in Theorem 4, wherein the sub-
population sizes for all rounds {|Uk|}k∈[K] are fixed. Re-
garding non-conditional case D(Pm-r-s(X)∥Pm-r-s(X

′)), one
can effortlessly employ the conditioning increasing property
of divergence measures to derive:

D(Pm-r-s(X)∥Pm-r-s(X
′))

≤ E
|U[K]|∼multinomial(n,PK)

D(Pm-r-s(X)∥Pm-r-s(X
′)|{|Uk|}k∈[K]).

APPENDIX C
PROOF OF THEOREM 1 ON SHUFFLE-THEN-RANDOMIZE

MODEL UNDER IN-OUT ATTACKS

To prove that:

D(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1)

≥ min
z[0:k−1]∈Z0×···Yk−1

D(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b)),

we consider the output of Ps-r with fixed variables iov(k) = 1
and utilize the data processing inequality. We define a post-
processing function over the output of Ps-r:
(1): Remove the zk′ for k′ ∈ [k+1 : K] from the output list;
(2): Return z0 = z[0:k−1] and zk.
When z[0:k−1] is fixed, given X or X ′, the output distri-
bution of the above (2) is equivalent to Rk(z[0:k−1], a) or
Rk(z[0:k−1], b), respectively. Therefore, according to the data
processing inequality, we have:

D(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1, z[0:k−1] = z))

≥D(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b)).

Further since X and X ′ differ only at xi and user i appears
at the k-th round, in two independent runs, Ps-r(X)|iov(k) =
1, z[0:k−1] and Ps-r(X

′)|iov(k) = 1, z[0:k−1], the distributions
of z[0:k−1] are identical. We let Pz denote this distribution.
Then, using the separability property of the distance measure
over observable z[0:k−1] in the shuffle-then-randomize model,
we have:

D(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1)

=Ez∼PzD(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1, z[0:k−1] = z))

≥Ez∼PzD(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b))

≥min
z

D(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b)).

APPENDIX D
THEOREM 5 ON SUBSAMPLE-RANDOMIZE-SHUFFLE MODEL

UNDER IN-OUT ATTACKS

Theorem 5 (Subsample-randomize-shuffle model under in-
out attack): Given a protocol Ps-r and sampled user subsets
{Uk}k∈[K] in the subsample-randomize-shuffle model, and
two neighboring datasets X = {x0, . . . , xv = a, . . . , xn},
X ′ = {x0, . . . , xv = b, . . . , xn} ∈ Xn. Let iov denote
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the in-out information about user i that iov(k) = 1, and
let S = {X(i)}i∈Uk

, S′ = {X ′(i)}i∈Uk
∈ X|Uk| denote

neighboring datasets w.r.t. Uk, then for any distance measure
D that satisfies the data processing inequality:

D(Ps-r-s(X)∥Ps-r-s(X
′)|Uk, iov(k) = 1, z(0:k−1))

≥D(Ps-r(S)∥Ps-r(S
′)|z0 = z(0:k−1)),

where R[|Uk|] = R(k) are the local randomizers of a shuffle-
then-randomize protocol Ps-r and z0 is the global information
in Ps-r.

Proof: To prove that:

D(Ps-r-s(X)∥Ps-r-s(X
′)|Uk, iov(k) = 1, z(0:k−1))

≥D(Ps-r(S)∥Ps-r(S
′)|z0 = z(0:k−1)),

we consider the output of Ps-r-s with observed/fixed variables
Uk, iov(k) = 1 and z(0:k−1). We then define the following
post-processing function:
(1): Remove the z(k′) for k′ ∈ [k + 1 : K] from the output

list;
(2): Return z0 = z(0:k−1) and z(k).
Since z(0:k−1) is fixed, the output distribution of above (2) is
equivalent to an algorithm Ps-r in the shuffle-randomize model
where global information is z(0:k−1). Therefore, according to
the data processing inequality, we have:

D(Ps-r-s(X)∥Ps-r-s(X
′)|Uk, iov(k) = 1, z(0:k−1))

≥D(Ps-r(S)∥Ps-r(S
′)|z0 = z(0:k−1)).

