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Secure Embedding Aggregation for Cross-Silo
Federated Representation Learning

Songze Li, Jiaxiang Tang, Jinbao Zhu, Kai Zhang, Lichao Sun, and Changyu Dong

Abstract—Representation learning plays a pivotal role in
modern applications by enabling high-quality embeddings that
support various downstream tasks such as recommendation,
clustering, and personalized services. In federated representation
learning (FRL), a central server collaborates with N clients, each
holding private data, to jointly learn representations of entities
(e.g., users in a social network). However, existing embedding
aggregation protocols often fall short in either ensuring privacy
protections or fully leveraging aggregation opportunities, leaving
sensitive data exposed or vulnerable to collusion. To address these
challenges, we propose SecEA, a secure embedding aggregation
protocol that fully exploits all potential aggregation opportuni-
ties across all entities among clients while providing provable
privacy guarantees. SecEA defends both local entities and their
embeddings—ensuring computational security against a curious
server and statistical privacy against up to T < N/2 colluding
clients. Comprehensive experiments on various representation
learning tasks in cross-silo scenarios demonstrate that SecEA
incurs a negligible performance loss (within 5%) compared
to protocols with weaker or no privacy guarantees, and its
additional computational latency significantly diminishes when
training deeper models on larger datasets. A parallel mechanism
is also included, which helps further improve the efficiency
linearly. These results underscore that SecEA not only provides
full privacy protections for both entity and embedding, but also
preserves the utility of the learned representations.

Index Terms—Federated Representation Learning, Entity and
Embedding Privacy, Secure Embedding Aggregation.

I. INTRODUCTION

Federated learning (FL) [2], [3] is an emerging privacy-
preserving collaborative learning paradigm. With the help of
a central server, a group of distributed clients collaboratively
train a high-performance global model without revealing their
private data. Recently, FL framework is applied to federated
representation learning (FRL) [4]–[6], in which the goal is
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to train good representations (or embeddings), for each entity
(e.g., users in a social network), over the private data dis-
tributed on the clients. A typical training round of an FRL
protocol consists of the following steps: (i) each client trains
the local embedding for each of its entities using its private
data; (ii) all the clients send their trained local embeddings to
the server; (iii) the server aggregates the local embeddings
from different clients with the same entity into a global
embedding; and (iv) the server sends the global embeddings
back to the clients for the training of the next round.

Aggregating embeddings of the same entities over all clients
helps to enhance the embedding quality and the learning
performance, for a wide range of representation learning tasks
(e.g., recommendation system [4], [7], social network mining
[8], and knowledge graph [5]). To this end, FRL first needs
to align the local entities of the clients, and then exchanges
embeddings to perform aggregation for each entity. However,
during the embedding aggregation process, alignment could
leak local entity sets, and the curious server and clients can
potentially infer the local entities and their embeddings of
the victim clients, which would lead to leakage of the victim
clients’ local datasets.

TABLE I
COMPARISON OF SECEA WITH RELATED FRL FRAMEWORKS.

Work Lossless utility Count Entity Embedding
FedMF [7] ✓ × × ×

FedGNN [4] × × ✓ ×
FedSoG [9] × × ✓ ×

SecEA(Ours) ✓ ✓ ✓ ✓

To protect the privacy of the FRL system, there are mainly
two kinds of approaches, i.e., multiparty computing (MPC)-
based and differential privacy (DP)-based approaches. The
MPC-based approach utilizes the cryptography primitives, e.g.,
homomorphic encryption (HE), private set intersection (PSI),
and private set union (PSU). The work FedMF [10] has applied
Paillier HE (PHE) to securely aggregate the embeddings while
exposing the local entity sets. For DP-based approaches, the
work FedGNN [4] and FedSoG [9] have added DP noise to
the uploaded embeddings. Also, clients integrate some pseudo
entities to hide the real local entity sets in step (ii).

In this paper, we propose a novel secure embedding ag-
gregation protocol, named SecEA, which simultaneously pro-
vides privacy for local entity sets (entity privacy) and local
embeddings (embedding privacy) for FRL, and overcomes
shortcomings of existing approaches. A comparison of Se-
cEA with the current state-of-the-art works is presented in
Table I. There are four main aspects, 1) Lossless utility:
DP-based works (e.g., FedGNN [4] and FedSoG [9]) cannot
provide lossless utility performance under reasonable privacy
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constraints. 2) Count. As averaging the embeddings would
need the count of entities (the number of clients who own the
same entity) could leak entity privacy (e.g., if the count equals
the total number of clients, indicating the entity is owned by
all clients), and no work has considered this problem except
ours. 3) Entity privacy. The works’ entity privacy could be
leaked completely without protection (FedMF). 4) Embedding
privacy. Utilizing pseudorandom entities (FedGNN, FedSoG),
the adversary obtains the embeddings of not owned entities.
Lastly, we would like to note that anyone who does not
consider the impact of the count, can not solve the entity
privacy thoroughly.

For SecEA, we focus on a cross-silo FL scenario, which
requires a higher level of privacy and consists of one central
server and several clients (usually less than 10, e.g., com-
panies or hospitals [11]). To address the privacy challenges
in the secure embedding aggregation problem, SecEA utilizes
techniques from Lagrange multi-secret sharing [12], [13],
private information retrieval (PIR) [14]–[17], and PHE [18].
A PIR protocol allows a client to retrieve an intended item (or
embedding) from a set of databases without revealing to the
databases which item is being retrieved, thus it can be used
as a building block to protect entity privacy while leveraging
the aggregation opportunities among subsets of clients.

Specifically, in our SecEA protocol, the FRL system first
performs a one-time private set union operation, such that each
client learns the collection of the entities existing on all clients.
In each global training round, to compute the embedding
average, each client first expands each of its local embedding
vectors to include an indicator variable that indicates the
existence of an entity. Then, to protect the local data, each
client secret shares the expanded embedding vectors with
the other clients, such that secret shares of all aggregated
embeddings can be obtained at all clients. To privately obtain
the average embedding for a local entity, each client sends
a coded query to every other client, who returns a PHE-
encrypted response through the server. To be compatible with
the symmetric PIR problem from secure MDS-coded storage
system [19], [20], we design a certain form for coded queries
via secret sharing. To further protect entity privacy, the server
scales each response a random times, such that the client can
recover the average embedding of the intended entity, without
knowing how many other clients also have this entity.

We implement SecEA and apply system-level optimizations
to reduce latency. We have designed multi-process computing
and parallel online-offline computing, which can help reduce
further computation latency. We perform experiments over
an extensive set of FRL tasks, with a focus on cross-silo
scenarios [11] where clients have strong computing capability
and reliable communication links. Compared with the best-
performing protocol which lets the server receive and aggre-
gate all embeddings without any entity and embedding privacy
guarantee, SecEA incurs a negligible performance loss. In
terms of computation latency, although SecEA has a longer
execution time than other baselines that have no or weaker
privacy guarantees, the difference becomes as small as 3.36%
for training deep models on large datasets, which is often the
case for cross-silo FRL.

The proposed SecEA protocol consists of the following
major contributions:

• Full privacy guarantees: The proposed SecEA estab-
lishes simultaneous guarantees for both entity and em-
bedding privacy within the FRL framework. It achieves
this by concurrently addressing the challenges associated
with private alignment, secure aggregation, and private
information retrieval.

• Full collaboration utilization: By incorporating a one-
time private entity union mechanism, the SecEA enables
the system to leverage the complete set of entities across
all participants, ensuring full data utilization without
compromising individual client privacy.

• Communication cost optimization: We integrate La-
grangian Coded Computing (LCC) to enable the simul-
taneous sharing of multiple secrets, thereby reducing the
communication cost linearly by a factor of K.

• Provable privacy guarantee: The SecEA is theoretically
proven to provide full privacy guarantees: it ensures
computational privacy against the server and statistical
privacy against colluding clients.

Related works

We review related works on improving the privacy of FRL
systems and explain why they fall short in addressing the
secure embedding aggregation problem.
Differential Privacy. In FL, differential Privacy (DP) is the
most common privacy protection mechanism [4], [9], which
aims to protect clients’ privacy by perturbing the local models
before sending them to the server. Unlike MPC approaches,
DP [21], [22] perturbs each local model by adding random
noises sampled from certain distributions (e.g., Laplace or
Gaussian distribution [23]), which can protect clients from
model inversion and membership inference attacks [24]. How-
ever, the perturbed noises cannot be canceled out entirely but
be accumulated in the aggregation phase, which leads to a
steep hit in model performance [25].
Secure aggregation. Secure aggregation (SA) protocols have
been developed to protect data privacy during model aggre-
gation for federated learning [26]–[28]. The basic idea is to
mask clients’ local models with some random noises, such
that when aggregating the masked models, the server learns
nothing about the individual models other than their (exact or
approximate) summation. However, secure aggregation is not
applicable in an FRL system, as the entities may arbitrarily
distribute among clients [5] and the distribution of entities is
private to the clients and the server. In this case, a client does
not know who shares common entities and does not know with
whom to aggregate local embeddings.
PSI. One way to resolve the above issue is to perform private
entity alignment before embedding aggregation [29]. PSI [30],
[31] can compute the intersection of a couple of sets without
exposing any individual set. For the embedding aggregation
problem, we can first perform PSI on the local entity sets
for all clients to agree on their common entities, and then
apply secure aggregation to aggregate the embeddings of these
entities. However, this PSI+SA approach suffers from entity
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privacy leakage and performance degradation, as the adversary
would know any entity in the intersection set belongs to all
clients, and only the entities owned by all clients will be used.
PSU. Private entity alignment can also be achieved via Private
Set Unioin [32], which can privately get the union of several
sets without knowing any individual set. For the embedding
aggregation problem, after the clients obtain the global set of
all entities via PSU, they can perform secure aggregation on
each of these entities where a client would use an auxiliary all-
zero embedding for each entity it does not have locally. While
PSU+SA approach overcomes both shortcomings of PSI, the
aggregated global embeddings of all entities are known to all
clients. This leaks the global embeddings of some entities to
clients who do not have these entities locally, violating the
embedding privacy requirement.
PIR. In the multi-server private information retrieval (PIR), the
database is replicated across multiple non-colluding servers.
The user generates queries for each server based on the
desired item’s index, ensuring that each individual query does
not reveal the index. The servers then respond to the user’s
queries, and the user combines the responses to reconstruct
the requested item [33], [34]. Multi-server PIR serves as a
fundamental building block in our protocol, where we leverage
the core ideas of multi-server PIR to provide entity privacy.
However, PIR is just one component of our solution; our
primary focus is on the novel problem of secure embedding
aggregation for FRL. The core goal of multi-server PIR is to
hide the user’s query (which database item is being requested)
from the database servers. In contrast, SecEA’s objectives are
multi-faceted and tailored to FRL. This includes ensuring that
the server and other clients cannot learn which entities the
client possesses (entity privacy) and cannot directly access the
embedding vectors trained by that client (embedding privacy).
Furthermore, SecEA’s goal is to facilitate collaborative learn-
ing where the aggregation of embeddings from different clients
on the same entities leads to improved representation quality
without privacy leakage, which requires private alignment and
private retrieval to be compatible with secret sharing.

