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Abstract—Behavior biometrics-based user authentication with
Wi-Fi gains significant attention due to its ubiquitous and
contact-free manners. An individual’s identity can be verified
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by analyzing activities induced signal variances, excellently bal-
ancing the security demands and user experience. However,
the inherent complexity of Wi-Fi signals presents significant
challenges for behavior biometrics-based user authentication. The
susceptibility of Wi-Fi signals results in a poor cross-environment
generalization capability, which is overlooked by the existing
research. In addition, most existing works of behavior-based
user authentication are based on one-off activity. This makes
them vulnerable to zero-effort attacks and imitation attacks. To
address these issues, we propose a cross-environment continuous
gesture-based user authentication framework with Wi-Fi, dubbed
Wi-CGAuth. Specifically, the cross-environment generalization
capability is enhanced by the cross-layer joint optimization
approach. At the lowest signal layer, the signals’ time, spatial,
and frequency diversity are extended maximally, by a novel,
subcarrier-level, cost-effective signal optimization strategy. At the
middle layer, the multi-view fusion method, i.e., multi-transfer
component analysis (TCA), is applied to refine the signals from
transceiver pairs after signal preprocessing. The continuous
gesture segmentation problem is modeled as the classification
problem, which is solved by CNN. At the upper layer, a Convolu-
tional Neural Network-Transformer (CNN-Transformer) model is
employed to achieve the dual task of effective user authentication
and accurate gesture recognition. After extensive experiments
in three typical indoor scenarios, Wi-CGAuth can achieve an
average authentication accuracy of 92.7%, demonstrating its
robustness and effectiveness.

Index Terms—Gesture-based, user authentication, Wi-Fi,
cross-environment.

I. INTRODUCTION

IN RECENT years, user authentication has widely pen-
etrated various application fields to protect user pri-

vacy [1], [2], [3], [4], [5], including finance, healthcare,
e-commerce, social media, government services, etc. Existing
user authentication methods can be divided into two cat-
egories: password-based authentication and user biometrics
(e.g., fingerprint [1], voiceprint [2], and facial information [3])
based authentication. They both have their own limitations.
The issue of password-based authentication is password forget-
ting or leakage. The issue of biometrics-based authentication is
the user biometrics forgery or imitation [1], [2], [3]. Recently,
behavior biometrics-based user authentication [6], [7], [8],
[9], [10], [11], [12] have piqued significant attention. User
authentication is achieved by verifying an individual’s iden-
tity through daily activities or gestures, excellently balancing
the security demands and better user experience. Different
users have their unique behavior biometrics and physiological
characters when performing specific gestures, but these unique
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identifiers remain consistent over time for the same user [11],
[12], [13], [14], [15], [16]. This provides the feasibility of the
behavior biometrics-based user authentication.

Behavior biometrics-based user authentication can be
achieved by wearing wearable devices [6], [7]. However, there
are issues such as intrusiveness, high cost, and unfriendly user
experience. The video-based user authentication [8], [16] is
a non-intrusive behavior-based user authentication. However,
this kind of user authentication has issues of privacy violation,
lighting, and occlusion sensitivity. With the quick development
of Wi-Fi technology, there is the paradigm shift of Wi-Fi
from the communication method to being integrated with
the sensing capability. Wi-Fi sensing has the predominant
advantages of low cost, ubiquitousness, privacy protection,
occlusion insensitivity, non-intrusiveness, and friendly user
experience. This expedites the development of the behavior
biometrics-based user authentication with Wi-Fi [9], [10],
[11], [12].

Behavior biometrics-based user authentication with Wi-Fi
has lots of potential applications. In a smart home, behavior
biometrics-based user authentication with Wi-Fi revolutionizes
user interaction with household appliances. The appliances are
set according to the authorized user’s preferences. The user is
authenticated by his biometric gestures. This enables a user-
friendly experience, allowing the authorized user to trigger
his personalized settings. For instance, when a subject walks
close to the air conditioner and performs the gestures, he is
identified as an authorized user through his gestures, and the
temperature is adjusted to his favorite one. Another example
is that the smart TV tries to identify an authorized user by her
gesture and switches to her favorite channel. The intelligent
appliances are simultaneously set to the user’s preference if he
is identified as an authorized user. This seamless integration
of convenience and functionality greatly improves the security
and user experience.

Firstly, it is challenging to build a “one-fit-all” model and
improve the cross-environment generalization ability of the
model. Due to the low spatial resolution of Wi-Fi signals, the
features derived from primitive signals definitely carry adverse
information specific to the environment unrelated to the user
identity [10], [17], [18]. Unfortunately, the existing behavior
biometrics-based user authentication research with Wi-Fi [11],
[12], [13] do not take this issue into consideration. Previously,
the cross-environment sensing solutions could be classified
into the model-based and the learning-based. Previous studies
on behavior sensing through Wi-Fi signals mainly utilize two
types of approaches for cross-environment sensing: model-
based approaches and learning-based approaches. However,
for model-based sensing, accurately modelling the relationship
between Wi-Fi signal variations and behaviors in complex
scenarios solely through observation and experience remains
challenging [10], [17], [18]. One of the most effective learning-
based cross-environment sensing solutions is transfer learning
[19], [20], [21]. The knowledge learned from a source domain
with an abundant data set is transferred so that a classifier in
the target domain can be efficiently trained with very limited
labeled data. Originally being applied to image processing,
the learning-based solutions can hardly be directly applied
to Wi-Fi signal processing. How to seamlessly integrate the
model-based into the learning-based solutions and make the
cross-environment sensing more effective is challenging.

Secondly, effectively segmenting continuous activities into a
series of single ones remains a significant challenge. Previous

work [9], [10], [11], [12], [13], [22] of the behavior biometrics-
based user authentication with commercial Wi-Fi rely chiefly
on one-off activity for user authentication. This makes it
vulnerable to the zero-effort attacks and the imitation attacks.
In contrast, the continuous activities offer more sufficient
temporal information of activities [23], [24], exhibit more
substantial spatial and temporal dynamic relations, compensate
for the inherent defect of Wi-Fi, and can be utilized for
a more precise portrayal of various gesture patterns. There-
fore, leveraging continuous gestures can definitely contribute
to behavior biometrics-based user authentication. Currently,
most segmentation research uses threshold-based segmentation
methods. However, the threshold is an empirical value and can
not adapt to dynamic changes. Therefore, it is challenging to
segment the continuous gestures accurately into a sequence of
atomic ones.

Finally, it is challenging to derive a high-quality activity-
induced Wi-Fi signal variation, which is the fundamental
guarantee for effective activity recognition and user authen-
tication. The reasons are the following. Firstly, the original
sensing signal is weak. As illustrated in [25], Wi-Fi sensing
captures information only from the weak reflection signals
and the subtle movement-induced signal variations that can
be easily buried in noise. Secondly, CSI (Channel State
Information) dynamics fluctuate even in a static environment
without human movements since Wi-Fi signals are susceptible
to surrounding electromagnetic interferences. Thirdly, due to
the imperfections of the commercial wireless network card,
the Wi-Fi signal contains a lot of noise, such as the impulse
noise in CSI amplitude, the random offset in CSI phase, and
the measurement noise, etc. Therefore, it is challenging to
derive the effective activity-induced CSI dynamics without an
appropriate physical model between the signal fluctuation and
the mobile subjects. However, this critical issue is overlooked
by current behavior biometrics-based authentication systems.

To address these challenges, we propose a cross-layer user
authentication framework called Wi-CGAuth. Wi-CGAuth
achieves effective user authentication from the bottom sig-
nal layer up to the top user authentication layer. Compared
with learning-based approaches, such as the transfer learning-
based approach, Wi-CGAuth can seamlessly integrate the
model-based approach into the learning-based approach and
enhance the movement-induced signal quality effectively by
the layering framework. At the lowest signal layer, the best
signal quality of the wireless Wi-Fi is fully exploited by
a subcarrier-level joint optimization to leverage the signal’s
time, space, and frequency diversity. Specifically, the con-
jugate multiplication is applied to the raw Wi-Fi signals to
eliminate the phase and amplitude errors led by the network
card imperfections. The highest sampling rate and maximum
number of antennas are adopted to maximize the signal’s time
and spatial diversity. The maximum frequency diversity gain is
achieved by combining received signals from all the antennas
as well as the subcarriers and conducting the corresponding
sub-carrier level alignment. At the middle layer, the sensing
generalization capability and signal quality are significantly
enhanced through cross-layer signal optimization. Wi-Fi sig-
nals after the processing at the lowest layer are transferred to
the middle layer for the further enhancement. Specifically,the
multi-view fusion methodology, implemented as multi-transfer
component analysis (Multi-TCA), aligns features from multi-
ple transceivers to eliminate perception discrepancies across
different views.The signals after the multi-view fusion are
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partitioned. The problem of continuous gesture segmentation
is formulated as a classification task implemented with CNN.
These refined and partitioned signals are further transferred to
the upper layer. Finally, at the upper layer, a Convolutional
Neural Network-Transformer (CNN-Transformer) dual-task
model is adopted to achieve precise gesture recognition and
reliable user authentication. Accurate user authentication is
achieved by extracting the unique behavior biometric fea-
tures when gestures are performed. CNN effectively captures
spatial dependencies in spectrograms through relevant con-
volution layers and pooling layers. The transformer model
can effectively capture long-range temporal dependencies and
accurately discern complex patterns as well as features by
leveraging self-attention mechanisms. Therefore, the trans-
former is employed to segment the feature maps generated
by CNN for effectively handling sequential relationships and
extracting the feature maps of the behavioral characteristics.

