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1 INTRODUCTION

Group signatures are a fundamental cryptographic primitive proposed by Chaum and van Heyst
in 1991 [20]. A group signature scheme allows one to generate a signature anonymously on behalf
of a group. A verifier can determine whether or not the signature was generated by a legitimate
member of the group, but cannot identify who generated it. The ability to conceal the signer’s
identity without hurting the authenticity of the signature makes group signatures an attractive
building block in privacy-sensitive applications such as anonymous credential [17], trusted com-
puting using Direct Anonymous Attestation (DAA) [15] or Enhanced Privacy Identification
(EPID) [14], and digital rights management [38].

In light of the threat quantum computing poses to current public-key algorithms based on hard
problems such as RSA or discrete logarithm, at the moment the design of group signature schemes
is undergoing a transition to post-quantum security. There have been proposals for new group
signature schemes based on lattice problems [7, 11-13, 23, 25, 30, 35, 36, 40, 43-48], isogenies (7,
21, 41], code [1, 26, 51], multivariate [54, 58], and symmetric key primitives [3, 8, 16, 37, 57, 59, 60].
Each approach for obtaining quantum-resistant signatures has its pros and cons. Among all post-
quantum approaches, the symmetric key approach is considered the most conservative approach.
The security of symmetric primitives is the most well-understood and easiest to evaluate, hence
it serves as a safety net if the security of other approaches is endangered by newly discovered
threats. It is therefore the focus of this paper.

The multifaceted security and functional requirements make it difficult to design a group signa-
ture scheme, it is even more so when we have to restrict ourselves to only symmetric primitives.
The foremost security requirement of a group signature scheme is anonymity. Currently, there
are two pathways for achieving anonymity. The first is to use a zero-knowledge proof ([8, 37]).
The main part of the group signature is a Non-Interaction Zero-Knowledge (NIZK) proof that
asserts two things: the signer possesses a secret signing key, and the key is certified with a group
credential from an entity who manages the group membership (the group manager). The main
challenge in this pathway is that the group credential needs to be verified with zero-knowledge.
A group credential is essentially another signature generated by the manager when the user joins
the group. It is bound to the user’s identifier and is fixed after generation, so the user cannot sim-
ply include it in every group signature they generate because it will destroy anonymity and make
the group signatures linkable. Running the credential verification algorithm with zero-knowledge
is possible, but not always feasible. This is especially true for signatures based on symmetric
primitives, which do not have rich algebraic properties that can be utilized for constructing zero-
knowledge proofs. The other pathway is to use One-Time Signatures (OTS) ([3, 16, 57, 59, 60]).
Each time when a user needs to generate a group signature, they have to obtain from the manager a
randomly generated one-time credential that is used as a part of a one-time signing key. This how-
ever requires excessive communication and interaction between the users and the manager and
an unrealistic assumption that the manager is always online. Although a user can request a batch
of credentials rather than just one in each interaction, it only alleviates the problem, not solving it.

Another important security property is non-frameability. It means that even if an adversary fully
corrupts the rest of the group as well as the group manager, the adversary cannot falsely attribute
a signature to an honest member who did not produce it. Up to now, all group signature schemes
based on symmetric primitives do not support non-frameability. In existing schemes using NIZK,
a tracing key for each user is shared with the group manager, which allows the manager to trace
a given signature back to this signer. Although each signer has another key that is not known by
the manager, this will not stop a malicious group manager from forging a group signature under
an honest user u;,’s tracing key along with an arbitrary key generated by the manager. This forged
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signature will be traced back to uy. For schemes based on OTS, there are two cases. In Case 1, the
group manager knows the user’s signing key and can generate a signature on the user’s behalf. In
Case 2, a user generates their own secret key and the manager adds the corresponding public key
into a Merkle tree (either a single tree or multiple trees). The manager maintains the state of the
key use. A malicious manager can let an honest user uj’s public key be associated with multiple
states and allow further signatures to be generated once uj’s secret key is revealed. This occurs
when uy, uses the key to generate a signature. After that, the manager can create another valid
signature with a different state. This forged signature will be traced back to uy. No-one can tell
which of these signatures was the one generated by uj,.