APPENDIX E
PROOF OF THEOREM 2 ON DIVIDE-RANDOMIZE-SHUFFLE

MODEL UNDER MESSAGE-LENGTH ATTACKS

We first prove the privacy amplification lower bound,
which indicates the destructive power of message-length in-
formation attacks. To prove that D(Pd-r-s(X)|Uk,l, lenv =
l∥Pd-r-s(X

′)|Uk,l, lenv = l) ≥ minz0 D(Ps-r(S)∥Ps-r(S
′)),

we consider the output of Pd-r-s with observed/fixed variables
Uk,l, lenv = l, and define the following post-processing
function:
(1): Remove the z(k′) for k′ ∈ [k + 1 : K] from the output;
(2): Remove R(k)(xi′) from z(k) for all i′ ∈ Uk\Uk,l to get

z′(k);
(3): Returns z0 = z(0:k−1) and z′(k).
When z(0:k−1) is fixed, the output distribution of (2) is equal
to an algorithm Ps−r in the shuffle-randomize model where
global information is z(0:k−1). Thus, we have:

D(Pd-r-s(X)∥Pd-r-s(X
′)|Uk,l, lenv = l, z(0:k−1))

≥D(Ps-r(S)∥Ps-r(S
′)|z0 = z(0:k−1)).

Since X and X ′ differ only at xv and v ∈ Uk, in
two independent runs: Pd-r-s(X)|Uk,l, lenv = l, z(0:k−1)

and Pd-r-s(X
′)|Uk,l, lenv = l, z(0:k−1), the distributions of

z(0:k−1) are identical. Let Pz0 denote this distribution. Then,
using the saprability property of distance measure over ob-
servable z(0:k−1), we have:

D(Pd-r-s(X)∥Pd-r-s(X
′)|Uk,l, lenv = l)

=Ez0∼Pz0
D(Pd-r-s(X)∥Pd-r-s(X

′)|Uk,l, lenv = l, z(0:k−1) = z0)

≥Ez0∼Pz0
D(Ps-r(S)|z0∥Ps-r(S

′)|z0)
≥minz0 D(Ps-r(S)|z0∥Ps-r(S

′)|z0).

We then prove the privacy amplification upper bound, indi-
cating the remaining amplification effects. Considering fixed
z0 = z(0:k−1) and fixed Uk,l, to prove

D(Pd-r-s(X)∥Pd-r-s(X
′)|Uk,l, lenv = l, z(0:k−1))

≥min
z0

D(Ps-r(S)∥Ps-r(S
′)|z0),

for the output of Ps-r with local randomizers Rk′ ≡ R(k) and
k′ ∈ [|Uk,l|], we define the following post-processing function:
(1): The output of Ps-r given input z0, {xi}i∈Uk

is

{R(k)(z(0:k−1), xπ−1(1)), . . . ,R(k)(z(0:k−1), xπ−1(|Uk|))},

where π : Uk,l 7→ [|Uk,l|] is a uniform-random permuta-
tion sampled by Ps-r. Now initialize z(k) as the output of
Ps-r, for every i′ ∈ Uk\Uk,l, compute R(k)(z(0:k−1), xi),
append it to z(k). Then, uniform-randomly permutes the
z(k).

(2): Compute z(k′) = S({R(k′)(z(0:k′−1), xi′)}i′∈Uk′ ) for
k′ ∈ [k + 1 : K] sequentially.

(3): Return z(0), z(1), . . . , z(K).
The output distributions of (3) with xv = a or xv = b are equal
to the output distributions of Pd-r-s(X)|Uk,l, lenv = l, z(0:k−1)

and Pd-r-s(X
′)|Uk,l, lenv = l, z(0:k−1), respectively. Accord-

ing to the data processing inequality and the separability
property of distance measure, we have:

D(Pd-r-s(X)∥Pd-r-s(X
′)|Uk,l, lenv = l)

=Ez0∼Pz0
D(Pd-r-s(X)∥Pd-r-s(X

′)|Uk,l, lenv = l, z(0:k−1) = z0)

≤Ez0∼Pz0
D(Ps-r(S)∥Ps-r(S

′)|z0)
≤maxz0 D(Ps-r(S)∥Ps-r(S

′)|z0).

APPENDIX F
JOINT IN-OUT AND MESSAGE LENGTH ATTACKS ON

MULTINOMIAL-RANDOMIZE-SHUFFLE MODEL

Theorem 6 (Privacy amplification of MRS model under
in-out and message-length attacks): Given a protocol Pm-r-s
and sampled non-overlapping and complete user divisions
{Uk}k∈[K] in the multinomial-randomize-shuffle model, and
two neighboring datasets X = {x0, . . . , xv = a, . . . , xn},
X ′ = {x0, . . . , xv = b, . . . , xn} ∈ Xn that differ at the v-th
user data. Assuming that v ∈ Uk and len(R(k)(z(0:k−1), a))

d
=

len(R(k)(z(0:k−1), b)), let l denote the observed message-
length information about user v. Define Uk,l as the set of
users having the message length (i.e., Uk,l = {i | fori ∈
Uk and len(R(k)(xi)) = l}), and let S = {X(i)}i′∈Uk,l

,
S′ = {X ′(i)}i∈Uk,l

∈ X|Uk,l| denote neighboring datasets
w.r.t. Uk,l, then for any distance measure D that satisfies the
data processing inequality and the separability property:

D(Pm-r-s(X)∥Pm-r-s(X
′)|Uk, Uk,l, lenv = l)

≥min
z0

D(Ps-r(S)∥Ps-r(S
′)|z0),
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where R[|Uk,l|] = R(k) are the local randomizers of a shuffle-
then-randomize protocol Ps-r and z0 is the global information
in Ps-r.