In summary, through cross-layer collaboration, sensing gen-
eralization capabilities of Wi-CGAuth are enhanced from
various aspects. The comprehensive evaluation results indicate
that Wi-CGAuth has achieved significant improvements over
state-of-the-art, the most effective system WiHF (6% average
authentication accuracy improvement in three typical indoor
scenarios). This validates the effectiveness and robustness of
Wi-CGAuth, demonstrating its potential for practical.

The contribution of this research can be summarized as
following:
• The cross-environment user authentication framework is

proposed, achieved from the lower signal to the upper
signal level. The signal’s time, frequency, and space
diversity are maximized at the lower signal level. Then,
the multi-perspective information fusion is applied to
the calibrated signals to enhance signal quality at the
middle layer. Finally, the gesture recognition and user
authentication dual-task are executed at the upper level.
To the best of our knowledge, this research is the first
cross-layer framework to realize cross-environment user
authentication.

• A user authentication method and gesture recognition
method based on continuous gestures is proposed, and
effective gesture segmentation is implemented by model-
ing the gesture segmentation to the classification problem.

• Wi-CGAuth is evaluated by extensive experiments. Its
superiority in various indoor environments demonstrates
its effectiveness and robustness.

To better illustrate the effectiveness of Wi-CGAuth, remain-
ing sections of the paper are as followings: Sec. II intro-
duces the preliminary of Wi-CGAuth. Sec. III presents the
Wi-CGAuth, an identity authentication system based on
continuous gestures with Wi-Fi. Sec. IV introduces the proto-
typing of Wi-CGAuth and details the extensive experiments
conducted. Sec. V surveys currently proposed Wi-Fi-based
human behavior recognition and identity authentication meth-
ods. The paper concludes in Sec. VI.

II. RELATED WORK

A. Wi-Fi-Based Human Recognition
In contrast to cameras [26], [27], [28], wearable sen-

sors [29], [30], [31], and ambient floor sensors [32], [33],
Wi-Fi has emerged as a promising sensing modality due to its
pervasiveness, non-invasiveness, extensive coverage, minimal
deployment requirements, and absence of privacy violations.

Camera-based human behavior sensing often faces privacy,
lighting, and obstruction issues, limiting its applications in
certain scenarios [26], [27]. Human behavior sensing using
ambient floor sensors is constrained by limited sensing range,
susceptibility to environmental and obstruction effects, and
high maintenance and deployment costs [29], [31]. Similarly,
wearable sensors, while effective in direct measurements,
present challenges such as user discomfort, privacy concerns,
short battery life, and data accuracy limitations [32], [33].

With advancements in Wi-Fi technology, various prospec-
tive applications have been explored, including respiration
monitoring [34], [35], [36], gesture recognition [10], [17],
[18], gait recognition [22], [37], [38], [39], indoor localization
[40], and identity authentication [10], [13], [41], [42]. Among
these, Wi-Fi-based identity authentication holds significant
promise. By analyzing Wi-Fi signal variations caused by
user behavior, automatic identity verification can be achieved
without the need for passwords or physical tokens, offering
both convenience and enhanced security.

B. Wi-Fi-Based User Identity Authentication
Recent studies on Wi-Fi-based user authentication rely on

human behavior features such as gestures [10], [17], [43], gait
[38], [39], and respiration [44]. These methods often attempt
to address performance degradation caused by environmental
changes by extracting domain-independent features [10], [17],
[45]. The recently proposed user authentication solution uses
fingerprints, voices, and other personal identifiers, requir-
ing wearable devices [46] or specialized sensors [7], [47],
incurring additional costs and inconvenience. With the rapid
development of Wi-Fi infrastructure, researchers are beginning
to explore Wi-Fi-based user authentication.

Several Wi-Fi-based identity authentication systems have
been proposed in recent years. In WiID [12], predefined
gestures are utilized for user authentication and gesture recog-
nition. In [13], adversarial learning is employed to recognize
individuals without relying on specific gestures. In [9], an
adversarial network is used to remove environmental factors
and achieve behavior-based authentication. WiHF [10] lever-
ages motion change patterns and a deep neural network (DNN)
to perform both identity authentication and gesture recog-
nition. Similarly, FingerPass [11] continuously authenticates
users through finger gestures using Wi-Fi signals’ channel state
information (CSI).

Despite these advancements, existing Wi-Fi-based identity
authentication systems face three major limitations. First, they
often rely on a single predefined activity for authentication,
which limits flexibility. Second, they fail to adequately address
cross-environment sensing generalization, leading to degraded
performance in varying environments. Third, many systems
conflate user authentication with activity recognition, resulting
in suboptimal identity verification methods.

To address these limitations, we introduce Wi-CGAuth,
a cross-environment, continuous gesture-based user authen-
tication framework. By integrating multi-layer optimizations,
including signal preprocessing, multi-view fusion, and dual-
task modeling, Wi-CGAuth achieves robust and accurate
authentication across diverse environments while overcoming
the limitations of existing systems.

III. PRELIMINARY

The existence of the behavioral uniqueness are verified in
research work [6], [7], [8], [9], [10], [11], [12], [13], [14],
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Fig. 1. Distribution of four gestures performed by two users.

[15]. As demonstrated in these research, there are extrinsic
and intrinsic behavioral uniqueness. A behavior performed
by limbs and torso suits the person’s physiology. Therefore,
behaviors are always constrained by extrinsic human physi-
ological characteristics (e.g., the length of limbs, the power
generated by limb movements). These extrinsic physiological
characteristics induce the behavioral uniqueness for different
people. For example, people with different muscle masses
perform behaviors in different accelerations and velocities,
resulting in their behavioral uniquenesses. Hence, the behav-
ioral uniqueness is determined by the extrinsic physiological
characteristics of each person. Different from the extrinsic
behavioral characteristics, the intrinsic physiological character-
istics are behavior-independent, i.e., such features remain static
for a specific individual no matter what kind of the behavior
performed. The intrinsic physiological characteristics relate
more to the inborn physical and biochemical functions of peo-
ple, so they hardly change in different behaviors, which induce
the invariant intrinsic behavior uniqueness. Experiments are
conducted to ascertain the distinctive physiological charac-
teristics of different users by investigating their respective
underlying statistical distributions. Two participants are asked
to perform four basic gestures: pushing, rising, sweeping, and
clapping.

The principal component analysis (PCA) technique is uti-
lized to characterize the underlying statistical patterns to check
whether each gesture has unique and user-related signal char-
acteristics. Fig. 1 illustrates the distribution of two principle
components from four gestures performed by two participants.
The x-axis and y-axis represent the first principal component
and the specifically filtered PCA component, respectively. As
shown in Fig. 1(a), various users’ gesture-induced CSI data
have a similar statistical distribution when performing the
same gesture. This indicates that the various gestures are
separable through Wi-Fi sensing. As presented in Fig. 1(b),
a user’s gesture-induced CSI data have a similar statistical
distribution when performing different gestures. This indicates
that the various users exhibit significant divergence in their
physiological characteristics, and various users are distinguish-
able through Wi-Fi sensing. This inspires us to build a user
authentication framework based on user gestures.

IV. SYSTEM DESIGN

Wi-CGAuth is a system to utilize continuous gestures for
user authentication with commercial Wi-Fi, as depicted in
Fig. 2. Wi-CGAuth comprises five modules. The continu-
ous gestures data collection module collects continuous CSI
measurements. The data noise reduction and enhancement
module makes efforts to fully extend the Wi-Fi’s sensing
capability and improve the signal quality. The Multi-view
data fusion module conducts joint learning, fuses the features

from various views, and eliminates the difference between
different receiver views. The continuous gesture segmentation
problem is transferred to a classification problem by the
continuous gesture segmentation module to achieve accurate
segmentation. In the user authentication & gesture recognition
module, a CNN-Transformer dual-task model is adopted for
user identity authentication and gesture recognition.