In practice, we often need group signature schemes that can support large group sizes. For ex-
ample, Direct Anonymous Attestation (DAA) [15], which is implemented in every Trusted
Platform Module (TPM) since 2003 and distributed with every PC produced since 2006, is a vari-
ant of a group signature. Another example is Enhanced Privacy Identification (EPID) [14] by
Intel, which is also a variant of a group signature. EPID has been included in many Intel proces-
sors since 2008, and in 2016 it was announced that Intel has distributed over 4.5 billion EPID keys
since 2008' [32]. However, for existing group signature schemes based on symmetric primitives,
the group size that they can support is often small, less than 2%,

There are two approaches for membership management. In the first approach, adopted by the
majority of the existing schemes, group membership is managed through a single Merkle tree
such that each leaf corresponds to a group member. The group public key is dependent on all
leaves. For a large group, the time for setting up the group and generating the group public key
is extremely long and the space for storing the Merkle tree is also prohibitively large. The second
approach, adopted by some OTS-based schemes [59, 60], uses multiple trees, which can provide a
large number of leaves and each leaf corresponds to a one-time group membership credential. Due
to the nature of an OTS, each credential can only be used to generate one signature. Therefore, a
large number of credentials does not automatically translate into a large group size. If each member
needs to sign many signatures (e.g., as in DAA and EPID), then the group size cannot be very large:
let N be the total number of credentials, and B be the number of group signatures that each group
member can make, then the group size is [ N/B].

Also, a fully dynamic group signature scheme is often preferred, i.e., the group membership
is not decided and fixed at the setup phase, and the users can join and leave at any time. In the
symmetric setting, for those schemes that rely on a single Merkle tree, the membership is static and
fixed when generating the Merkle tree at the setup stage; for those OTS-based schemes, although
they appear to be dynamic, they lack support for persistent group membership: each user joins the
group on the fly when signing and leaves the group after signing (because the group credential is
for one-time only).

Contributions of this paper In this work, we have responded to the above challenges by
designing a new NIZK-based group signature scheme from symmetric primitives. Our scheme
supports the security notion of fully dynamic group signatures [10] and can handle a large group
size. This is the first symmetric setting group signature scheme to meet all these requirements.
We also implemented a proof of concept to show the feasibility of the scheme. We have made the
following choices in our design:

— Underlying signatures. As mentioned before, two types of underlying signatures have been
used in group signatures from symmetric primitives: an OTS and a NIZK proof of the

ntel does not put all processors into one group, so in practice, groups are smaller than 4.5 billion. There is a trade-off
between strong anonymity and group size. A large group size is beneficial if we want strong anonymity. Ideally, applications
like these should have a group size of 2%° or above.
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Table 1. A Comparison of Hash-Based Group Signature Schemes

schemes underlying signatures group credentials group types | implemented group size’ | non-frameability
G-Merkle [3] OTS Merkle signature static 20 no
DGM’ [16] OTS Merkle signature dynamic - no
DGM™ [60] OTS XMSS-T dynamic - no
GMMT [59] OTS XMSS-T dynamic 216 no
SE* [57] OTS hash pool static - no
KKW [37] NIZK Merkle signature static 28 no
BEF [8] NIZK Merkle or Goldreich signature static - no
this work NIZK F-SPHINCS+ dynamic 200 yes
@1t refers to the maximum group size that has been implemented and reported in the paper; “—" indicates that no

implementation has been reported.
b1n this scheme, the group issuer needs to be involved in signature verification.
“The security of this scheme is held under the condition of non-colluding members.

knowledge. Although signing and verification are efficient, the OTS approach has a major
drawback: the communications between the issuer and the group members are heavy and
the issuer’s workload is high. Hence in this work, we have chosen the NIZK approach.

— Group credentials. To support a large group size while retaining reasonable efficiency, we
have designed a new variant of the SPHINCS+ signature scheme [6] allowing efficient NIZK
(based on MPC-in-the-Head), which provides us with a new group membership credential.
We name this new hash-based signature scheme, F-SPHINCS+ (see Section 3.1). F-SPHINCS+
is constructed on top of M-FORS, which is a modification of the FORS signature [6]. This
variant of SPHINCS+ may have its independent interest.

— Group types. Based on F-SPHINCS+, we designed protocols to allow group members to join
and leave the group at any time, i.e., we support fully dynamic groups.