II. PROBLEM FORMULATION

A. Notation

For any positive integer m, n such that m ≤ n, [n] denotes
{1, . . . , n}, and [m : n] denotes {m,m + 1, . . . , n}. For sets
{Ek} and index set C, EC denotes the sets {Ek : k ∈ C}.

B. Problem setting

Consider a representation learning (RL) task with a dataset
D = (E ,X ), where X is a collection of data points (e.g., user
information in a social network), and E is the set of entities
(e.g., IDs of the users). The goal is to train a collection of
embedding vectors H = {he : e ∈ E} of entity set E over
data collection X , by minimizing some loss function L(D,H),
where he ∈ Rd denotes the corresponding embedding vector
of length d for each entity e ∈ E .

For a federated representation learning (FRL) system con-
sisting of a central server and N clients, each client n ∈ [N ]
has a private local dataset Dn = (En,Xn), where En is a

Algorithm 1 Vanilla FRL Solution

Input: Local dataset Dn = (En,Xn) of each client n ∈ [N ],
and the number of rounds J .
Output: Global embeddings {h(J)

e : e ∈ En, n ∈ [N ]}.
1: Initialize the global embedding {h(0)

e : e∈En, n∈ [N ]}.
2: for round t = 0, 1, · · · , J − 1 do
3: for client n ∈ [N ] parallel do
4: Client n trains the updated local embeddings

{h(t+1)
n,e : e ∈ En} by (1), and then sends these

embeddings along with their entities En to the server.
5: end for
6: For each client n ∈ [N ], the server aggregates the local

embeddings and obtains the global updates H(t+1)
n =

{h(t+1)
e : e ∈ En} for each client n according to (2),

and then sends H(t+1)
n to the client for the next round.

7: end for

set of local entities and Xn is data points. The entity sets
across clients may overlap arbitrarily. The goal of FRL is to
collaboratively train an embedding for each entity over all
sets of clients and their datasets. To this end, we iteratively
train and aggregate the same entities of different clients.
Specifically, in each round t of FRL, with current knowledge
of global embedding H(t)

n = {h(t)
e : e ∈ En} for each client

n ∈ [N ], the client trains a set of local embeddings over its
local data Dn by optimizing the following loss function:

{h(t+1)
n,e : e ∈ En} = argmin

H(t)
n

L(Dn,H(t)
n ), (1)

where h
(t+1)
n,e denotes the updated local embedding of entity e

at client n. Having updated their local embeddings, the clients
send these embeddings along with corresponding entities to
the central server. According to local entity sets, the server can
update the global embeddings by averaging the same entity’s
embeddings from clients who own this entity locally, such that,

h(t+1)
e =

∑
n∈[N ] 1(e ∈ En) · h

(t+1)
n,e∑

n∈[N ] 1(e ∈ En)
, (2)

where 1(x) is the indicator function. After averaging each
entity e, the server gets the updated global embeddings,
H(t+1)

n = {h(t+1)
e : e ∈ En} for each client n ∈ [N ]. We

summarize the FRL framework above in Algorithm 1.
In the above vanilla FRL framework, it is required that the

server has information of the overall entity sets {En : n ∈ [N ]}
to correctly align the entities from different clients and perform
embedding aggregation. This results in the leakage of entity
information of clients to the server. Besides, the embeddings
are shared with the server without any protection, and thus the
curious server could establish an embedding inversion attack
[24] on the local embeddings to infer the private data. Hence,
it is vital to design a secure embedding aggregation protocol
protecting the two types of entity privacy and embedding
privacy simultaneously, for the general FRL tasks.
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C. Threat model

We focus on standard semi-honest threat model, a prevalent
assumption in the Federated Learning privacy literature for
modeling both server and client adversaries [7], [10], [26],
[35], [36]. Adversaries operating under this model adhere
strictly to the proposed protocol steps. However, they are
considered ‘honest-but-curious’, meaning they may leverage
the information legitimately received during the protocol (e.g.,
storing and analyzing individual user updates or intermediate
computations) to attempt to infer private information beyond
what is explicitly allowed. While we assume these adversaries
possess computational resources sufficient for standard data
analysis techniques, their power is bounded. Specifically,
they are not assumed capable of mounting computationally
prohibitive attacks like exhaustive brute-force key searches
or breaking the foundational security of the cryptographic
components employed [37], [38].

D. Secure embedding aggregation

Our goal is to design a provably secure embedding aggrega-
tion protocol protecting entity privacy and embedding privacy
for the general FRL tasks. Under the threat model, we formally
define a secure embedding aggregation protocol as follows.

Definition 1. Given a security parameter κ, an FRL protocol
Π(E[N ], {hn,En : n ∈ [N ]}) is said to be a secure embedding
aggregation protocol if the following conditions hold.1

• Privacy against honest-but-curious clients. The adver-
sary can corrupt any collection of T colluding clients
C ⊂ [N ], but it should not know any information about
the entity sets E[N ]\C and local embeddings {hn,En

: n ∈
[N ]\C} of remaining honest clients, expect for what can
be learned from the entity sets and local embeddings of
the colluding clients, the global embedding aggregation
of the colluding clients’ local entities, and the union of
all entity sets E ≜ ∪n∈[N ]En. 2 Formally, given any set of
colluding clients C ⊂ [N ] of size T , let REAL[N ],T,κ

C be
a random variable representing the combined view of all
parties in C during execution of the embedding aggrega-
tion protocol, and there exists a probabilistic polynomial-
time (PPT) simulator SIM such that the view of SIM is
indistinguishable from the view of REAL[N ],T,κ

C , i.e.,

REAL
[N ],T,κ
C (E[N ], {hn,En

: n ∈ [N ]})≡
SIM

[N ],T,κ
C (EC ,{hn,En

:n ∈ C}, E , {he :e ∈
⋃
n∈C
En}), (3)

where “≡” means the distributions are indistinguishable.
• Privacy against honest-but-curious server. The server

should learn nothing about the local entity sets and
local embeddings of all the clients. Formally, there exists
a simulator SIM for the curious server S, such that,

1Here we omit the round index t.
2In our SecEA protocol, to privately align the local entity sets and exploit

all potential collaboration opportunities across all clients, we let each client
know the union E of all entity sets. Thus, in the definition of security, we
allow the adversary to know the union.

the view of SIM is indistinguishable from the view of
REAL

[N ],T,κ
S in protocol execution:

REAL
[N ],T,κ
S (E[N ], {hn,En

:n∈ [N ]})≡SIM[N ],T,κ
S (∅),

• Correctness. For each client n ∈ [N ] and entity e ∈
En, the output of the protocol outn,e returns the global
embedding he to client n. It is required that

Pr[outn,e = he] ≥ 1− negl(κ), (4)

where negl(·) is a negligible function.

III. CRYPTOGRAPHIC PRIMITIVES

A. Overview

The SecEA protocol leverages a suite of cryptographic
primitives designed to work jointly to enable full collabo-
ration for FRL while preserving both entity and embedding
privacy. Foundational security for data exchange is provided
by Authenticated Encryption (AE), requiring Key Agreement
(KA) to establish shared symmetric keys for secure communi-
cation channels. To address entity privacy, PSU facilitates the
private alignment of entities across clients, determining the
global entity set without revealing individual client holdings.
Embedding privacy during the aggregation process is achieved
primarily through Multi-Secret Sharing (MSS), which splits
sensitive embedding vectors into shares distributed among
participants, allowing for secure computation without expos-
ing the original data. Furthermore, Homomorphic Encryption
(HE) complements these techniques by enabling computa-
tions directly on encrypted data, crucial for masking sensitive
metadata such as the number of clients contributing to a
specific entity’s aggregated embedding. These primitives are
not merely used sequentially but are integrated within SecEA’s
design to collectively address the complex privacy challenges
inherent in FRL.

B. Authenticated encryption

During the training, communication on shares of local
embeddings and queries is needed. The role of AE within
SecEA is to secure the communication channels, ensuring
that transmitted data is protected from both eavesdropping and
undetected modification by adversaries.

Authenticated encryption is a private-key encryption scheme
that ensures both data confidentiality and data integrity. An au-
thenticated encryption scheme consists of the three polynomial
time algorithms (AE.gen,AE.enc,AE.dec) such that

• s ← AE.gen(κ): The key-generation algorithm takes as
input a security parameter κ and outputs a key s.

• c ← AE.enc(m, s): The encryption algorithm takes as
input a key s and a plaintext message m, and outputs a
ciphertext c.

• m ← AE.dec(c, s). The decryption algorithm takes as
input a key s and a ciphertext c, and outputs a message
m or an error symbol ⊥.