Proof: First, we prove the privacy amplification lower
bound, which highlights the destructive power of message-
length information attacks. To prove that:

D(Pm-r-s(X)∥Pm-r-s(X
′)|Uk, Uk,l, lenv = l)

≥min
z0

D(Ps-r(S)∥Ps-r(S
′)),

we consider the output of Pm-r-s with observed/fixed variables
Uk, Uk,l, lenv = l, and define the following post-processing
function:
(1): Remove the z(k′) for k′ ∈ [k + 1 : K] from the output;
(2): Remove R(k)(xi) from z(k) for all i ∈ Uk\Uk,l to get

z′(k);
(3): Return z0 = z(0:k−1) and z′(k).
When z(0:k−1) is fixed, the output distribution of (2) equals
to an algorithm Ps−r in the shuffle-randomize model where
global information is z(0:k−1). Consequently, we obtain

D(Pm-r-s(X)∥Pm-r-s(X
′)|Uk, Uk,l, lenv = l, z(0:k−1))

≥D(Ps-r(S)∥Ps-r(S
′)|z0 = z(0:k−1)).

Since X and X ′ differ only at xv and v ∈ Uk, in two
independent runs: Pd-r-s(X)|Uk, Uk,l, lenv = l, z(0:k−1) and
Pd-r-s(X

′)|Uk, Uk,l, lenv = l, z(0:k−1), the distributions of
z(0:k−1) are identical. We denote this distribution as Pz0 . Then,
using the separability property of distance measure, we obtain:
D(Pm-r-s(X)∥Pm-r-s(X

′)|Uk,Uk,l,lenv = l)

= E
z0∼Pz0

D(Pm-r-s(X)∥Pm-r-s(X
′)|Uk,Uk,l,lenv = l,z(0:k−1) = z0)

≥ E
z0∼Pz0

D(Ps-r(S)∥Ps-r(S
′)|z0)

≥min
z0

D(Ps-r(S)∥Ps-r(S
′)|z0).

We note that Theorem 6 considers simplified conditional
cases with known Uk, Uk,l, len(R(k)(xv)) = l. For uncondi-
tional cases aiming at analyze the divergence:

D(Pm-r-s(X)∥Pm-r-s(X
′)|len(R(k)(xv = b)),

if len(R(k)(xv = a)) follows a different distribution as
len(R(k)(xv = b)), then there will be additional local
privacy loss (described earlier); if len(R(k)(xv = a)) fol-
lows the same distribution as len(R(k)(xv = b)) = l,
then for distance measures satisfying the linearity property,
since the P[Uk, Uk,l, lenv = l, z(0:k−1)] are identical in two
independent runs: Pm-r-s(X)|Uk,l, lenv = l, z(0:k−1) and
Pm-r-s(X

′)|Uk,l, lenv = l, z(0:k−1), the overall divergence
can be upper bounded by an expectation of the formulas
in Theorem 6, according to the separability property (for
observable variable lenv = l, z(0:k−1)) and the conditioning
increasing property (for unobserved prior distribution of Uk,l)
of the distance measure.

APPENDIX G
PROOF OF THEOREM 3 ON RECTIFIED

BIN-RANDOMIZE-SHUFFLE MODEL

Since len(R(x)) ≡ lenmax in Algorithm 6, it suffices to
prove:

D(Pb-r-s(X)∥Pb-r-s(X
′)|U(m))

≤maxz0 D(Pm-r-s(S)∥Pm-r-s(S
′)|z0).

Considering fixed z0 = z(0:k−1), we define the following
post-processing function for the output of Pm-r-s with local
randomizers {R(k′)}k′∈Qm

and query selection distribution
P(l):
(1): Let z(bm−1), . . . , z(bm−1) denote the output from Pm-r-s

with |Qm| rounds.
(2): Compute z(k′) = S(k′)({R(k′)(z(0:k′−1), , xi)}i∈Uk′ ) for

k′ ∈ [bm : K] sequentially, where Uk′ is chosen by users
with the binned multinomial participation paradigm.