— Non-frameability. Non-frameability is a desirable security property, however, due to the lack
of rich algebraic properties in symmetric primitives, achieving it is challenging. In this work,
we decided to design a scheme with non-frameability. To achieve this, we split the group
management function into two parts and assign roles to a group issuer and a group tracer.
Assuming that there is no collusion between them, we can prove that non-frameability holds
in our scheme. Note that non-frameability is not supported in KKW [37] and BEF [8], but
potentially it could be achieved using our technique (splitting the group manager into an
issuer and a tracer). However, this will require significant changes to these two schemes,
thus it is not trivial.

— Group size and implementation. The majority of the existing group signature schemes from
symmetric primitives are without implementation. For those schemes with implementation,
they have only reported the implementation with small group sizes. We have implemented
our designed scheme, and our implementation demonstrates that our scheme can handle a
very large group size, 2°°. This size can meet real-world requirements, such as those for TPM
DAA and EPID.

Comparison with the related work As mentioned before, in the literature, there are two
types of group signatures derived from symmetric primitives. In Table 1, we compare our proposed
scheme with the existing ones. Below we organize the discussion by dividing the schemes into two
types based on the underlying signatures.

In the first type, including the schemes from [3, 16, 57, 59, 60], a group signature consists of an
OTS and a group membership credential. In [3, 16, 57], such a credential is a Merkle signature [49],
while in [59, 60], it is an XMSS-T signature [31]. In [57], group members’ signing keys are organized
as a hash pool. As a result, the security of this scheme is under the condition that group members
will not collude with each other.
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In the second type, including the schemes from [8, 37], a group signature uses a NIZK proof of
the knowledge of a group membership credential. Each credential is a hash-based signature. In [37],
the credential is a Merkle signature. A user has a key pair that forms a Merkle tree leaf and one of
them is used as a tracing key. The group master secret key gmsk is all of the users’ tracing keys.
An adversary controlling gmsk can create a different Merkle tree leaf using an honest user u’s
tracing key and then use this leaf to forge a signature, which will be traced back to uj. In [8], the
authors state that in their scheme either a Merkle signature or a Goldreich signature [29] can be
used to create credentials. For traceability, the group manager gives each group member a signed
secret token as a tracing key. An adversary controlling the manager can create a signature using
an honest user uy,’s tracing key, again this signature will be traced back to uy.

Construction of the paper In Section 2, we introduce the preliminary material: several sig-
nature schemes based on symmetric primitives, some of which directly influenced our proposed
schemes, and the concept and security properties of a group signature scheme. In Section 3, we
present the constructions of our new schemes, starting from the main building blocks F-SPHINCS+
and M-FORS, then the group signature scheme and its underlying NIZK proof. In Section 4, we pro-
vide the security analysis and proofs. In Section 5, we provide a summary of our implementation
and performance figures. To make the paper more readable, we put low-level details in Appendices
(supplementary online material ): (A) a review of hash-based signature schemes; (B) the detail of
M-FORS algorithms; (C) tweakable hash functions; (D) the soundness analysis of its underlying
NIZK proof; and finally (E) more information of our implementation.

2 PRELIMINARIES
2.1 Hash-Based Signature

It has long been known that signature schemes can be constructed purely on top of cryptographic
hash functions. Without relying on number theoretical hard problems, hash-based signatures are
believed to be secure against a cryptanalytic attack by a quantum computer. Hence, they have
attracted more and more attention in cryptography research in recent years. Here we briefly
introduce some basic ideas in hash-based signatures. A more detailed review can be found in
Appendix A.

A hash-based signature scheme is a public key scheme such that a public key is publicized to
everyone and a private key is known only to the signer. Usually the private key is a set of randomly
generated strings and the public key is derived by applying hash functions on the private key.
Early hash-based signatures [42, 50] are one-time signatures (OTS), which means each key pair
can be used to sign only one message. Examples include the Lamport signature scheme [42] and
the Winternitz one-time signature (WOTS) scheme [50]. A simple strategy used first in the
Merkle signature scheme [50] to extend the signing capability to multiple messages (few-time
signatures, FTS) is to generate multiple OTS key pairs and aggregate the OTS public keys using a
Merkle tree. The Merkle tree root is released as the overall public key. Each signature will consume
one OTS secret private key. The signature consist of a OTS and the Merkle tree authentication path
for the OTS public key, so that the verifier can verify the signature with only the Merkle tree root.
More recent FTS schemes (e.g., FORS [6]) can be more efficient. The strategy is to have a large set
of secret random strings, which can be derived using a pseudorandom function from the private
key, then the signature is generated by selecting some elements from the set which is determined
by the message to be signed. Although each signature reveals some secret strings in the set, the
set is large so that as long as the number of signatures is controlled below a threshold, forging a
signature by mix-and-match secret strings from previously generated signatures is infeasible.