For correctness, it is required that AE.dec(AE.enc(m, s), s) =
m for every κ, every s generated by AE.gen and every
message m. Security requires indistinguishability under a
chosen plaintext attack and ciphertext integrity [39].
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C. Key agreement protocol

Since AE is a symmetric encryption approach, a shared
secret key is required for each communication pair. Conse-
quently, a Key Agreement protocol is necessary in SecEA,
and the utilized KA protocol is introduced in detail below.

A key agreement protocol consists of three polynomial-time
algorithms (KA.param,KA.gen,KA.agree). The protocol we
will use is Diffie-Hellman key agreement [40] as follows.

• (G, g, q,H) ← KA.param(κ): The algorithm takes as
input a secure parameter κ, and outputs public parameters
(G, g, q,H), where G is a group of prime order q with
generator g and H : {0, 1}∗ → {0, 1}κ is hash function.3

• (askn , apkn ) ← KA.gen(G, g, q,H): The key-generation
algorithm allows every client n to generate a private-
public key pair (askn , apkn ), where the secret key askn is
obtained by uniformly sampling a random x ← Zq and
the public key apkn is set to gx.

• an,v ← KA.agree(askn , apkv ): The key-agreement algo-
rithm allows any client n to generate a private shared
key an,v with another client v by combining its private
key askn with the public key apkv for client v, given by
an,v = H((apkv )a

sk
n ).

Correctness requires that any pair of clients share the
same private key, i.e., an,v = KA.agree(askn , apkv ) =
KA.agree(askv , apkn ) = av,n for any n ̸= v ∈ [N ]. In a semi-
honest setting, security requires that the private key shared
by any pair of clients is indistinguishable from a random
string, i.e., for all PPT adversary A, there is a negligible
function ϵ(κ) such that

∣∣Pr[A(G, g, q,H, gx, gy, r)] = 1 −
Pr[A(G, g, q,H, gx, gy, H(gxy))] = 1

∣∣ ≤ ϵ(κ), where x, y
are uniform in Zq and r is uniform in {0, 1}κ.

D. Private set union

To establish a common understanding of the entire enti-
ties involved across all participating clients without requiring
clients to reveal their specific local entity sets to each other or
the server, SecEA employs PSU. This cryptographic protocol
allows multiple parties, each holding a private input set, to
collaboratively compute the union of all their sets. The key
property is that participants learn the entities in the union
(S1

⋃
S2

⋃
...
⋃
SN ) but gain no additional information about

which specific input set(s) contained any particular element
(except for their own contributions). In SecEA, PSU is used
for private alignment, while enabling more collaboration op-
portunities.

Reference [32] presents a multi-party private set union
protocol, relying on the idea of associating a set with a
rational function represented by a reversed Laurent series and
achieving constant round complexity. Specifically, the protocol
consists of the algorithm PSU.union such that

• S ← PSU.union(S1,S2, . . . ,Sn): The PSU algorithm
takes as inputs n sets, one from each party, and outputs
a union of these sets S = ∪i∈[n]Si to each party without
exposing any individual set Si.

3In practice, we can use SHA-256.

The PSU protocol guarantees a statistical security such that
a semi-honest adversary corrupting less than t < n/2 parties
should not obtain additional information about the set of any
other party (except for its size) [32, Theorem 1].

E. Secret sharing

To collaborative train the embeddings, clients have to share
their local sensitive embedding. To protect sensitive individual
embeddings, from being exposed to any single party, SecEA
employs a Secret Sharing scheme to securely share the em-
bedding without privacy leakage. Specifically, we utilize an
LCC-based Multi-Secret Sharing (MSS) approach [13], [41]–
[44]. This primitive allows to split a secret to multiple secrets
(k secrets, representing embedding partitions) and encrypt
into n shares distributed among participants. The scheme
guarantees that any group holding k or fewer shares learns
no information about the secrets, while authorized groups
can reconstruct them. Its primary role is to enable distributed
storage and computation on private data while providing strong
information-theoretic privacy for user embeddings against up
to t colluding clients.

The scheme is performed over an arbitrary finite field F of
size no less than n+ k+ t. Let β1, · · · , βk+t and α1, · · · , αn

be any distinct elements of each other from F. We assume that
these elements are public and can be used anywhere.

• (c1, . . . , cn) ← MSS.share((s1, . . . , sk), t): The MSS
share algorithm encodes the k secrets (s1, . . . , sk) into n
shares (c1, . . . , cn), by first creating a polynomial φ(x)
of degree k + t− 1 such that

φ(βℓ) =

{
sℓ, ∀ ℓ ∈ [k]
zℓ, ∀ ℓ ∈ [k + 1 : k + t]

, (5)

and then evaluating the polynomial φ(x) at points x =
α1, . . . , αn to obtain the shares c1, . . . , cn (i.e., cℓ =
φ(αℓ) for ℓ ∈ [n]), where zk+1, . . . , zk+t are t inde-
pendently and uniformly distributed random noises on F,
and the polynomial φ(x) is given by

φ(x) =

k∑
i=1

si ·
∏

j∈[k+t]\{i}

x− βj

βi − βj
+

k+t∑
i=k+1

zi ·
∏

j∈[k+t]\{i}

x− βj

βi − βj
. (6)

• (s1, . . . , sk) ← MSS.recon((c1, . . . , cn), l): The re-
construction algorithm MSS recovers the k secrets
(s1, . . . , sk), by first interpolating a polynomial φ(x) of
degree l− 1 from the n ≥ l shares (c1, . . . , cn) and then
evaluating it at the points x = β1, . . . , βk to obtain all
the k secrets (i.e., sℓ = φ(βℓ) for all ℓ ∈ [k]).

When l = k + t, it is straightforward to prove (s1, . . . , sk)
← MSS.recon(MSS.share((s1, . . . , sk), t), k + t), and thus
correctness holds. Moreover, since the t random noises
zk+1, . . . , zk+t are independently and uniformly distributed on
F, it is also easy to prove that any t out of the n shares are
independent of the secrets (s1, . . . , sk) on the finite field F.
Thus the MSS scheme is secure against any t shares.
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Particularly, the MSS scheme has some interesting prop-
erties that are used for the construction of our SecEA.
Let (ci1, . . . , c

i
n) be the MSS shares of arbitrary k secrets

(si1, . . . , s
i
k), i.e., (ci1, . . . , c

i
n) ← MSS.share((si1, . . . , s

i
k), t),

for all four groups of secrets i ∈ [4].
• Share Addition: The pairwise addition of the shares

(c11, . . . , c
1
n) and (c21, . . . , c

2
n) is MSS shares of the k

secrets (s11+s21, . . . , s
1
k+s2k), i.e., (c11+c21, . . . , c

1
n+c2n)←

MSS.share((s11 + s21, . . . , s
1
k + s2k), t).

• Share Multiplication: The pairwise multiplication of the
secrets (s11, . . . , s

1
k) and (s21, . . . , s

2
k) can be recovered

from the pairwise multiplication of the corresponding
shares (c11, . . . , c

1
n) and (c21, . . . , c

2
n) if n ≥ 2(k+t−1)+1,

i.e., (s11 · s21, . . . , s1k · s2k) ← MSS.recon((c11 · c21, . . . , c1n ·
c2n), 2(k + t− 1) + 1).

• Share Multiplication-Then-Addition: The pairwise ad-
dition of the secrets (s11 · s21, . . . , s1k · s2k) and (s31 ·
s41, . . . , s

3
k · s4k) can be recovered from the pairwise

addition of the corresponding shares (c11 · c21, . . . , c1n · c2n)
and (c31 · c41, . . . , c3n · c4n) if n ≥ 2(k + t − 1) + 1, i.e.,
(s11 · s21+ s31 · s41, . . . , s1k · s2k + s3k · s4k)← MSS.recon((c11 ·
c21 + c31 · c41, . . . , c1n · c2n + c3n · c4n), 2(k + t− 1) + 1).

• Constant Multiplication: The constant multiplication of
the secrets (a · s11, . . . , a · s1k) can be recovered from the
constant multiplication of the corresponding shares (a ·
c11, . . . , a · c1n) if n ≥ 2(k+ t− 1)+1, i.e., (a · s11, . . . , a ·
s1k) ← MSS.recon((a · c11, . . . , a · c1n), k + t), for any
constant number a ∈ F.

For the Share Multiplication property, we can observe that
the share multiplication c1n · c2n is equivalent to evaluating the
product polynomial φ1(x) · φ2(x) of degree 2(k + t − 1) at
point x = αn, where φi(x), i = 1, 2 is a polynomial of degree
k + t− 1, satisfying

φi(βℓ) =

{
siℓ, ∀ ℓ ∈ [k]
ziℓ, ∀ ℓ ∈ [k + 1 : k + t]

. (7)

Thus the polynomial φ1(x) · φ2(x) can be interpolated from
the n ≥ 2(k + t − 1) + 1 shares (c11 · c21, . . . , c1n · c2n), and
then evaluating it at points x = β1, . . . , βk obtain the required
secrets (s11 ·s21, . . . , s1k ·s2k). The properties of Share Addition,
Share Multiplication-Then-Addition and Constant Multipli-
cation can be proved similarly.

Remark 1. The secrets s1, . . . , sk can be vectors of arbitrary
equal length, and the MSS scheme follows similar construc-
tions and its properties remain unchanged.

F. Homomorphic encryption

To get the average, we need the total number of clients
owning an entity, which is also sensitive. Thus, we need
additional noise/mask to hide this information from clients
and the server. HE schemes allow specific mathematical op-
erations (e.g., addition) to be performed directly on encrypted
data during exchange. The server can thus add noise over
encrypted client data, obtaining an encrypted result which,
when decrypted, yields the correct result of the computation
on the original plaintexts. HE is essential in SecEA for hiding

the count of clients owning any specific entity, to provide a
better entity privacy.