A. Noise Reduction and Signal Enhancement
In the raw CSI data, there are amplitude impulse noise,

phase offset, and environmental noise, which influences sens-
ing results [39], [40]. To address these issues, conjugate
multiplication is applied to the data collected between every
two pairs of transmitter-receiver antennas. Therefore, the ran-
dom phase offset is eliminated while the characteristics of the
original signal are eliminated. To enhance the dynamic signal
strength, we propose a novel, subcarrier-level, cost-effective
optimization strategy, which involves a series of processing
steps for the data from each antenna pair after conjugate
multiplication. These processes include removing static vec-
tors, normalization, identifying the optimal rotation angle, and
aligning the initial phases of other subcarriers accordingly.
By conducting multidimensional signal joint optimization at
the subcarrier level, we effectively improve the overall signal
quality from the aspect of the underlying signal.

1) Denoising the Original Signal: The CSI values at time t
are represented in APPENDIX A. A Wi-Fi network interface
card (NIC) is typically equipped with several antennas (such
as the AX210 Wi-Fi card, each with two antennas). The time-
variant phase offsets remain consistent across various antennas
since all antennas use an identical RF oscillator [48], [49].
Conjugate multiplication [40] is applied to the CSI streams of
two antennas on the same NIC to remove the random phase
offsets. The details are in APPENDIX B.

With increased distance between the subject and
transceivers, sensing ability decreases. Therefore, a novel,
microscopic, cost-effective, subcarrier-level optimization
strategy is introduced to enhance overall sensing capability
based on the previous study [50].

The initial idea comes from the Khinchin theorem of large
numbers. Assuming that Xn, n = 1, 2, 3, . . . are independently
and identically distributed random samples. With an increasing
sample size n, the mean approaches the expected value E[X].
E[X] : 1

n

∑n
k=1Xk

P→ E[X]. The frequency diversity is
improved as 57 subcarriers in 20MHz is leveraged. The
spatial diversity is enhanced through the utilization of the
available antenna arrays. The time diversity is improved as
the maximal sampling rate is reached. The environmental
noise is independent random, so are the dynamic components.
Therefore, the Khinchin theorem of large numbers is utilized
to enhance overall signal quality.

2) Single Subcarrier Noise: As indicated in [51], envi-
ronmental noise of CSI follows a Gaussian distribution with
a mean of zero. CSI consists of a real part (I) and an
imaginary part (Q). Following conjugate multiplication, envi-
ronmental noise from the CSI signal is separated to check
the normality of I and Q. The data in a static environment
without dynamic vectors are collected. Furthermore, static
vectors are constants, subtracted to obtain the environmental
noise. In a static scenario, sufficient CSI signals are collected
(we empirically collect it for 30 seconds at a frequency of
1000 Hz). The static component is obtained by computing the
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Fig. 2. An Overview of Wi-CGAuth. It comprises five components: continuous gestures data collection, data noise reduction and enhancement, Multi-view
data fusion, continuous gesture segmentation, and user authentication & gesture recognition.

Fig. 3. The quantile-quantile (Q-Q) plot of I/Q components.

average, and it is subtracted to derive residual environmental
noise. The normality of both components of environmental
noise is validated. The quantile-quantile (Q-Q) is plotted for
a given subcarrier’s normalized and standard normal distri-
butions in a static environment. As depicted in Fig. 3, I/Q
components of environmental noise closely approximates a
normal distribution. Next, how to utilize Wi-Fi signals’ time,
spatial, and frequency diversity to eliminate environmental
noise is introduced.

3) Mitigating CSI Environmental Noise Through Time
Diversity: Once confirming the normality of the environmental
noise about I/Q components, environmental noise is mitigated
by overlaying successive samples in the temporal domain.
Given that the environmental noise in I/Q components of the
CSI after conjugate multiplication has the mean 0 and the
variance σ2(f), the variance can be reduced by gathering more
samples. In this way, environmental noise can be suppressed.

4) Mitigating CSI Environmental Noise Through Space and
Frequency Diversity: As discussed in above section, the noise
level can be decreased by combining the environmental noise
of one subcarrier in various instants. While the environmen-
tal noise of various subcarriers has identical expectations
of 0, the variances might vary. Hence, the distribution of
environmental noise across various subcarriers is not entirely
identical. Based on Kolmogorov’s strong law of large num-
bers, let X1, X2,...be independent with means µ1, µ2,...and
variances σ2

1 , σ2
2 ,...under such conditions

∑∞
k=1

σ2
k

k2 < ∞.
Then X1+X2+···+Xn−(µ1+µ2+···+µn)

n

a.s.→ 0. Therefore, when
Xi satisfies the following three conditions: (1) Xi are mutually
independent, (2) expectations of Xi exist, and (3) the variance

Fig. 4. Cross-correlation test shows environmental noise is independent across
subcarriers.

Fig. 5. The variance of environmental noise can be reduced with more samples
averaged.

of Xi is bounded by a finite value, all samples’ average
converges towards the expectations average.

In a static scenario, conjugate multiplication is performed
with one transmitting antenna and two receiving antennas
crossing 57 subcarriers, resulting in 2 × 57 results (where
A1

2 = 2). Following the previous section, environmental noise
is derived by various subcarriers. For satisfying condition
(1), the input signals must be mutually independent. Fig. 15
presents the correlation output of 57 subcarriers, demonstrat-
ing the independence of environmental noise across various
subcarriers. Furthermore, a distinct converging trend is found
in both the noise mean and variance, satisfying condition (2)
and condition (3). Therefore, the Kolmogorov’s strong law of
large numbers can be applied to to mitigate noise. To prove the
method’s validity above, Fig. 5 depicts the noise distributions
before (represented by blue point) and after the combination
(represented by red point). The noise level can be greatly
reduced with the signals combination of the various subcarriers
in various antennas. In addition, the temporal combination in
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the previous section can also be used additionally. To demon-
strate this, time diversity with the derived combined noise
data is utilized to compute the average over the contiguous
50 samples. As illustrated by bright color points in Fig. 5, it
is obvious that noise is significantly depressed.

In sum, the analysis demonstrates noise levels can effec-
tively be mitigated by signals’ time, space, and frequency
diversity extension. A novel, subcarrier-level, cost-effective
signal optimization strategy is proposed.

5) Aligning Dynamic CSI: In the previous section, when
the environment is static, the noise is reduced by combining
multiple CSI data at numerous subcarriers, antennas, and
higher sampling rates. In a real environment with a motion
subject, the CSI after conjugate multiplication comprises static
components, dynamic components, and environmental noises.
The CSI data after conjugate multiplication are combined
from antenna pairs and subcarriers, static components ( 1©
in Eq. 10) remain unchanged, the noises ( 3© in Eq. 10)
is mitigated according to the study above. However, it’s
not guaranteed the dynamic components ( 2© in Eq. 10) can
achieve maximum simultaneously. Due to different wave-
lengths, combining the dynamic components simply from
various subcarriers may interfere mutually, resulting in a
destructive dynamics signal.The primary factor causing phase
differences among dynamic vectors from different subcarriers
is the wavelength.The detailed derivation of the phase differ-
ences among subcarriers and antennas is in the APPENDIX C.

To effectively enhance the dynamic signal strength and
depress environmental noise, the CSI initial phases are rotated
and aligned after the conjugate multiplication of each subcar-
rier from all antenna pairs after conjugate multiplication. When
two CSI signals after conjugate multiplication are identical,
they are in coincidence with each other in the I-Q plane.
Motivated by this insight, the minimum distance sum of two
CSI signals after conjugate multiplication is utilized to find the
optimal alignment angles. Consequently, numerous data must
be utilized to synchronize the phase of the dynamic compo-
nents, allowing the distances between noise contributions from
two signals to converge to the minimum. The rotation angles
of the dynamic components are obtained.

The alignment algorithm after CSI conjugate multiplication
consists of three steps: (1) Elimination: Eliminate the static
components’ impact. (2) Normalization: Normalize the CSI
signals for every subcarrier on all antennas. (3) Alignment:
Select one subcarrier’s CSI signal after conjugate multiplica-
tion as a reference and align the remaining to it, ensuring
identical initial phases.

a) Elimination: The static components are depressed
since it has no relationship to the subject gesture. Given a
sufficient number of samples T, the mean of a CSI signal after
conjugate multiplication is represented in APPENDIX D.

b) Normalization: A moving mean method by the win-
dow length of T ′ is applied to the CSI data after conjugate
multiplication to compute the results. It is formulate in
APPENDIX E.

c) Alignment: One CSI signal after conjugate multipli-
cation is chosen as the reference, and others are aligned
towards it. The optimization function is developed to calculate
the distances among various subcarriers and iterates through
every possible angle to find the finest one.It is formulated
in APPENDIX F. Since overall subcarriers share an identi-
cal initial phase and contribute closely equally, the signals

sampled from each subcarrier contribute to the overall signal
enhancement. Regarding noise, its power declines as the num-
ber of subcarrier samples rises. In the way, the environmental
noise is depressed and the movement induced CSI strength is
increased without changing the phase difference.