(3): Return z(0), z(1), . . . , z(K).
The output distributions of the post-processing with xv =
a or xv = b are equal to the output distributions of
Pb-r-s(X)|U(m), z(0:k−1) and Pb-r-s(X

′)|U(m), z(0:k−1), re-
spectively. According to the data processing inequality and
the separability property of distance measure, we have:

D(Pb-r-s(X)U(m)∥Pb-r-s(X
′)|U(m)

=Ez(0:k−1)
D(Pb-r-s(X)∥Pb-r-s(X

′)|U(m), z(0:k−1)

≤Ez(0:k−1)
D(Pm-r-s(S)∥Pm-r-s(S

′)|z0 = z(0:k−1))

≤maxz0 D(Pm-r-s(S)∥Pm-r-s(S
′)|z0).

APPENDIX H
COMPLEMENTARY RESULTS ABOUT UNCONDITIONAL

DIVERGENCES UNDER SIDE-CHANNEL ATTACKS

We note that Theorem 1 considers conditional
cases with iov(k) = 1. For the unconditional case
D(Ps-r(X)∥Ps-r(X ′)|iov), the fact that random variables
iov are distributed identically, regardless of whether X or
X ′ is provided as input, allows for the derivation of a lower
bound using the conditioning increasing property of D.
Specifically, we have:

D(Ps-r(X)∥Ps-r(X
′)|iov)

≥Ek∼uniform[n]D(Ps-r(X)∥Ps-r(X
′)|iov(k) = 1)

≥Ek∼uniform[n] min
z

D(Rk(z[0:k−1], a)∥Rk(z[0:k−1], b)).

Theorem 5 considers conditional cases where Uk, iov(k) =
1, and z(0:k−1) is fixed. For unconditional Uk, iov , the con-
ditioning increasing property of distance measure D can be
applied similarly. It is important to note that z(0:k−1) is
observable in the subsample-randomize-shuffle model, hence
z(0:k−1) consistently appears as a condition.

Theorem 2 considers simplified conditional cases with
known Uk,l, lenv = l. Regarding the unconditional case:

D(Pm-r-s(X)∥Pm-r-s(X
′)|len(R(k)(b)),

if len(R(k)(a)) follows a different distribution as
len(R(k)(b)), there is an additional local privacy loss (as
described in the previous paragraph). If len(R(k)(xv = a))
follows the same distribution as len(R(k)(xv = b)), then for
distance measures satisfying conditional composition, since
the probabilities P[Uk,l, len(R(k)(xv) = l), z(0:k−1)]
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are identical in the following two independent
runs: Pd-r-s(X)|Uk,l, lenv = l, z(0:k−1) and
Pd-r-s(X

′)|Uk,l, lenv = l, z(0:k−1), the overall divergence
can be upper bounded by an expectation of the formulas
presented in the theorem, according to the conditioning
increasing property.

APPENDIX I
UNCERTAINTY IN SIDE-CHANNEL INFORMATION

In practical side-channel attacks, the adversary may only
observe uncertain/noisy in-out, message-length and message-
cardinality information. If we let Blur denote some possibly
random function on SideInfo(i)i∈[n], we can then define a
variant of DP in the shuffle model with uncertain side-channel
information as:

Definition 14 (DP in the curious shuffle model with
uncertain side-channel information): Let Blur be some
possibly random function that takes SideInfo(i)i∈[n]

as input, a protocol P = ({Ri}i∈[n],A) satisfies
(ϵ, δ)-differential privacy in the curious shuffle model
w.r.t. Blur iff for all neighboring datasets X and
X ′ ∈ Xn, the (S ◦ R[n](X), Blur(SideInfo(i)i∈[n]))
and (S ◦ R[n](X

′), Blur(SideInfo(i)i∈[n])) are (ϵ, δ)-
indistinguishable.

Similar to certain cases, when the uncertain message-length
and message-cardinality information is data-dependent (de-
pends on the differed elements in neighboring datasets X
and X ′), then there are local privacy loss (see Definition 13
and the following Definition 15). Depending on the concrete
Blur function that models the adversaries’ uncertainty, the
local privacy loss due to uncertain information can be less
severe than the certain cases. Even when there is no local
privacy loss, there might be shuffle privacy degradation due to
uncertain side-channel information. Their consequences can be
analyzed in the same way as the certain cases, using the data
processing, separability and conditioning increasing properties
of DP (introduced in Section V) by taking into consideration
the extra randomness in Blur function.

Definition 15 (Local privacy loss due to uncertain message
cardinality): Considering a local randomizer R : X 7→ Y∗,
let num(R(x)) denote the number of message of R(x) for
a given input x ∈ X. Let Blur be some possibly random
function that takes num(R(x)) as input, the local privacy
loss of uncertain message cardinality information is (ϵ, δ) if
following condition holds for some x, x′ ∈ X:

Deϵ(Blur(num(R(x))) ∥ Blur(num(R(x′)))) ≥ δ.
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