We will utilize Pallier HE (PHE) scheme [18], which is a
public-key encryption scheme consisting of a triple of PPT
algorithms (PHE.gen,PHE, enc,PHE.dec) such that

• (pk, sk) ← PHE.gen(κ): The key-generation algorithm
takes as input the security parameter κ, and outputs a
pair of public key and private key (pk, sk).

• c ← PHE.enc(m, pk): The encryption algorithm takes
as input a public key pk and message m, and outputs a
ciphertext c.

• m← PHE.dec(c, sk): The decryption algorithm takes as
input a private key sk and a ciphertext c, and outputs a
message m or a special error symbol ⊥.

Particularly, PHE scheme is homomorphic over addition, i.e.,
• For any message m1 and m2, PHE.enc(m1, pk) ·

PHE.enc(m2, pk) = PHE.enc(m1 + m2, pk) and
PHE.dec(PHE.enc(m1 +m2, pk), sk) = m1 +m2.

The security of PHE scheme is based on the assumption
related to the hardness of factoring [18].

IV. SECEA PROTOCOL

In this section, we present the proposed secure embedding
aggregation protocol (SecEA). The main ideas in SecEA
include the following aspects: 1) To privately align the local
entities and utilize all potential collaboration opportunities
across all clients, we use the PSU protocol ahead of time
to agree on the union of all entity sets. 2) To protect the
privacy of local embeddings and finish desired aggregations,
we utilize MSS to secretly share local updated embeddings
and compute the shares of global embedding aggregations. 3)
We design coded queries to retrieve desired global embedding
aggregations from the aggregated embedding shares at other
clients. Particularly, during the global embedding retrieval
of each desired entity, we carefully use an additional noise
to protect the number of clients who own the entity being
retrieved. Moreover, we also use additional mask noises to
prevent clients from inferring any additional information about
the embeddings beyond the desired entity. Notably, since both
the operations of adding noises are performed at the server, we
leverage the addition property of PHE to protect computation
security against the server with correctness guarantee.

In general, the proposed SecEA protocol consists of three
main components: private entity union, private embedding
sharing, and private embedding retrieval.
Setup Phase. In the setup phase, all clients and the server are
initialized with a system-level security parameter κ. There are
also some public parameters for the key agreement protocol
pp = (G, g, q,H) ← KA.param(κ), and a finite field F of
order p for some large enough prime p.

To reduce the communication cost in the phase of embed-
ding sharing, we employ a public partition parameter K based
on the system parameters N,T such that N ≥ 2(K+T−1)+1.
Here we choose maximum K to reduce the latency, i.e.,

K =

⌊
N + 1

2

⌋
− T. (8)
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Remark. The LCC is designed to efficiently encode K distinct
secrets into N shares simultaneously. LCC helps optimize
computation and communication costs. By encoding K secrets
together into shares, the computation and communication
overhead can be amortized across these K secrets. This often
leads to lower overall overhead compared to individually
secret-sharing each of the K components. Theoretically, the
relationship between K and T is rooted in the recovery
properties of MSS. Clients can obtain at most N interpolation
values, which implies that the degree of the polynomial in
Equation (6) must be less than N − 1; otherwise, it would
be impossible to uniquely determine the polynomial. Since
the retrieval process involves one multiplication operation,
which would double the degree of the intended polynomial.
Combining these together, it leads to the constraint presented
in Equation (8): 2(K + T − 1) ≤ N − 1.

Moreover, some public elements for secret sharing are also
initialized by arbitrarily choosing N + 2K + 2T − 1 distinct
elements {β1, · · · , β2K+2T−1} and {α1, · · · , αN} from F. We
also assume the entity set size |En| of client n ∈ [N ] is public.
Round 0 (Private Entity Union). Before the execution of
the protocol, all the N clients perform a one-time private set
union (PSU) protocol such that each client privately obtains
the union of all entity sets, i.e., E ← PSU.union(E1, . . . , EN ).4

Round 1 (Announcing Public Information). In the first
round, all clients generate key pairs needed for the proto-
col and announce their public information. Specifically, each
client n generates two key agreement pairs (askn , apkn ) ←
KA.gen(pp) and (bskn , bpkn ) ← KA.gen(pp), and a PHE key
pair (pkn, skn)← PHE.gen(κ), and announce the public keys
(n, apkn , bpkn , pkn) to all other clients and the server.
Round 2 (Private Embedding Sharing). Assume the union of
all entity sets is denoted by E = {e1, · · · , eM}, where M =
|E| is the total number of distinct entities across all clients.
Each client n ∈ [N ] first does local training according to (1),
and obtains a set of locally updated embeddings {hn,em : em∈
En,m∈ [M ]}, where we omit the round index t for brevity.

For completing the global aggregations, we expand and
redefine the local embedding hn,em of each entity em at client
n as a vector h̃n,em of dimension d+ 1, given by

h̃n,em =

{
(hn,em , 1), if em ∈ En
0, if em /∈ En

, ∀m ∈ [M ]. (9)

Then each client secretly shares its expanded embeddings with
other clients using MSS scheme. For reducing the communi-
cation cost among the clients, given the partition parameter K
in (8), client n evenly partitions h̃n,em into K sub-vectors of
dimension d+1

K for each m ∈ [M ],5 i.e.,

h̃n,em =
(
h̃1
n,em , . . . , h̃K−1

n,em︸ ︷︷ ︸
embedding

, h̃K
n,em︸ ︷︷ ︸

indicator

)
, (10)

4In practice, the elements of entity sets and local embeddings are distributed
over the domain of real number. However, secure computation protocols are
built upon cryptographic primitives that carry out operations over finite fields.
This can be achieved by quantizing the entity and embedding data from the
real number domain to the finite field F, such as in our experiments.

5When K ∤ (d + 1), we can append zero elements to the vector h̃n,em
such that its length is divided by K.

and generates N shares for these K sub-vectors via MSS, i.e.,

(yn,em,1,. . .,yn,em,N )←MSS.share((h̃1
n,em , . . . , h̃K

n,em), T ).

(11)

Accordingly, client n sends the share yn,em,v to client v for
each v ∈ [N ]. The secret shares sent by client n to client v
across all m ∈ [M ] are given by

yn,v =
(
yn,e1,v, . . . ,yn,eM ,v

)
. (12)

Notably, since the sharing messages between clients are sent
through the relay of the central server, to protect information
on entities and embeddings from leaking to the server, each
client sends a masked version of its sharing message using AE.
That is, client n computes a shared key an,v ← KA.agree(
askn , apkv ) between the client n and client v, and then encrypts
the shares yn,v via AE to obtain ỹn,v = AE.enc(yn,v, an,v).

After receiving ỹn,v , client v locally computes the shared
key av,n ← KA.agree(askv , apkn ) such that av,n = an,v , and
then decrypts ỹn,v to obtain yn,v = AE.dec(ỹn,v, av,n), for
all n ∈ [N ]. Finally, client v aggregates the sharing messages
from all the clients to obtain

yv ≜
∑

n∈[N ]

yn,v=

( ∑
n∈[N ]

yn,e1,v, . . . ,
∑

n∈[N ]

yn,eM ,v

)
, (13)

where by (11) and the Share Addition property
of MSS scheme,

∑
n∈[N ] yn,em,v is an MSS share

of the embedding aggregation
∑

n∈[N ] h̃n,em =

(
∑

n∈[N ] h̃
1
n,em , . . . ,

∑
n∈[N ] h̃

K
n,em) for all v ∈ [N ] and

m ∈ [M ], i.e., (
∑

n∈[N ] yn,em,1, . . . ,
∑

n∈[N ] yn,em,N ) ←
MSS.share((

∑
n∈[N ] h̃

1
n,em , . . . ,

∑
n∈[N ] h̃

K
n,em), T ).

Round 3 (Private Embedding Retrieval). After the private
embedding sharing, each client obtains secret shares of global
embedding aggregations of all M entities. To privately retrieve
desired embedding aggregations for entities in En without
revealing the identities of requested entities, we design the
coded queries sent by client n to each other client v in a secret
sharing manner. Then client v responds with answers following
the instructions of the received queries through the server,
where the server will perform some calculations on these
responses for completing desired aggregations and protecting
embedding privacy. Finally, client n reconstructs the global
embedding averages from the received responses.

For an intended entity e ∈ En of client n, the client n
constructs N shares of {qmn,e,v : v ∈ [N ]} using MSS of each
entity indexed by m, given by

(qmn,e,1, . . . , q
m
n,e,N )←{

MSS.share(1K , T ), if em = e
MSS.share(0K , T ), if em ̸= e

, ∀m ∈ [M ], (14)

where 1K and 0K denotes the all-ones vector (1, . . . , 1) and
all-zeros vector (0, . . . , 0) with same length K, respectively.

We denote the query sent from client n to v across all m ∈
[M ], for retrieving the aggregation of entity e ∈ En, as

qn,e,v =
(
q1n,e,v, . . . , q

M
n,e,v

)
. (15)
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Then the client n sends an encrypted version of qn,e,v

to client v using AE with another shared key bn,v ←
KA.agree(bskn , bpkv ), i.e., q̃n,e,v = AE.enc(qn,e,v, bn,v).

After receiving and decrypting the query received from
client n, client v takes the inner product of the query vector
qn,e,v and its locally stored data vector yv (13), generating
the response for client n:

Av,e,n = ⟨qn,e,v,yv⟩ =
∑

m∈[M ]

(qmn,e,v ·
∑

n′∈[N ]

yn′,em,v). (16)

To protect entity privacy and complete desired embedding
aggregation, we apply homomorphic encryption on the re-
sponse before sending to the server. That is, the client v sends
a PHE-encrypted version Ãv,e,n = PHE.enc(Av,e,n, pkn) of
the response Av,e,n to the server using the public key pkn.