6) Combine Subcarriers, Antennas, and Temporal Together:
Two efforts are made to improve signal quality: 1) Synchro-
nizing phases of dynamic components across all antennas
and subcarriers; 2) combining as many samples as possible.
An experiment is conducted to demonstrate the validation of
utilizing the temporal, space, and frequency diversity.

An experiment is conducted using computers with AX210
NICs in an empty hall, as depicted in Fig. 13(a). The sending
device is equipped with one omnidirectional antenna, and
the receiving device is equipped with two omnidirectional
antennas. The distance between the transceivers measures 3
meters. A subject makes a circle gesture. There are A1

2 = 2
kinds of combinations to calculate conjugate multiplication
from the two antennas. For multiple subcarriers, the CSI
signals after conjugate multiplication can be utilized. The CSI
sampling rate increases to 2000Hz.

Fig. 6 shows the CSI signal variation after conjugate mul-
tiplication by time, space, and frequency diversity. Five kinds
of variation processing are presented: (a) the CSI dynamic
after conjugate multiplication and phase alignment, (b) signal
combinations with various antennas, (c) signal combinations
with various subcarriers, (d) signal combinations with various
antennas and subcarriers, and (e) signal combinations with
various antennas and subcarriers at a higher sample rate
(2000Hz). As the sample numbers for combinations increase,
the noise is significantly reduced, and the signal quality is
greatly improved.

In [40], conjugate multiplication is primarily employed to

eliminate the phase shift error e
−j2π d(t)

λf caused by the imper-
fection of the Wi-Fi hardware. In [50], the method is proposed
to reduce measurement noise and enhance the quality of the
Wi-Fi signal by fully exploiting the Wi-Fi signal diversity. A
denoising method is proposed to reduce the phase shift error
and measurement noise as well as enhance signal quality by
combining the approaches proposed in [40] and [50]. The sole
goal of the signal processing method in the paper [40] and
[50] is to enhance movement-induced signal quality at only the
lowest layer. In other words, the model-based approaches try to
enhance the movement-induced signal quality by establishing
the physical models at the lowest layer. However, this research
proposes a cross-environment continuous gesture-based user
authentication framework with Wi-Fi called Wi-CGAuth. By
layering framework design, Wi-CGAuth seamlessly integrates
the model-based into the learning-based solutions and makes
the cross-environment sensing more effective. It has four
layers. As an indispensable component of the framework, the
model-based signal processing method works at the lowest
layer and plays a significant role in serving its upper layer.
The outputs of the lowest layer are the essential inputs for
its upper layer. The behavioral based user authentication is
achieved by layer-by-layer cooperation and cross-layer joint
optimization.

After the subcarrier-level signals’ time, spacial, and fre-
quency diversity optimization, the various noises of raw Wi-Fi
signals are mitigated effectively, and a high-quality activity-
induced Wi-Fi signal variation is derived. In order to further
enhance the cross-environment sensing generalization capa-
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Fig. 6. The CSI signal variation by time, space, and frequency diversity. (a) the CSI dynamic after conjugate multiplication and phase alignment, (b) signal
combinations with various antennas, (c) signal combinations with various subcarriers, (d) signal combinations with various antennas and subcarriers, and (e)
signal combinations with various antennas and subcarriers at a higher sample rate (2000Hz).

bility and signal quality, the multi-view fusion method, i.e.,
multi-transfer component analysis (multi-TCA), is leveraged
to refine the signals after the preprocessing.

B. Multi-View Data Fusion (Multi-TCA)
The TCA (Transfer Component Analysis) algorithm [52]

is used for domain adaptation of both source and target
domains to improve the model’s generalization. The core of
the TCA algorithm is to find a transfer matrix that maps
data of both domains to a distribution and learn a feature
representation with better generalization by minimizing the
distribution differences between domains.

Traditional TCA algorithm [52] is typically designed for
source and target domains. Different sensing device pairs
sense the same activity in various aspects. The existing
Wi-Fi based Multi-view framework [53], focuses on static
target through Wi-Fi imaging, which is not in practical real-
world scenario. In this work, the continuous gestures are
sensed from different perspectives with various Wi-Fi device
pairs. This is modeled as a multi-view fusion problem. Each
transceiver pair serves as an independent perspective, and
the Multi-TCA algorithm is employed for multi-view fusion.
The Multi-TCA approach extends the traditional TCA algo-
rithm from two domains to multiple domains.By applying
multi-TCA, the sensing data from multiple receivers are pro-
jected to a shared subspace. The movement pattern dynamics
across various data sources are preserved maximally. At the
same time, the irrelevances across various data sources are
minimized.

The application condition for Multi-TCA is when P (Xs) 6=
P (Xt) , 1 ≤ s < t ≤ U , where Xs, Xt represents the perspec-
tive dataset, P (Xs) denotes the probability distributions of Xs,
and U indicates the numbers of datasets for all perspectives. In
Multi-TCA, the objective is to discover the features mapping
satisfying P (φ(Xs)) ≈ P (φ(Xt)). Assuming φ represents
a feature mapping generated by the universal kernel. The
Maximum Mean Discrepancy (MMD) is a statistical metric
calculating differences in both two probability distributions
of two perspectives in the Reproducing Kernel Hilbert Space
(RKHS). Two sensing perspectives are extended to multiple
perspectives as followings.

MMD =
1

S

S∑
s=1

‖µxs − µx̄‖
2
H (1)

where µxs = 1
ns

∑ns
i=1 φ (xsi), µx̄ = 1

S

∑S
s=1 µxs , ns

represents the sample numbers in Xs, xsi denotes the i-th
sample in Xs, S denotes the total numbers of all perspectives,
‖·‖2H indicates RKHS norm. Assuming K is a Gram matrix

[54] that integrates cross-domain data from all perspectives
X1, X2, . . . , XS .

K =


KX1,X1 KX1,X2 . . . KX1,XS
KX2,X1 KX2,X2 . . . KX2,XS

...
...

. . .
...

KXS ,X1
KXS ,X2

. . . KXS ,XS

 ∈ RN×N (2)

where N =
∑S
s=1 ns, Ki,j is calculated by φ(xi)

Tφ(xj).
Based on the derivation, MMD in Eq. 1 is reformulated as
tr(KL). Li,j is expressed as follows:

Li,j =


S − 1

N2n2
s

xi, xj ∈ Xs

− 1

N2nsnu
xi ∈ Xs, xj ∈ Xu and s 6= t

(3)

where s, t ∈ {1, 2, . . . , S}. A parameterized kernel mapping
K = (KK−1/2)(K−1/2K) is utilized to help solve com-
putationally intensive semidefinite programming. The kernel
matrix K̃ = KWWTK, W ∈ RN×m,m� N is identified a
transformation matrix in TCA [52]. Here, the MMD distance
in Eq. 1 is transformed as: MMD = tr((KWWTK)L) =
tr(WTKLKW ).

Another goal of Multi-TCA is to maximize sensing data
variance to ensure sufficient diversity among different sens-
ing perspectives to capture the feature differences better. In
other words, it helps to improve the generalization, enabling
the model to update more effectively to different data dis-
tributions in the target perspective. By maximizing data
variance, Multi-TCA can better address feature alignment
and domain adaptation challenges in multiple perspectives,
providing enhanced feature representation for sensing. The
variance of the projected samples in transformed feature space
is denoted as WTKHKW , where H = I − 1

N 11T and rep-
resents centering matrix. Here, I ∈ RN×N denotes an identity
matrix, and 1 ∈ RN represents a column vector consisting of
all ones. The intrinsic characteristics and differences between
various perspectives are captured by maximizing the variance.

The objective function of Multi-TCA is
represented as follows: minW tr

(
WTKLKW

)
+

µtr
(
WTW

)
, s.t. WTKHKW = I by introducing adjustment

terms tr(WTW ) and weighting parameters µ. WTK
represents the embedding of data in the latent space, and
W is determined by m � N dominant eigenvectors of
(KLK + µI)−1KHK. Here, µ > 0 is served as a weighting
parameter that controls the complexity of W.