Moreover, to prevent client n from inferring any additional
information about the embeddings of the entities that are not
in En, the server generates N mask shares as

(Un,e,1, . . . , Un,e,N )←
MSS.share((0 d

K−1
, . . . ,0 d

K−1︸ ︷︷ ︸
K

),K + 2T − 1). (17)

Furthermore, to prevent client n from learning the number of
clients that owns the entity e, the server locally chooses a
random noise rn,e from F.

Next, server adds the noise rn,e = (r1n,e, . . . , r
1
n,e︸ ︷︷ ︸

K−1

, r2n,e)

to each block of response Ãv,e,n. Specifically, the noise is
multiplied as follows,

(Ãv,e,n)
rn,e = (PHE.enc(

∑
m∈[M ]

(qmn,e,v ·
∑

n′∈[N ]

y1
n′,em,v))

r1n,e ,

. . . ,PHE.enc(
∑

m∈[M ]

(qmn,e,v ·
∑

n′∈[N ]

yK
n′,em,v))

r2n,e). (18)

Next, the share Un,e,v is added onto the encrypted response,
and generates Ỹv,e,n for client n:

Ỹv,e,n = (Ãv,e,n)
rn,e · PHE.enc(Un,e,v, pkn)

= PHE.enc(rn,e ·Av,e,n + Un,e,v, pkn), (19)

where the operations on vectors are performed element-wise,
and the last equality is due to the additive property of PHE.

Finally, the server sends Ỹv,e,n to client n.
Round 4 (Decryption). Due to (18) and (19), client n decrypts
the PHE ciphertext Ỹv,e,n using private key skn to obtain6

Yv,e,n ≜ PHE.dec(Ỹv,e,n, skn) = rn,e ·Av,e,n + Un,e,v

= rn,e ·
∑

m∈[M ]

(
qmn,e,v ·

∑
n′∈[N ]

yn′,em,v

)
+ Un,e,v. (20)

Recall from (13) and (14) that (
∑

n′∈[N ] yn′,em,1, . . . ,∑
n′∈[N ] yn′,em,N ) are the MSS shares of the secrets

(
∑

n′∈[N ] h̃
1
n′,em

, . . . ,
∑

n′∈[N ] h̃
K
n′,em

), and (qmn,e,1, . . . ,
qmn,e,N ) are the MSS shares of the secrets 1K (resp. 0K)

6Notably, in practice, it is enough to choose the size of finite filed F to be
less than 264, such that the SecEA protocol can effectively operate on 64-bit
computers. Thus, there is no overflow for the additive property of PHE.

if em = e (resp. if em ̸= e), for all m ∈ [M ]. Thus
following the Share Multiplication property of MSS scheme
and the fact N ≥ 2(K + T − 1) + 1 by (8), we have
(
∑

n′∈[N ] h̃
1
n′,e, . . . ,

∑
n′∈[N ] h̃

K
n′,e) ← MSS.recon((qmn,e,1 ·∑

n′∈[N ] yn′,e,1,. . ., q
m
n,e,N ·

∑
n′∈[N ] yn′,e,N ), 2(K + T )− 1)

if em = e, and 0K ← MSS.recon((qmn,e,1 ·
∑

n′∈[N ] yn′,em,1,
. . . , qmn,e,N ·

∑
n′∈[N ] yn′,em,N ), 2(K + T )− 1) if em ̸= e.

Then, by the property of Share Multiplication-Then-
Addition, (

∑
n′∈[N ] h̃

1
n′,e, . . . ,

∑
n′∈[N ] h̃

K
n′,e)←MSS.recon(

(A1,e,n, . . . , AN,e,n), 2(K + T )−1), where Av,e,n is given in
(16) for v ∈ [N ].

Moreover, since (Un,e,1, . . . , Un,e,N ) are the MSS
shares of the K secrets (0 d+1

K
, . . . ,0 d+1

K
) with security

parameter K + 2T − 1 from (17), we can obtain the
aggregation (rn,e

∑
n′∈[N ] h̃

1
n′,e, . . . , rn,e

∑
n′∈[N ] h̃

K
n′,e)

from the shares (Y1,e,n, . . . , YN,e,n) received from the
N clients by the Constant Multiplication and Addition
properties, i.e., (r1n,e

∑
n′∈[N ]

h̃1
n′,e, . . . , r

2
n,e

∑
n′∈[N ]

h̃K
n′,e) ←

MSS.recon((Y1,e,n, . . . , YN,e,n), 2(K + T − 1) + 1). By
(9) and (10), (r1n,e

∑
n′∈[N ]

h̃1
n′,e, . . . , r

2
n,e

∑
n′∈[N ]

h̃K
n′,e) →

(r1n,e
∑

n′∈[N ] 1(e ∈ En′) · hn′,e, r
2
n,e

∑
n′∈[N ] 1(e ∈ En′)).

Then, client n with the above reconstruction and the server
with noise rn,e collaboratively recover the global embedding
of entity e using secure division enabled by two-party garble
circuit [45], i.e.,

∑
n∈[N] 1(e∈En)·hn,e∑

n∈[N] 1(e∈En)
, and update the local

embedding of e. Finally, each client n ∈ [N ] repeats the
above Rounds 3-4 for each entity e ∈ En. The overall SecEA
framework is outlined in Figure 1.

A. Illustrative example

We illustrate the key ideas behind the proposed SecEA pro-
tocol through a simple example with N = 3 and K = T = 17.
Assume that the entire system contains M = 2 entities, and
their distributions onto the 3 clients are E1 = {e1}, E2 = {e2}
and E3 = {e1}, respectively. The proposed SecEA protocol
operates in two phases as follows.
Private Embedding Sharing. The system executes the private
entity union protocol, for the server and all 3 clients to agree
on the global set of entities E = {e1, e2}. In each global, after
local updating, the expanding embeddings are given by

h̃1,e1 = (h1,e1 , 1), h̃2,e1 = (0, 0), h̃3,e1 = (h3,e1 , 1);

h̃1,e2 = (0, 0), h̃2,e2 = (h2,e2 , 1), h̃3,e2 = (0, 0).

We select {α1, α2, α3} = {3, 4, 5} and {β1, β2} = {1, 2}.
Each client n ∈ [3] creates the following masked shares ye

n,v

for each e = e1, e2 using the noises z1,e, z2,e, z3,e sampled
uniformly at random, and shares it with each client v∈ [3].

ye1
1,1 = −h̃1,e1 + 2z1,e1 , ye2

1,1 = −h̃1,e2 + 2z1,e2 ;

ye1
1,2 = −2h̃1,e1 + 3z1,e1 , ye2

1,2 = −2h̃1,e2 + 3z1,e2 ;

ye1
1,3 = −3h̃1,e1 + 4z1,e1 , ye2

1,3 = −3h̃1,e2 + 4z1,e2 ;

ye1
2,1 = −h̃2,e1 + 2z2,e1 , ye2

2,1 = −h̃2,e2 + 2z2,e2 ;

7We combine the indicator with the embedding for simplicity.
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SecEA Protocol
• Setup:

– Each client n ∈ [N ] inputs a private dataset Dn = (En,Xn). We assume the cardinality of the entity En is public.
– Initialize security parameter κ, colluding parameter T , partition parameter K =

⌊
N+1
2

⌋
− T , finite field F, and

public parameter pp← KA.param(κ). Sample some public parameters {β1, · · · , β2K+2T−1} and {α1, · · · , αN}
from F uniformly and randomly.

• Round 0 (Private Entity Union):
– All clients collaboratively compute the union of all entity sets via PSU protocol, i.e., E = {e1, e2, . . . , eM} ←

PSU.union({En}n∈[N ]).
• Round 1 (Announce Keys):

Client n:
– Generate key pairs (askn , apkn )← KA.gen(pp) and (bskn , bpkn )← KA.gen(pp) for key agreement, and (pkn, skn)←

PHE.genkey(κ) for PHE.
– Announce the public keys (n, apkn , bpkn , pkn) to clients and server.

• Round 2 (Private Embedding Share):
Client n:

– Train an updated local embedding set {hn,em : em ∈ En,m ∈ [M ]}.
– Expand the updated embedding hn,em and split it into K parts h̃n,em =

(
h̃1
n,em , . . . , h̃K

n,em

)
for all m ∈ [M ].

– Generate MSS shares (yn,em,1, . . . ,yn,em,N )←MSS.share((h̃1
n,em , . . . , h̃K

n,em), T ) for all m ∈ [M ].
– Send the shares yn,v=(yn,e1,v,. . .,yn,eM ,v) to client v∈ [N ] via AE with shared key an,v ← KA.agree(askn , apkv ).

Client v ∈ [N ] decrypts and computes the aggregation of the shares received from N clients and obtains the share
of embedding aggregation yv =

∑
n∈[N ] yn,v =

(∑
n∈[N ] yn,e1,v, . . . ,

∑
n∈[N ] yn,eM ,v

)
.

• Round 3 (Private Embedding Retrieval):
Client n for retrieving the desired global embedding of entity e ∈ En:

– Generate MSS query shares (qmn,e,1, . . . , q
m
n,e,N ) according to (14).

– Send the query qn,e,v = (q1n,e,v, . . . , q
M
n,e,v) to client v ∈ [N ] via AE with shared key bn,v ← KA.agree(bskn , bpkv ).

Client v ∈ [N ]:
– Decrypt the received query shares and compute the response Av,e,n = ⟨qn,e,v,yv⟩.
– Encrypt the response Ãv,e,n = PHE.enc(Av,e,n, pkn) via PHE and send it to the server.

Server:
– Compute the mask Un,e,v by (17) and sample a random noise rn,e from F for response Ãv,e,n for all v.
– Compute the answer Ỹv,e,n according to (19) and forward it to client n for all v ∈ [N ].

• Round 4 (Decryption):
Client n:

– Decrypt the PHE answer using skn and get Yv,e,n = PHE.dec(Ỹv,e,n, skn) for all v ∈ [N ].
– Reconstruct the aggregation {

∑
n∈[N ] rn,eh̃

i
n,e}Ki=1 ← MSS.recon({Yv,e,n}v∈[N ], 2(K + T − 1)).

– Substitute the local embedding with the global
∑

n∈[N] 1(e∈En)·hn,e∑
n∈[N] 1(e∈En)

.

Each client n repeats the Rounds 3-4 for each e ∈ En.

Fig. 1. Description of the proposed SecEA protocol.

ye1
2,2 = −2h̃2,e1 + 3z2,e1 , ye2

2,2 = −2h̃2,e2 + 3z2,e2 ;

ye1
2,3 = −3h̃2,e1 + 4z2,e1 , ye2

2,3 = −3h̃2,e2 + 4z2,e2 ;

ye1
3,1 = −h̃3,e1 + 2z3,e1 , ye2

3,1 = −h̃3,e2 + 2z3,e2 ;

ye1
3,2 = −2h̃3,e1 + 3z3,e1 , ye2

3,2 = −2h̃3,e2 + 3z3,e2 ;

ye1
3,3 = −3h̃3,e1 + 4z3,e1 , ye2

3,3 = −3h̃3,e2 + 4z3,e2 ,

Then, each client v ∈ [3] aggregates the received masked
shares from all 3 clients to obtain

y1 = (ye1
1,1 + ye1

2,1 + ye1
3,1, y

e2
1,1 + ye2

2,1 + ye2
3,1),

y2 = (ye1
1,2 + ye1

2,2 + ye1
3,2, y

e2
1,2 + ye2

2,2 + ye2
3,2),

y3 = (ye1
1,3 + ye1

2,3 + ye1
3,3, y

e2
1,3 + ye2

2,3 + ye2
3,3).

Private Embedding Aggregation Retrieval. We explain how
client 1 privately retrieves its intended global embedding
(h1,e1+h3,e1)/2 without revealing the entity e1 and similar for
others. Client 1 samples 2 random noises z1 and z2 uniformly,
and sends coded query qv to client v ∈ [3], given by

q1=(−1+2z1, 2z2),q2=(−2+3z1, 3z2),q3=(−3+4z1, 4z2).

Having received the query qv , client v ∈ [3] computes the
inner products Av = ⟨qv,yv⟩ as responses, and sends Ãv =
PHE.Enc(Av, pk1) to the server. Server samples random
noise r and encrypts locally generated random noises s1 and s2
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to obtain s̃1 = PHE.Enc(s1, pk1), s̃2 = PHE.Enc(s2, pk1),
and then computes the results Ỹ1, Ỹ2, Ỹ3 for client 1.

Ỹ1 = (Ã1)
r(s̃1)

3, Ỹ2 = (Ã2)
r(s̃2)

3, Ỹ3 = (Ã3)
r(s̃1)

−6(s̃2)
8.

Client 1 decrypts the results and gets the responses
Y1, Y2, Y3.

Y1 = rA1 + 3s1, Y2 = rA2 + 3s2, Y3 = rA3 − 6s1 + 8s2.

Finally, with Y1, Y2, Y3, client 1 computes 6Y1−8Y2+3Y3 =
(r(h1,e1+h3,e1), 2r). With the obtained (r(h1,e1+h3,e1), 2r),
the client 1 removes the noise r by collaborating with the
server and gets the aggregation h1,e1

+h3,e1

2 .

V. THEORETICAL ANALYSIS

A. Security analysis

In the following, we will prove that SecEA is a secure
embedding aggregation protocol by showing its satisfaction
of correctness and privacy.

Theorem 1. Given a security parameter κ, the proposed
protocol SecEA is a secure embedding aggregation protocol.

Proof. We know from Section IV that each client n can
correctly recover the desired global embedding he =∑

n∈[N] 1(e∈En)·hn,e∑
n∈[N] 1(e∈En)

of entity e for all e ∈ En and n ∈ [N ].
Thus, the correctness constraint (4) is satisfied.

For privacy against honest-but-curious clients, we will prove
SecEA satisfies the constraint (3). That is, there exists a PPT
simulator SIM such that the view of SIM is statistically indis-
tinguishable from the view of REAL[N ],T,κ

C for all C ⊂ [N ] of
size T < N/2:

REAL
[N ],T,κ
C (E[N ], {hn,En

: n ∈ [N ]})≡
SIM

[N ],T,κ
C (EC ,{hn,En

:n ∈ C}, E , {he :e ∈
⋃
n∈C
En}).

Denote the messages received by the colluding clients C
in the phase of private entity union by UC , and denote the
random private/public keys obtained by the clients C during
execution of our SecEA protocol by KC . In our SecEA
protocol, the view of the incoming messages received by
the clients C consists of the random keys KC , the variables
UC in the phase of private entity union, the shared data
{ỹv,n}v∈[N ],n∈C (12) in the phase of private embedding
sharing, and the queries {q̃v,e,n}v∈[N ],e∈Ev,n∈C (15) and the
responses {Ỹv,e,n : e ∈ En}v∈[N ],n∈C (20) in the phase of
private embedding retrieval. Moreover, the colluding clients C
receive the inputs of EC , {hn,En : n ∈ C}, and generate the
outputs of E , {he :e ∈

⋃
n∈CEn}. Thus, we have

REAL
[N ],T,κ
C (E[N ], {hn,En

: n ∈ [N ]}) =
{
EC ,{hn,En

:n ∈ C},

E , {he :e ∈
⋃
n∈C
En},KC ,UC , {ỹv,n}v∈[N ],n∈C ,

{q̃v,e,n}v∈[N ],e∈Ev,n∈C , {Ỹv,e,n : e ∈ En}v∈[N ],n∈C

}
.

Formally, the simulator SIM is given (EC ,{hn,En : n ∈
C}, E , {he :e ∈

⋃
n∈CEn}) and works as follows:

Step 1. The simulator SIM follows the same procedures
as SecEA protocol to generate random key K′

C , which is
identically distributed to KC .
Step 2. As stated in Section III-D, the private set union proto-
col guarantees a statistical security. Specifically, the simulator
SIM can generate a random variable U ′

C that is statistically
indistinguishable from the view UC of colluding clients in the
phase of private entity union.
Step 3. If we substitute the MSS shares (yn,em,1,. . . ,yn,em,N )
of the local embeddings h̃n,em (9)–(11) with the MSS shares
(y′

n,em,1, . . . ,y
′
n,em,N ) of 0(d+1)/K for all n ∈ [N ] and

m ∈ [M ], then the security property of MSS guarantees
that {y′

v,n = (y′
v,e1,n, . . . ,y

′
v,eM ,n)}v∈[N ],n∈C are identically

distributed to {yv,n}v∈[N ],n∈C , and accordingly their AE ver-
sions are also identically distributed. Thus the simulator SIM
can generate {ỹ′

v,n}v∈[N ],n∈C that is identically distributed as
{ỹv,n}v∈[N ],n∈C .
Step 4. Similar to the above step, if we substitute the
query shares (qmn,e,1, . . . , q

m
n,e,N ) (14) with the MSS shares

(qm
′

n,e,1, . . . , q
m′

n,e,N ) of 0K for all e ∈ En, n ∈ [N ] and
m ∈ [M ], then the simulator SIM can generate random
variables {q̃′

v,e,n = (q1
′

v,e,n, . . . , q
M ′

v,e,n)}v∈[N ],e∈Ev,n∈C that
are identically distributed with {q̃v,e,n}v∈[N ],e∈Ev,n∈C .
Step 5. We know from the decryption phase in Round
4 that (rn,e

∑
n′∈[N ] h̃

1
n′,e, . . . , rn,e

∑
n′∈[N ] h̃

K
n′,e) can be

reconstructed from the shares (rn,eA1,e,n, . . . , rn,eAN,e,n),
and (Un,e,1, . . . , Un,e,N ) are the MSS shares of the K secrets
(0(d+1)/K , . . . ,0(d+1)/K) with security parameter K+2T−1
(17), for e ∈ En and n ∈ [N ], where Av,e,n, v ∈ [N ] is
given in (16). Due to Yv,e,n = rn,eAv,e,n + Un,e,v from
(20), {Yv,e,n}v∈[N ] is identically distributed to {Y ′

v,e,n}v∈[N ]

by the reconstruction and Addition properties of MSS,
where (Y ′

1,e,n, . . . , Y
′
N,e,n) are the MSS shares of the

K secrets (rn,e
∑

n′∈[N ] h̃
1
n′,e, . . . , rn,e

∑
n′∈[N ] h̃

K
n′,e)

with security parameter K + 2T − 1. By (9) and
(10), (rn,e

∑
n′∈[N ] h̃

1
n′,e, . . . , rn,e

∑
n′∈[N ] h̃

K
n′,e) =

(rn,e
∑

n′∈[N ] 1(e ∈ En′) · hn′,e, rn,e
∑

n′∈[N ] 1(e ∈ En′)).

Since the simulator SIM is given he =
∑

n′∈[N] 1(e∈En′ )·hn′,e∑
n′∈[N] 1(e∈En′ )

for e ∈
⋃

n∈CEn, it can choose a random variable r′n,e and
generate (r′n,ehe, r

′
n,e), which is identically distributed as

(rn,e
∑

n′∈[N ] 1(e ∈ En′) · hn′,e, rn,e
∑

n′∈[N ] 1(e ∈ En′))
because r′n,e and rn,e

∑
n′∈[N ] 1(e ∈ En′) are identically

distributed and (rn,e
∑

n′∈[N ] 1(e ∈ En′) · hn′,e,
rn,e

∑
n′∈[N ] 1(e ∈ En′)) = (r′n,ehe, r

′
n,e) at the case

of r′n,e = rn,e
∑

n′∈[N ] 1(e ∈ En′). Thus, the simulator
SIM can generates random variables {Y ′

v,e,n}v∈[N ]

that are identically distributed to {Yv,e,n}v∈[N ] for all
e ∈ En and n ∈ C. Accordingly, their encrypted version
{Ỹ ′

v,e,n : e ∈ En}v∈[N ],n∈C and {Ỹv,e,n : e ∈ En}v∈[N ],n∈C
are also identically distributed.