To model the statistical distributions of each perspective’s
CSI induced gestures before and after multi-TCA, the Principle
Component Analysis (PCA) is applied derives the correlations
between different CSI sequences and exhibits the principal
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Fig. 7. The statistical distributions of sensing data from three perspectives(top,
left, right) before and after using Multi-TCA. (a) represents the statistical
distributions from the top, left, and right perspectives before using Multi-
TCA. (b) represents the statistical distributions from the top, left, and right
perspectives after using Multi-TCA.

components with minimum redundancy. This can exhibit
the statistical distributions clearly under CSI sequences of
each perspective. As presented in Fig. 7, before applying
multi-TCA, the movement patterns statistical distributions at
different perspectives are various significantly. After applying
multi-TCA, the movement patterns statistical distributions at
various perspective have some consistency. By applying multi-
TCA, the sensing data from multiple receivers are projected
to a shared subspace. The movement pattern dynamics across
various data sources are preserved maximally. At the same
time, the irrelevances across various data sources are mini-
mized and the sensing data variance is maximized.

Overall, the multi-TCA further enhances the cross-
environment sensing generalization capability and signal
quality. As illustrated in [23] and [24], the continuous activities
offer more substantial spatial and temporal dynamic relations
of activities and compensate for the inherent defect of Wi-Fi.
Therefore, continuous gestures instead of one-off activity can
definitely benefit the behavior biometrics-based user authen-
tication. The problem of continuous gesture segmentation is
modeled as a classification task implemented with CNN.

C. Continuous Gesture Segmentation
Continuous gestures contain more temporal and spatial

relation of motions, improving the accuracy of the authen-
tication process. Currently, most Wi-Fi-based researches on
continuous action segmentation rely on threshold-based seg-
mentation methods, where the significant fluctuation in the
CSI amplitude beyond a certain threshold is considered as an
activity appearance. Although threshold-based segmentation
methods can be effective in specific scenarios, they have a
practical issue. Threshold is empirical value and can not adapt
to the dynamic changes.

A CNN-based activity segmentation approach is introduced
to address these issues based on previous work [55]. Specif-
ically, the gesture states are regarded as classes and the
continuous gesture segmentation task is transformed to a
classification problem. Initially, the continuous CSI stream
is divided into equally sized blocks. Then, a trained state
predictor classifies these blocks into four distinct states: static,
starting, movement, and ending. Finally, all block states are
utilized to identify the gestures’ starting and ending points.

1) State Predictor: The state predictor is the classifier,
which is trained with the labeled state blocks from single
activity data. The received continuous CSI series is divided
into equally sized blocks, defined by four state labels, static
state, starting state, movement state, and ending state. The
static/movement state signifies whether the CSI data indicates

Fig. 8. Four kinds of states of continuous gesture.

the absence or presence of a gesture within this block. The
starting/ending state means the CSI data contains an activity’s
starting/ending point in this block.

Fig. 8 plots the waveform of the consecutive gestures. In
both the starting and ending states, one half is the non-gesture
segment, while the other half corresponds to the gesture
segment. Conversely, the static state solely encompasses the
non-gesture segment, while the motion state solely encom-
passes the gesture segment. For the static, starting, movement,
and ending states, the starting points are tend +w/2, tstart −
w/2, tstart + tend − w/2, and tend − w/2, respectively,
and the ending points are tend + w/2 + w, tstart + w/2,
tstart + tend + w/2, and tend + w/2, respectively. tstart and
tend denote the actual starting and ending points of gesture,
while w denotes the window size. Following the definition,
each CSI series about gesture can produce four blocks for
training the state predictor.

The state predictor takes a CNN model, which is character-
ized as follows:

Y = CNN(X) (4)

where X represents the CSI series after the data caliberation,
while Y represents fully connected layer output. The CNN
model consists of the convolutional layer, dropout layer, and
max-pooling layer. Wf and bf denotes convolutional param-
eters. The prediction probability p(r | x; Φ) can be presented
as followings:

p(r | x; Φ) = softmax(Wr ∗ Y + br) (5)

where Wr and br represent fully connected layers parameters,
Φ = {Wf , bf ,Wr, br}, and objective loss with cross-entropy
loss can be expressed as followings:

J (Φ) = − 1

|X|

|X|∑
i=1

log p (ri | xi; Φ) (6)

The Adam optimizer with default hyperparameters is
employed as the optimization method.

2) Determining Gestures’ Starting and Ending Points:
Upon completing the training of state predictor, gesture
motions can be separated from continuous CSI series by the
following stages:

(1) Divide the CSI series into blocks employing a sliding
window of size w and a sliding steps of 50.

(2) Label the blocks with the trained state predictor.
(3) Determine the starting and ending points of all gesture

motions by considering the block states and the mode
change, where the mode refers to the most frequently
occurring numbers in the label list.
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Fig. 9. Continuous gesture segmentation (pushing, rising, sweeping, zigzag)
is implemented by a CNN model.

If there is a transition from the static state to the starting
state in terms of the mode, the block is recognized as the
initiation of a gesture. Conversely, once the transition is from
the ending state to the static, the block is considered the ending
of a gesture. The training samples are the segmented calibrated
CSI series with size w. The algorithm begins by segmenting
the input CSI series into blocks of size w. Subsequently,
the trained state predictor is utilized to label these blocks,
which are saved in the label sequence as inferred label.
The algorithm traverses the entire inferred label to identify
all starting and ending points of all gestures. A window of
length m is utilized to traverse the inferred label, and m
denotes the size of the block label window used for mode
calculation. The window’s state is determined by the mode
of all block labels within the window. When the number of
appearing state are equal in a window, the state of the newly
traversed block is taken as the window’s state. The criterion to
decide the starting of a gesture activity during the traversal is
as follows: When the detection status for the starting point
is undetected, and the mode transitions from static to the
starting, the algorithm enables i-m/2+1 as the starting point of
a gesture. Here, i denotes the index of the currently traversed
inferred label. The criterion for determining the ending of a
gesture is as follows: When the starting point of a gesture has
been detected, and the mode transitions from the ending to the
static, the algorithm enables i-m/2+1-w as the ending point of
a gesture and updates the detection status for the starting point
as undetected. The reason for subtracting w is that when the
state mode transitions to static state, the current block is filled
with static segments.

Fig. 9 displays the segmentation results of the CNN model
for four consecutive gestures (pushing, rising, sweeping,
zigzag). The starting and ending points of each gesture are
obtained through mode transition. The CNN-based gesture
segmentation algorithm avoids reliance on threshold determi-
nation, and makes the segmentation adopt to the dynamics.
After segmenting the continuous gestures accurately into a
sequence of atomic ones, these atomic gestures are input
into the CNN-Transformer model to achieve user identity
authentication and gesture recognition.

D. User Authentication & Gesture Recognition
The gesture-based identity authentication comprises two

core tasks: user identity authentication and gesture recognition.
Therefore, a dual-task model (CNN-Transformer) is devel-
oped.

Fig. 10 presents the CNN-Transformer architecture, includ-
ing a shared feature extractor and two separate fully
connected layers specialized for gesture recognition and user

Fig. 10. The dual-task model based on CNN and transformer.

authentication. The feature extractor consists of three CNNs
and one Transformer. The CNN component consists of con-
volution layer and pooling layer, where convolution layer
makes input images into compressed representations while
pooling layer reduces the dimensions of these compressed
representations. The input consists of spectrograms of the
gestures from various users, capturing fine-grained behavioral
features from the pixel level. Transformer is employed to
segment the feature maps generated by CNN for handling
sequential relationships and extract feature maps R embedding
behavioral characteristics of various users.

The user authentication and gesture recognition networks
share a similar structure, which includes two fully connected
layers and a softmax layer. With feature maps R generated by
a feature extractor as input, both networks focus on distinct
scales to extract higher features, facilitating both identity
authentication and gesture recognition.

The identity authentication network generates user labels
Ŷi and user loss Li as indicators of authentication errors.
In parallel, the gesture recognition network generates gesture
labels Ŷa and activity loss La to indicate errors in gesture
recognition. The combination of these two losses for the joint
model training is as follows:

L = α (La +m) + βe(Li+n) (7)

where α and β represent the weights for gesture and user
loss, m and n denote the biases of the both, respectively. Con-
sidering that user authentication demands more deep features
compared to gesture recognition, an overall loss function is
devised as an exponent function with a higher convergence
priority for identity loss over gesture loss. By continually
backpropagation gradients of the loss ∂L

∂θ , the model can derive
more representative features for identity authentication and
gesture recognition.

Wi-CGAuth not only authenticates legitimate users but
also detects potential illegal users. Both subjective factors
and objective physiological traits determine human behavioral
characteristics. Therefore, even when illegal users attempt
to imitate the extrinsic behaviors of legitimate users, their
behavioral features exhibit noticeable differences. This makes
it possible for the Wi-CGAuth to identify the illegal users.
Specifically, Wi-CGAuth distinguishes each user by comparing
every class of the identity probability Y ki to a predefined
threshold Θ. If Y ki < θ holds for all ∀k ∈ [1, n], Wi-CGAuth
identifies the user as an illegal one.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Dataset
1) Experimental Setups: The PicoScense platform [56]

with Ubuntu 20.04 LTS operating system runs on four Lenovo
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Fig. 11. 3D Transceiver Setup.