Notably, in all the above steps, the simulator SIM generates
all random variables using independent random noises. Thus
the union of these random variables generated by SIM are
statistically indistinguishable from the corresponding random
variables received by colluding clients, i.e.,{
EC ,{hn,En

:n ∈ C}, E , {he :e ∈
⋃
n∈C
En}, {ỹv,n}v∈[N ],n∈C ,
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KC ,UC , {q̃v,e,n}v∈[N ],e∈Ev,n∈C , {Ỹv,e,n : e ∈ En}v∈[N ],n∈C

}
.

≡
{
EC ,{hn,En

:n ∈ C}, E , {he :e ∈
⋃
n∈C
En}, {ỹ′

v,n}v∈[N ],n∈C ,

K′
C ,U ′

C , q̃
′
v,e,n}v∈[N ],e∈Ev,n∈C , {Ỹ ′

v,e,n : e ∈ En}v∈[N ],n∈C

}
.

This completes the proof of privacy against clients.
The privacy against the server is straightforward. Generally,

as all communication (including shares of local embedding,
coded queries, and responses) through the server is protected
by the authenticated encryption or PHE, the privacy against
the server is guaranteed by the computational security of PHE
and authenticated encryption.

B. Complexity analysis

The communication and computation complexities of the
proposed SecEA protocol are dominated by the operations of
private entity union, private embedding sharing and private
embedding retrieval. However, as the private entity union
operation is performed only once before the training rounds
and the operations of both private embedding sharing and
private embedding retrieval are carried out in each training
round, we expect that the computation and communication
costs of private entity union operation are negligible compared
to total overhead of the SecEA protocol. Thus we next pay
attention to analyzing the complexities of private embedding
sharing and private embedding retrieval.

We note that the queries qn,e,v (15) and the PHE noise
terms PHE.enc(Un,e,v, pkn) in (19) are constructed indepen-
dently of the entity embeddings, and thus can be computed and
stored offline before each round starts. These offline storage
and computation costs are analyzed as follows.
Offline Storage Cost. The offline storage contains the queries
qn,e,v and the encrypted noise terms PHE.enc(Un,e,v, pkn)
that are both used in private embedding retrieval. Recall that
each client n generates the query vector qn,e,v of length M
sent to each client v ∈ [N ] for each entity e ∈ En. Thus, the
storage cost at client n is O(MN |En|) over the finite field F,
where |En| denotes the cardinality of En.

For each client n, the server generates the encrypted noise
PHE.enc(Un,e,v, pkn) of dimension d+1

K for each e ∈ En and
v ∈ [N ]. Hence, the total offline storage cost at server is
O(

dN
∑N

n=1 |En|
K ) over the ciphertext space Q, where Q is the

ciphertext space of PHE.
Offline Computation Cost. The offline computation includes
generating query shares at each client and encrypted noise
terms at the server. We know from (14)-(15) and (6) that the
queries (qmn,e,1, . . . , q

m
n,e,N ) at client n are MSS shares and are

generated by evaluating a polynomial of degree K +T − 1 at
N points, for each m ∈ [M ] and e ∈ En. This can be done
with complexity O(MN(logN)2|En|) [46].

For the encrypted noise terms (19), the server first generates
the MSS shares (Un,e,1, . . . , Un,e,N ) of dimension d+1

K via
evaluating a polynomial of degree 2(K + T − 1) < N at
N points by (17) and then encrypts these evaluations using
PHE, for all n ∈ [N ] and e ∈ En. The former for polynomial
evaluations yields a complexity of O(

dN(logN)2
∑N

n=1 |En|
K ).

We know that both the encryption and decryption of PHE
can be achieved within a complexity of O((log |Q|)3). Thus,
the latter for encrypting these evaluations incurs a complex-
ity of O(

dN(log |Q|)3
∑N

n=1 |En|
K ), which dominates the offline

computational complexity at the server.
Online Communication Cost. The online communication
overhead at each client n consists of three parts: 1) sending the
AE encrypted version of the share yn,v (12) with dimension
M(d+1)

K to each client v ∈ [N ]; 2) sending the AE encrypted
version of the query qn,e,v (15) with dimension M to each
client v ∈ [N ], for each entity e ∈ En; 3) responding the PHE
version of the answer An,e,v (16) with dimension d+1

K to client
v for each v ∈ [N ] and e ∈ Ev . The incurred communication
overhead of client n for these three parts are O(dMN

K log |F|),
O(MN |En| log |F|) and O(

d
∑N

n=1 |En|
K logQ), respectively.

Accordingly, the total online communication overhead at client
n is O(dMN

K log |F|+MN |En| log |F|+
d
∑N

n=1 |En|
K log |Q|).

Online Computation Cost. The online computational over-
head at client n contains four parts: 1) generating the encoded
data {yn,v : v ∈ [N ]} sent to the N clients for all m ∈ [M ].
This is completed by evaluating a polynomial of degree
K+T −1 < N at N points for d+1

K times for each m ∈ [M ],
and thus achieves a complexity O(dMN(logN)2

K ) [46]. Here we
ignore the complexity of AE of these encoded data which in-
curs a linear complexity [39]; 2) generating the answer An,e,v

to client v by computing a linear combination of two vectors of
dimension M for d+1

K times for each v ∈ [N ] and each e ∈ Ev ,

which incurs a complexity of O(
dM

∑N
v=1 |Ev|
K ); 3) encrypting

the answer An,e,v of dimension d+1
K to client v for each v ∈

[N ] and e ∈ Ev using PHE, and decrypting N PHE responses
of each dimension d+1

K for each e ∈ En, which incur the

complexities O(
d(log |Q|)3

∑N
v=1 |Ev|

K ) and O(dN(log |Q|)3|En|
K ),

respectively [47]; and 4) recovering the desired embedding
aggregation of entity e from the received N MSS shares by
first interpolating a polynomial of degree 2(K + T − 1) < N
and then evaluating it at K points for d+1

K times, which
yields a computational complexity of O(dN(logN)2|En|

K ) for all
entities in En. The online computation (19) at server mainly
consists of raising the response Ãn,e,v of dimension d+1

K to
the power of rn,e < |Q| for each n, v ∈ [N ] and e ∈ Ev ,
which incurs a complexity of O(

dN |Q|
∑N

n=1 |En|
K ).

VI. EMPIRICAL EVALUATIONS

We conduct a comprehensive experimental study on the
learning performance and the operational complexity of the
proposed SecEA protocol, via a wide range of representation
learning tasks including knowledge graph, recommendation
system, social network, and categorical clustering. For each
client, the executions of the experiment are simulated on a
single machine using Intel(R) Xeon(R) Gold 5118 CPU @
2.30GHz with 12 cores of 48 threads together with NVIDIA
GeForce 3090 GPU with 24G RAM.
Settings. We perform experiments under the below settings.

• Entire. Embeddings of all entities are trained centrally on
the entire training data.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3580228

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on June 28,2025 at 03:13:46 UTC from IEEE Xplore.  Restrictions apply. 



12

(a) DeepWalk on Citeseer (b) TransE on Kinship (c) NGCF on Filmtrust (d) AutoEncoder on Soybean

(e) DeepWalk on Cora (f) TransE on FB15k (g) NGCF on ML-100K (h) AutoEncoder on SPECT

Fig. 2. Utility performance respect to the global training rounds for different settings.

• Single. Each client trains the embeddings using local data.
• EmbAvg. The server performs the embedding aggregation

for each entity, as illustrated in Algorithm 1. Note that in
this setting, the server knows the entity set and the local
embeddings and has no privacy guarantee.

• PSI. The server only aggregates embeddings of the enti-
ties that belong to all clients via secure aggregation and
sends the aggregated results back to clients.

• DP. To compare the performance with DP-based work
[4], we also apply DP to the local embedding after a
one-time PSU operation. We set the privacy budget as 1
to provide the least required level of privacy.

• SecEA(λ). For quantization parameter λ, the elements
of local embeddings are quantized to keep λ digits after
the decimal point, and the quantized embeddings are
aggregated using the proposed SecEA protocol.

Dataset & metrics. For all settings above, we evaluate our
SecEA on various tasks with benchmark datasets. To compare
the quality of embeddings, we perform downstream tasks
using the trained embeddings on standard metrics. Specifically,
for social networks, we measure DeepWalk [48] on Citeseer
and Cora [49], using Micro F1 on link prediction; for the
task of knowledge graphs, we measure the model TransE
[50] on datasets Kinship [51] and FB15k [50], using the
metric Mean Reciprocal Rank (MRR) on recommendation; for
recommendation systems, we measure the model NGCF [52]
on MovieLens-100k (ML-100K) [53] and Filmtrust [54], using
the Normalized Discounted Cumulative Gain (NDCG@10)
on rate prediction; and finally for clustering, we measure
AutoEncoder on Soybean and SPECT [55] using normalized
mutual information (NMI) on classification.
Model hyper-parameters. We implement our SecEA protocol
using python packages, including galois, numpy and pandas.
The field size for secret sharing is chosen to be 15485863. The
embedding dimensions, learning rate, number of clients, batch
size, and number of local update epochs in all experiments are
set as 128, 0.001, 0.0005, 5, 10, 15, 20, 32, 64, 128, 256, 512,

1, 2, 3, 5, 10, respectively. For neural network-based models,
there is 3 layers in Autoencoder and NGCF. The corresponding
sizes are 128, 64, 8, 128, 128, 128. For DeepWalk, the window
size, number of walks per vertex, and walk length are set as
10, 80, and 10, respectively.
A. Performance evaluation

We evaluate the utility performance of SecEA on each task
among 10 clients and repeat each experiment 5 times. We
record the utility performance with respect to the communi-
cation rounds in Figure 2.

All settings involving the embedding aggregation (except
for DP) have a better utility than the Single setting, indicating
the effectiveness of FL. For the application of DP, some of
them, Figure 2 (b,f), are even worse than the Single setting,
even if we select the minimal required privacy budget (ϵ = 1),
indicating the large performance degradation of DP. In Figure
2, for all tasks, EmbAvg and SecEA outperform PSI, and
the performance gain is quite significant in most tasks. Here
for the clustering, the performance gain is not significant, as
the clustering data is typically vertically partitioned. It needs
further exploration for aggregation, but the results still say
SecEA is better than the Single. The performance of SecEA (4)
is almost as good as SecEA (10). In all cases, and SecEA(λ)
achieves almost identical performance as EmbAvg, indicating
that SecEA is lossless. Finally, SecEA converges as fast as
PSI with respect to global rounds.

B. System optimization

We have performed the following system-level optimiza-
tions on the implementation of the SecEA to speed up its
execution and present experiments to show the improvement
of the computational efficiency of SecEA.

1) Multi-process parallelization: At each client and the
server, as the offline and online computations are both in-
dependent across entities, we parallelize them over multiple
processes to execute different entities’ computations simulta-
neously. We evaluate the offline and online computation of a
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TABLE II
EXECUTION TIME (SECONDS) FOR ONE GLOBAL ROUND OF FRL. FOR THE FL SETTINGS (I.E., OTHER THAN THE ENTIRE SETTING), EXPERIMENTS

WERE CONDUCTED ON N = 5 CLIENTS.

Model Dataset Entire Single EmbAvg PSI SecEA
T = 1 T = 2

DeepWalk Citeseer 8.72±1.03 3.71±0.79 4.92±0.39 4.99±1.09 57.57±2.46 105.80±3.17
Cora 8.15±1.82 3.56±0.85 5.00±1.14 3.63±0.72 61.06±7.83 111.68±10.37

TransE Kinship 2.66±1.21 0.57±0.13 0.58±0.07 0.58±0.11 4.44±0.57 8.26±1.05
FB15k 132.36±3.63 26.76±1.81 27.31±2.84 27.63±3.15 634.39±39.75 731.69±49.34

NGCF Filmtrust 67.23±1.28 29.13±0.78 31.24±1.36 32.76±1.28 34.03±1.84 37.42±1.54
ML-100K 114.23±2.43 62.32±2.24 63.68±1.28 64.36±0.89 65.82±3.42 66.93±3.18

AutoEncoder Soybean 10.89±1.28 6.99±0.78 7.06±0.81 7.01±0.58 7.80±1.08 8.56±1.52
SPECT 10.34±2.94 3.02±0.83 3.28±0.87 3.26±1.02 8.13±0.65 8.62±0.83

Fig. 3. Parallel processing using NGCF on ML-100k as a case with a fixed
T = ⌊0.1N⌋. Left: time cost of online/offline w.r.t. the number of processes
among 5 clients. Right: training/offline time w.r.t. the number of clients.

client and use NGCF on ML-100k as a case study. As shown in
Figure 3 (a), the offline and online computation times reduce
almost linearly as the number of processes increases.

2) Online-offline parallel: As the offline computations to
generate coded queries at each client and to generate encrypted
masks at the server is independent of the local training
process, we parallelize the offline computation and the training
operation to save computation time. We present the client
training time and offline computation time, and we use NGCF
as a case. We fix T to ⌊0.1N⌋ and make a comparison between
offline time and training time in Figure 3 (b). The training
time is much longer than the offline time. Thanks to our
system optimization of parallelizing the offline and training,
the time cost of the offline computation can be completely
hidden behind the local training. Also, we could see that the
offline time cost increases with the number of clients, which
demonstrates that the SecEA is more suitable for the cross-silo
setting, as the offline time cost would be huge among a large
number of clients under the cross-device setting.

C. Complexity evaluation

Under the above optimization, we further evaluate the
execution time of SecEA. We simulate the communication
between the clients and the server, assuming connections
between data centers with a bandwidth of 680Mbps (see, e.g.,
m3.large instance on AWS EC2 [56]). We fix λ = 10 for
SecEA and use 10 parallel processes for each client and the
server. We evaluate the efficiency of SecEA among 5 clients.
Then, we analyze the breakdown of SecEA’s run time with
respect to the number of clients and privacy parameter T .

The execution time of one global round for all FL settings
are measured in Table II. We can see that compared with
EmbAvg whose execution time is mostly spent for training

embeddings, SecEA incurs a longer execution time. This is
mainly due to PHE encryption, including 1) offline computa-
tions of encrypted masks by the server; and 2) online computa-
tion of PHE encryption by clients (with encoding and decoding
global embeddings contributing a minor portion). The smallest
increase of 3.36% in execution time is observed for NGCF
on ML-100k, as the training time completely dominates the
offline computation and online time. The most significant
increase occurs for TransE on FB15k, as the training time is
much shorter, and the enormous number of entities causes long
time cost. In general, for shallow models like TransE which
have short training times, the computation latency of SecEA
is increased by a sizable margin. However, for deep models
(neural networks, like AutoEncoder and NGCF), especially on
large datasets, the additional cost of SecEA is negligible.

Compared with PSI, although SecEA generally takes longer
to complete one round, it achieves a strictly better utility
performance and provides a higher level of privacy guarantee.
Besides, SecEA achieves comparable running time as PSI on
deep models (e.g., slow down by less than 10% for NGCF).
We finally note that the execution time of SecEA increases
with the privacy level T .
Online time cost. We further analyze the breakdown of
SecEA’s online execution time. The online phase consists of
training local embeddings, encoding/decoding operations and
communications of the clients, and adding additional noise of
the server. We present each part in Figure 4.

• Training - For a given dataset, the local training time of
each client decreases with more clients, as each client has
a smaller training dataset with less entities.

• Computation - The computation consists of client com-
putation (encoding and decoding the global embeddings,
and PHE encryptions) and server computation (adding
additional masks). As shown in Figure 4, for fixed privacy
parameter T , the client online computation time is dom-
inated by the encryption of PHE, i.e., O(dN(logQ)3|En|

K ).
So, the total time is proportional to the coefficient N |En|

K .
In most cases, although less number of entities will
be available at each client as N increases, N |En|

K still
increases with N , which means the online client compu-
tation time increases. For a fixed number of clients, the
online client computation becomes longer with a larger
privacy parameter T . For the server computation (the
green part), we would expect a negligible part of its cost
during execution, as the server only needs to add the

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3580228

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on June 28,2025 at 03:13:46 UTC from IEEE Xplore.  Restrictions apply. 



14

(a) DeepWalk on Citeseer (b) TransE on Kinship (c) NGCF on Filmtrust (d) AutoEncoder on Soybean

(e) DeepWalk on Cora (f) TransE on FB15k (g) NGCF on ML-100k (h) AutoEncoder on SPECT

Fig. 4. Breakdowns of online time cost (seconds) in one global training round for different tasks.

prepared noises to the responses (19).
• Communication - For all tasks in Figure 4, the commu-

nication cost is much smaller compared with the other
parts in the online phase of SecEA.

D. Ablation study
We include an example of NGCF on ML-100K across 20

clients to illustrate the detailed overhead analysis and the
influence of different choices of K on latency.
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(b) Overhead over different K val-
ues.

From Figure 5(a), the largest computational component is
the offline processing, primarily consisting of coded query
and encrypted noise generation. Since this can be performed
offline, the main bottleneck during online training is the PER
phase, where clients must compute responses and encrypt them
using Paillier. From Figure 5(b), we observe that the online
client computation cost decreases as the value of K increases.
Meanwhile, the offline client computation cost remains stable
across different K values, consistent with our theoretical
analysis. The online server computation cost also decreases,
though we could expect a minimal cost, as most computations
are offloaded to the offline phase.

VII. DISCUSSION

In this part, we discuss the relationship between FRL and
federated submodel learning (FSL) and the limitations within
SecEA.

A. Federated submodel learning
Federated submodel approaches [57]–[61] are predomi-

nantly designed for cross-device setting. In this paradigm,
individual clients, often limited in capacity, are responsi-
ble for training only a specific subset of a larger global
model. A significant challenge arises as the selection or
update of these subsets can leak sensitive user data (e.g.,
entities or embeddings). Consequently, privacy-preserving im-
plementations often rely on distributing model components
across multiple non-colluding servers. Our proposed problem
focuses on collaboratively learning a shared representation
space, which necessitates the explicit and private alignment
of embedding structures across different client dataset. While
federated submodels offer a simplified notion of entity privacy
related to model partitioning, they typically do not consider the
specific challenge of structured embedding alignment that is
fundamental to our work.

B. Limitation
A key limitation in the current SecEA framework stems

from the assumption that the union of all possible entities
across participating clients is public. While this public set
successfully solves the entity alignment problem in FRL, en-
suring that embeddings corresponding to the same real-world
entity are correctly combined without leaking ownership, it
still introduces potential privacy concerns (the union of set).
Specifically, maintaining or even knowing the complete, static
union may not be feasible in some scenarios, like where entity
sets are dynamic, decentralized, or where the mere knowledge
of the full entity space is considered sensitive information.
Addressing secure embedding aggregation without requiring a
public, static entity union thus remains a significant challenge
and a critical direction for future research. Another potential
limitation is the difficulty in replacing Paillier; our analysis in-
dicates that HE remains computationally intensive, introducing
significant overhead to server.
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VIII. CONCLUSION

We proposed a novel secure embedding aggregation frame-
work SecEA for federated representation learning, which
leverages all potential aggregation opportunities among all the
clients while ensuring entity privacy and embedding privacy
simultaneously. We theoretically demonstrated that SecEA
achieves provable privacy against a curious server and a thresh-
old number of colluding clients, and analyzed its operational
complexities. Lastly, we conducted extensive experiments to
validate our arguments.
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