Fig. 12. User orientations.

Fig. 13. Overviews of three experimental scenarios.

E73S desktop computers. Each computer is equipped with one
AX210 NICs, each of which has two antennas.As illustrated
in Fig. 11, one computer works as a transmitter, while others
three serve as receivers. The gesture is performed in a 3D
environment. Specifically, in a 3D environment, there is one
pair of sensing devices for each mutual perpendicular direction
X, Y, and Z.Rx1 is positioned 3m above ground. Tx, Rx2,
and Rx3 are all placed 0.8m above the ground. The distance
between Tx and Rx2 and the distance between Tx and Rx3 are
3m. This deployment can provide more spatial information and
help to achieve cross-layer joint optimization more effectively.
The Wi-Fi channel frequency is configured at 5 GHz on
channel 165 with a bandwidth of 20 MHz. Each receiving
antenna has 57 subcarriers, a total of 114 for each data
stream.The default packet transmission rate is 2000 packets
per second. Wi-CGAuth is tested in three indoor experimental
scenarios, as depicted in Fig. 13 including an empty room with
the size of 7m×8 m, an office with the size of 7m×8m, and
a lab with the size of 7.8 m× 10 m. The Kinect 2.0 camera
is utilized to record the ground truth.

2) Experimental Dataset: 32 volunteers (20 males and 12
females) are recruited and do the experiment in three scenarios.
The age of all volunteers varies from 18 to 55 years, heights
from 155cm to 185cm, and weights between 45kg and 80kg.
We randomly select 24 volunteers (15 males and 9 females)
as legitimate users, the others as illegal ones. Both legal and
illegal user groups maintain consistent distributions of age,
height and weight. Six gestures are performed, including push-
ing, rising, sweeping, clapping, zigzag, and circle. During the
experiment, each subject performs the gestures continuously

TABLE I
THE OVERALL PERFORMANCE OF IDENTITY AUTHENTICATION OF WI-

CGAUTH IN THREE SCENARIOS

Fig. 14. False accept rate and false reject rate in three scenarios.

within the sensing area, facing the Tx-Rx1 transceiver pair.
The hand performing the gesture is in front of the user’s
face. All volunteers perform a set of continuous gestures(six
gestures) 20 times in three typical experimental scenarios.
The data from empty hall are divided into two sets: 80%
for training and the remaining 20% for testing the in-domain
accuracy.The data from office and lab are for testing the cross-
domain accuracy. Legitimate user gesture data is employed to
train user authentication, whereas illegal users only participate
in testing. The final dual-task model, which achieves both user
authentication and gesture recognition, is trained with the data
collected from the empty hall and tested with data from the
other two scenarios.

B. Overall Performance of Identity Authentication
Table I presents the overall authentication results of Wi-

CGAuth in three typical experimental scenarios (Empty hall,
Office, Lab), with average recognition accuracies of 93.56%,
92.51%, and 92.33%, respectively. These results demonstrate
the excellent performance of Wi-CGAuth in various indoor
environments. The continuous gestures makes it possible to
improve authentication accuracy since the final authentication
result is based on the probability. Wi-CGAuth maintains a
high authentication accuracy across various scenarios, which
verifies the effectiveness of the cross-environment continuous
gusture based user authentication framework.

Fig. 14 presents the false accept rate (FAR) and false reject
rate (FRR) of Wi-CGAuth in three experimental scenarios,
with average accuracies of 5.1% and 4.5%, respectively. The
false accept rate represents the probability that an illegal
user is authenticated as a legal user, and the false reject rate
represents the probability that a legal user is authenticated as
an illegal user. Based on the experiment results, Wi-CGAuth
demonstrates its capability in accurately identifying authorized
and unauthorized users in various indoor settings.

C. Overall Performance of Gesture Recognition
Besides user authentication, Wi-CGAuth is capable of

identifying the gestures conducted by the users. As shown
in Fig. 15, the recognition performance of six gestures is
conducted in three experimental scenarios(Empty hall, Office,
Lab), with average recognition accuracies of 93.44%, 91.25%,
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Fig. 15. The overall performance of gesture recognition of Wi-CGAuth.

TABLE II
ABLATION STUDY

and 92.56%, respectively. Wi-CGAuth exhibits the best gesture
recognition performance in the empty hall due to its simpler
layout and less multipath effect. However, in the office and lab
scenarios with relatively complex layouts, gesture recognition
accuracy decreases but still maintains excellent recognition
performance. This indicates that the CSI signal quality is
enhanced, and cross-environment influence is mitigated by
mitigating environmental noise through temporal, spatial, and
frequency diversity and employing Multi-TCA. Addition-
ally, the application of Multi-TCA significantly improves the
system’s robustness against cross-environment influences. To
further validate this, we conducted ablation studies on Wi-
CGAuth’s core modules.

D. Ablation Study
The identity authentication results with and without the

method of noise reduction and signal enhancement are shown
in Table II, where the Filter replaces the noise reduction and
signal enhancement. The method of noise reduction and signal
enhancement contributes to improved average authentication
accuracies, with 93.56%, 92.51%, and 92.33% achieved in the
empty hall, office, and lab, respectively, compared to average
accuracies of 88.25%, 85.32%, and 86.21% obtained without
one. Experiment results confirm the effectiveness of the noise
reduction and signal enhancement.

An ablation study about multi-TCA is conducted. The
authentication performance with and without multi-TCA
is evaluated in three scenarios, as presented in Table II.
Multi-TCA contributes to improved average authentication
accuracies, with 93.56%, 92.51%, and 92.33% achieved in the
empty hall, office, and lab, respectively, compared to average
accuracies of 90.23%, 81.68%, and 82.62% obtained without
multi-TCA. Experiment results confirm the effectiveness of
the multi-TCA method.

E. Performance Evaluation on Various Impacts
1) Comparison With Existing Approaches: The user

authentication is achieved by the joint layer optimization.
The user authentication is improved in various scenarios.
In three typical scenarios, three existing gesture-based user
authentication systems, i.e.,WiHF [10], FingerPass [11], and

Fig. 16. The comparisons with others user authentication systems.

Fig. 17. The impact of distinct number of continuous gesture.

Fig. 18. The impact of various Line of-Sight (LoS) lengths(1m v 6m).

WiID [12] are compares with Wi-CGAuth. The results present
the average accuracy across scenarios. In Fig. 16, it is evident
that Wi-CGAuth outperforms the other three systems.

2) Impact of Distinct Number of Continuous Gesture: Iden-
tity authentication is implemented using continuous gestures,
and the number of various gestures during testing may impact
the experiment results. During a test, each subject performs a
group of gestures continuously, and this is conducted ten times
in three typical scenarios. The number of gestures performed
in a group varies randomly from one to six. Fig. 17 illustrates
the identity authentication accuracy at various numbers of
continuous gestures in three scenarios. The results indicate
that Wi-CGAuth’s authentication accuracy initially rises and
stabilizes as the number of continuous gestures increases.
Authentication results tend to be stable when there are more
than three continuous gestures. Since user identity authenti-
cations are achieved by segmenting continuous gestures and
selecting the category with the highest frequency, the impact
on the system diminishes as the number of gestures exceeds
three. Therefore three is the optimal number of gestures need
to be performed.

3) Impact of Various Line-of-Sight (LoS) Lengths: At first,
the default LoS length is set to 3m. Then, the LoS lengths
varies from 1m to 6m, increasing by 1m each time. Fig. 18
illustrates the effects for various LoS lengths with a classifier
threshold of 0.5. The results represent averages under various
environments. The TPR initially rises, peaks at 3m, and then
gradually declines as LoS length grows. Conversely, the FPR
exhibits an opposite trend. FPR decreases as the LoS length
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Fig. 19. The impact of various sampling rate(300Hz v 2000Hz).

Fig. 20. The impact of user-toreceiving antennas distance.

increases, reaches its lowest value at 3m, and subsequently
increases. In other words, Wi-CGAuth performs best at a
distance of 3m. These findings validate the experimental
results presented in [57].

4) Impact of Various Sampling Rate: Authentication per-
formance is evaluated at various sampling rates to determine
the optimal sampling rate for Wi-CGAuth. Fig. 19 displays
the identity authentication accuracy under the various sampling
rates in three scenarios. The results indicate that Wi-CGAuth’s
authentication accuracy initially rises and then stabilizes with
an increasing sampling rates. Wi-CGAuth achieves over 92%
authentication accuracy in all three environments as sampling
rates near 2000Hz.

5) Impact of User-to-Receiving Antennas Distance: Since
users perform gestures toward the transceivers for identity
authentication, the performance of Wi-CGAuth at various dis-
tances between users and the receiving antennas is evaluated.
The distance ranges from 1m to 6m, increasing by 1m each
time. Fig. 20 presents the identity authentication accuracy at
various distances between users and receiving antennas in
three scenarios. When the distance changes from 1m to 4m,
Wi-CGAuth maintains stable performance. However, authenti-
cation performance starts to decline as the distance continues
to increase. When a user is are farther from the transceivers,
the signal propagation distance increases, leading to reduced
signal transmission power, elevated noise levels, and increased
packet loss. The authentication performance can achieve up
to 85%, even when the distance between users and receiving
antennas is 6 meters. This satisfies the requirements of various
applications.

6) Impact of Environmental Interferer: Additional experi-
ments are conducted in the empty hall scenario to investigate
the impact of the subject in the sensing environment. In these
experiments, the subjects perform gestures within the sensing
area while others are asked to randomly walk within a range
of 2m to 6m from the transceivers. Fig. 21 indicates that
the impact on authentication performance decreases as the
interferers move farther from the transceivers. For instance, the
authentication performance declines seriously when interferers
move around the subjects (within 2m). When the interferers

Fig. 21. The impact of environmental interferer.

TABLE III
IMPACT OF DIFFERENT NUMBERS OF TRANSCEIVERS

Fig. 22. The experimental setup for data collection with various pairs of
transceivers.

are 5m from the transceivers, the system achieves an authenti-
cation accuracy of 87.32%. Although there is a slight decrease,
it still meets application requirements. Therefore, Wi-CGAuth
exhibits robustness when there are environment interferers,
given the interferers are far from transceivers.

7) Impact of Different Numbers of Transceivers: In this
section, the impact of the different numbers of transceivers
on user authentication is presented. In the experiment, the
number of transceivers varies from four to one in three typical
environments. Fig. 22 shows the experimental setup with one
pair, two pairs, and four pairs of transceiver devices. As shown
in the Table III, the authentication accuracy decreases as the
number of transceivers changes. Compared with two pairs of
transceivers, three pairs of transceivers receive more Wi-Fi
data from more receivers. This will be more beneficial for
gesture recognition and user authentication. In addition, as
shown in Fig. 22(c), the fourth receiver, Rx4, is placed on
the same height as R2 and R3. The angle between Rx2-Tx-
Rx4 and Rx3-Tx-Rx4 is forty-five degrees. Rx4 is four meters
away from Tx. Collecting data from four pairs of transceivers
does not significantly improve the accuracy compared to three
pairs of transceivers. Adding more transceivers will introduce
more interference. Therefore, three pairs of transceivers are
the best choice for Wi-CGAuth.

8) Impact of the Special Scenario: To evaluate the robust-
ness of Wi-CGAuth, the tests are conducted in the library. As
shown in Fig. 23, the layout of the library is complicated.
There are some occlusions in the sensing area, such as tables,
chairs, and bookshelves. All transceivers are deployed in 3D.
In the experiments, there are six subjects with similar height
and weight. They perform continuous gestures ten times in
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Fig. 23. Library layout.

TABLE IV

THE AUTHENTICATION ACCURACY OF FOUR SCENARIOS

Fig. 24. The impact of user orientations on authentication accuracy.

each of four scenarios: empty hall, office, lab, and library.
From Table IV, it is obvious that Wi-CGAuth demonstrates
excellent performance across all four scenarios with the aid
of its cross-layer framework. In the library, the authentication
accuracy is slightly lower than in other scenarios because of
its more complicated layout.

9) The Impact of User Orientation: As shown in Fig. 12,
in the 3D deployment, user orientation is defined as the
direction of the user’s face when performing gestures. The
user orientation angle is denoted by the angle between the
user’s face direction and Tx-Rx3. The experiments are done to
test the impact of user orientation on authentication accuracy.
In 3D deployment, there is one transmitter, Tx, and three
receivers, Rx1, Rx2, and Rx3. For 3D deployment, Tx-Rx1,
Tx-Rx2, and Tx-Rx3 are mutually perpendicular. When a user
faces Tx-Rx2, the user orientation degree is regarded as zero
degree. When a user faces Tx-Rx3, the user orientation degree
is regarded as ninety degrees. During the experiment, the user
varies his orientation from zero to ninety degrees with the step
of fifteen degrees. For each user orientation, a user stands at
the point with a three-meter distance to Tx. Each time, the
user performs a group of gestures continuously ten times.

Fig. 24 shows the impact of different user orientations on
user authentication accuracy in three typical environments.
When the user orientation angle is 45◦, the user authentication
accuracy is the highest one. As the orientation changes from
45◦ to 0◦ and from 45◦ to 90◦, the user authentication
accuracy declines slightly. The different user orientations can
significantly influence the Fresnel zone cutting in hand move-
ment. This leads to significant changes in signal dynamics.
However, the framework proposed mitigates the environment

dependence. Therefore, Wi-CGAuth demonstrates excellent
cross-orientation performances.

VI. DISCUSSION AND LIMITATION

A. Impact of Surrounding People’s Activities

One subject’s gesture-induced CSI dynamics can be dis-
torted by the activities of surrounding people when they
are within the sensing area. According to the analysis in
[58], the interference from surrounding people’s movements
is negligible if they are outside the sensing region. However,
when multiple individuals are present within the sensing area,
separating each individual’s gesture-induced CSI dynamics
becomes essential to maintain satisfactory user authentication
accuracy.

Recent advancements in data-driven techniques provide
promising solutions to mitigate the influence led by the
surrounding people’ activities. The Spectrogram Learning
Network (SLNet) has shown effectiveness in enhancing CSI
resolution by leveraging deep learning method, thereby min-
imizing the impact of the interference [59].This kind of
data-driven approach could be integrated into the future work
of Wi-CGAuth.

B. Sensing Area Limitations

The bandwidth constrain of Wi-Fi signals inherently limits
the effective sensing area of Wi-CGAuth. This constraint poses
challenges to Wi-CGAuth application, particularly in dynamic
environments such as labs or offices. While increasing the
number of transceivers can provide partial improvements, it
also leads to higher deployment complexity and cost. This
makes it an impractical solution for certain scenarios.

To address this issue, the potential of multimodal sensing
approaches has been demonstrated in recent research [60].
GaitFi effectively integrates Wi-Fi CSI with video data and
makes them complementary of both modalities. Wi-Fi provides
robustness in scenarios with weak lighting, while vision offers
precise spatial resolution. This fusion significantly enhances
the overall performance and broadens the sensing coverage by
overcoming individual modality constraints.This work moti-
vates us to integrate other modality to Wi-Fi and trackle the
coverage issue of Wi-Fi in the future.

VII. CONCLUSION

In this paper, we propose Wi-CGAuth, a cross-environment
continuous gesture-based user authentication system with
Wi-Fi. A novel and cross-layer optimization strategy is
implemented from the bottom layer signal’s time, space,
and frequency diversity extension up to the middle layer
TCA-based multi-view signal fusion and classification-based
continuous gesture segmentation to the upper layer dual-
task accurate gesture recognition and user authentication.
Through cross-layer collaboration, cross-environment sens-
ing generalization capability is extended to the maximum
extent. Extensive experiments in three typical indoor scenarios
demonstrate Wi-CGAuth’s feasibility and effectiveness. Wi-
CGAuth represents a promising stride toward developing a
practical user authentication prototype, laying the groundwork
for novel insights in the realm of future wireless sensing
applications.
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APPENDIX A
CSI VALUES

The CSI values at time t are represented as:

H(f, t) = Anoise (f, t)e−jθoffset (f,t)(Hs(f, t)

+ a(f, t)e
−j2π d(t)

λf ) + ε(f, t) (8)

where Hs(f, t), a(f, t)e
−j2π d(t)

λf represent the static and
dynamic component in CSI, separately, ε(f, t) represents mea-

surement noise. a(f, t) represents amplitude, while e
−j2π d(t)

λf

represents phase variation induced by dynamic objects.
Anoise (f, t) and e−jθoffset (f,t) denote amplitude impulse noise
and random phase offsets, separately.

APPENDIX B
CONJUGATE MULTIPLICATION

Hcm(f, t) = H1(f, t) ∗H2(f, t)

= A2
noise (f, t)

(
Hs,1(f) + a1(f, t)e

−j2π d1(t)
λf + ε1(f, t)

)
(
Hs,2(f) + a2(f, t)e

j2π
d2(t)
λf + ε2(f, t)

)
= A2

noise (f, t)(Hs,1(f)Hs,2(f) + a1(f, t)a2(f, t)

e
−j2π d1(t)−d2(t)

λf + (Hs,1(f)− α) ∗ a2(f, t)e
j2π

d2(t)
λf

+ (Hs,2(f) + β) ∗ a1(f, t)e
−j2π d1(t)

λf )

+ ε1(f, t)

(
Hs,2(f) + a2(f, t)e

j2π
d2(t)
λf + ε2(f, t)

)
+ ε2(f, t)

(
Hs,1(f) + a1(f, t)e

−j2π d1(t)
λf + ε1(f, t)

)
(9)

where Hcm(f, t) represents the result of conjugate multi-
plication. H1(f, t) denotes the CSI value of one antenna,
while H2(f, t) denotes the conjugate of the CSI value of
the other antenna. Hs,1(f) ∗ Hs,2(f) represents the prod-
uct of the static path Channel Frequency Response (CFR)
from two receiving antennas. It is regarded as a constant
value during a short period. The dynamic path Channel Fre-

quency Response (CFR) a1(f, t)a2(f, t)e
−j2π d1(t)−d2(t)

λf can
be ignored since it is very small compared with the value of

Hs,1(f) ∗Hs,2(f). Hs,1(f) ∗ a2(f, t)e
j2π

d2(t)
λf and Hs,2(f) ∗

a1(f, t)e
−j2π d1(t)

λf are the combination of one antenna’s static
path CFR and the other’s dynamic path CFR. Both of them
include CSI dynamics induced by movements. Due to the
similar multipath effects of the two nearby antennas, the
Doppler velocity information reflected in the dynamic path
CFRs has similar values but opposite directions. The term

Hs,2(f) ∗ a1(f, t)e
−j2π d1(t)

λf can be amplified by increasing
the weight α on one antenna and decreasing the weight β
on the other antenna, reducing the static path attenuation on
the first antenna while increasing it on the second one.1 Sim-

ilarly, the noise terms ε1(f, t)

(
a2(f, t)e

j2π
d2(t)
λf + ε2(f, t)

)
1In the implementation, in each estimation window, we choose α so the

minimum amplitude of CSI across all the samples within the window at the
first antenna is reduced to zero, and we set β as 1000α.

and ε2(f, t)

(
a1(f, t)e

−j2π d1(t)
λf + ε1(f, t)

)
are so small that

they can be ignored. Consequently, conjugate multiplication
can eliminate the random phase offsets in CSI readings from
different antennas caused by hardware imperfections. The
equation is simplied as:

Hcm(f, t) = A2
noise (f, t)(

︷ ︸︸ ︷
Hs,1(f) ∗Hs,2(f)

︷ ︸︸ ︷
+Hs,2(f) ∗ a1(f, t)e

−j2π d1(t)
λf )

︷ ︸︸ ︷
+ε1(f, t)Hs,2(f) + ε2(f, t)Hs,1(f) (10)

1©, 2© and 3© correspond to the static component, dynamic
component, and environmental noise of the CSI, respectively.
In this case, there is still environmental noise, i.e., 3©, even
after the conjugate multiplication process.

APPENDIX C
DERIVATION OF PHASE DIFFERENCES AMONG

SUBCARRIERS AND ANTENNAS

When a subject is in motion at a distant location, phase
variations ∆θ of various subcarriers resulting from subtle
movements ∆d(t) exhibit similarity. Similarly, when a subject
is in motion at a distant location, the phase variations of
various antennas resulting from subtle movements will be
consistent. The difference in path lengths between the two
antennas’ reflected paths can be regarded as similar [25].
Therefore, each subcarrier’s dynamic reflection path length
(d(t) for all antenna pairs in Eq. 10) can be divided into
two parts: 1) d(1), denotes the initial dynamic reflection path
length, 2) ∆d(t), is the dynamic reflection path length change
over d(1). In this case, the 2© of Eq. 10 is formulated as:

Hs,2(f) ∗ a1(f, t)e
−j2π d1(t)

λf

= Hs,2(f) ∗ a1(f, t)e
−j2π d(1)+∆d(t)

λf

= Hs,2(f) ∗ a1(f, t)e
−j2π∆d(t)

λf e
−j2π d(1)

λf

= Hs,2(f) ∗A1(f, t)e
−j2π∆d(t)

λf e−jθIni,f (11)

where θIni,f comprises 2π d(1)
λf

and phase of a1(f, t),
A1(f, t) = |a1(f, t)|. The initial phases of distinct subcarriers
may vary, and the phase differences of identical subcarriers
across various antennas depend on the initial phases as well.

APPENDIX D
ELIMINATION

Given a sufficient number of samples T, the mean of a
CSI signal after conjugate multiplication is represented as
followings:

E(f, t) =
1

T

T∑
t=1

H1(f, t) ∗H2(f, t)

=
1

T

T∑
t=1

(
δ2(t)Hs,2(f) ∗A(f, t)e

−j2π∆d(t)
λf e−jθIni,f

)
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+
1

T

T∑
t=1

δ2(t)Hs,1(f) ∗Hs,2(f) +
1

T

T∑
t=1

ε(f, t)Hs(f)

=
1

T

T∑
t=1

(
δ2(t)Hs,2(f) ∗A(f, t)e

−j2π∆d(t)
λf e−jθIni, f

)
+ δ2(t)Hs,1(f) ∗Hs,2(f)

= δ2(t)Hs,2(f)A(f, t)e−jθIni,f ·K + δ2(t)Hs,1(f) ∗Hs,2(f)
(12)

where K = 1
T

∑T
t=1 e

−j2π∆d(t)
λf . It is demonstrated that 3© in

Eq. 10 follows a Gaussian distribution with zero mean. Here,
ε(f, t)Hs(f) is substituted for the 3©. By Eq. 10, the noise
is eliminated because its mean is 0. K is consistent across
various subcarriers and antennas. Subsequently, E(f, t) is
subtracted from Hcm(f, t), which is expressed as followings:

Hcm(f, t)− E(f, t) = δ2(t)Hs,2(f)A(f, t)∗

e−jθIni, f

(
e
−j2π∆d(t)

λf −K
)

+ δ2(t)ε(f, t)Hs(f) (13)

APPENDIX E
NORMALIZATION

S(f, t) = | 1

T ′

t+T ′∑
t

(Hcm(f, t)− E(f, t))|

= | 1

T ′

t+T ′∑
t

δ2(t)Hs,2(f)A(f, t)e−jθIni,f

(
e
−j2π∆d(t)

λf −K
)
|

+
1

T ′

t+T ′∑
t

δ2(t)ε(f, t)Hs(f)

=
∣∣δ2(t)Hs,2(f)A(f, t)e−jθIni,f (K ′(f, t)−K

)
| (14)

where K ′ = 1
T ′

∑t+T ′

t e
−j2π∆d(t)

λf . As K ′(f, t) is consistent
among various subcarriers/antennas. The various CSI signals
after conjugate multiplication reaches max K ′(f, t) at the
same t0. The maximum value of K ′(f, t0) − K is marked
as S, and Hcm(f, t)−E(f, t) is normalized using S(f, t0) =
A(f,t)S

Hs,2(f)
to obtain R(f, t).

APPENDIX F
ALIGNMENT

arg min Dis(i, j)
θj

=

T∑
t=1

∣∣R(i, t)−R(j, t)ejθj
∣∣2

=

T∑
t=1

|
(e−jθIni, i − ejθje−jθIni,j )

(
e
−j2π∆d(t)

λj −K
)

S

+
ε(i, t)Hs(f)

Hs,2(f, t)A(f, t)S
+

ε(j, t)Hs(f)ejθj

Hs,2(f, t)A(f, t)S
|2

=

T∑
t=1

|
(e−jθIni,i − ejθje−jθIni,j )

(
e
−j2π∆d(t)

λj −K
)

S

+
ε′(i, j, t, θj)

S
|2

(15)

where Dis(i, j) denotes the norm sums of the subcarrier i and
j. ε
′(i,j,t,θj)

S represents the differences in environmental noises
across various subcarriers and fits into a normal distribution.
The reference subcarrier is determined by the first one in an
antenna pair, and the remaining are adjusted by it to achieve
phase alignment. Once θj has been obtained for all subcarriers
j (j > 1), the rotated subcarriers are combined to compute the
mean.

C(t) =
1

N

N∑
i=1

R(i, t)e−jθi

=
1

N

N∑
i=1

(
e
−j2π∆d(t)

λi −K
)
e−jθIni,i

S
+

1

N

N∑
i=1

ε′′(i, t)

S

(16)

where N denotes the total numbers of the subcarriers, ε′′(i,t)
S

represents final outcome of elimination, normalization, align-
ing δ2(t)ε(f, t)Hs(f) by θi, which also follows a normal
distribution with a zero mean. C(t) represents the CSI signal
after enhancement, consisting of two components: the dynamic
components and noise.
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