All previously mentioned multi-time signature schemes are stateful, meaning that the signer
needs to keep a state (e.g., how many messages have been signed and which keys have been used).
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SPHINCS+ [6] is a stateless hash-based signature scheme and is one of the three digital signa-
ture schemes selected by NIST to become part of its post-quantum cryptographic standard [53].
Technically, SPHINCS+ still has an upper limit on how many signatures can be generated per key
pair, it is just that the number can be made very large (e.g., 2°°) so that it is unlikely to be reached
in practice. SPHINCS+ uses a hyper-tree, i.e., a tree of trees, to organize OTS and FTS key pairs.
Each SPHINCS+ is a chain of signatures, such that the first signature oy in the chain is a signature
generated from the message, and each of the subsequent signature o; is a signature of the public
key that verifies 0;_;. With the root public key, the verifier can verify the authticity of the signature
chain. It is conceptually similar to PKI: the root CA and intermediate CAs signs the public keys of
CAs one level below them in the hierarchy, and the CAs at the lowest level signs the user’s public
key. A signature generated by an unknown user can be verified by verifying the signature itself
and all the signatures along the path leading to a trusted root CA.

2.2 PICNIC Signature Scheme

Another signature scheme that relies on only symmetric primitives is PICNIC [19]. This scheme
relies on a zero-knowledge proof technique called MPC-in-the-head.

MPC-in-the-head This is a paradigm for zero-knowledge proofs introduced by Ishai et al. [33].
Roughly speaking, given a public value x, the prover needs to prove knowing a witness w such that
f(w) = x. To do so, the prover simulates, by itself, an MPC (multi-party computation) protocol
between m parties that realizes f, in which w is secretly shared as an input to the parties. After
simulation, the prover commits to the views and internal state of each individual party. Next, the
verifier challenges the prover to open a subset of these commitments, checks them, and decides
whether to accept or not. If the MPC realizes f properly, then obviously this protocol is complete,
meaning a valid statement will always be accepted. The protocol is also zero-knowledge because
only the views and internal states of a subset of the parties are available to the verifier, and by
the privacy guarantee of the underlying MPC protocol, no information about w can be leaked. For
soundness, if the prover tries to prove a false statement, then the joint views of some of the parties
must be inconsistent, and with some probability, the verifier can detect that. The soundness error
of a single MPC run can be high, but by repeating this process independently enough times, the
soundness error can be made negligible. The interactive ZK proofs can be made non-interactive
through techniques such as the Fiat-Shamir transformation.

There are multiple frameworks for constructing MPC-in-the-head ZK proofs, e.g., IKOS [33],
ZKBoo [28], ZKB++ [19], KKW [37], BN [4] and Limbo [22]. They follow the same paradigm, but
are different in the underlying MPC protocols and have different concrete/asymptotic efficiency.
There are also MPCitH frameworks, e.g., BN++ [34], Rainer [24] and AIMer [39], focusing on
proofs of AES (or its variants) encryption, that are useful in PICNIC style signatures. In this paper,
to describe our scheme, we do not need to touch the low-level details, hence we will use MPC-in-
the-head (for Boolean circuits) in an abstract way. We will use the following syntax to describe a
ZK proof:

7 = P{(public params);(witness)lrelation to be proved}

For example, to prove the same key sk is used in two different instantiations of a pseudorandom
function F with different data inputs, we write:

m = P{(C1, Py1),(Co, P2)); (sk)|Cy = F(sk,Py) A Cy = F(sk,P2)}

PICNIC Signature Many signature schemes (e.g., Schnorr [56]) boil down to a non-interactive
zero-knowledge proof of knowing the signing key used in generating the signatures. PICNIC is in
the same direction. In PICNIC, the public key is a pair (C,p) such that C = E(k,p) where E is a
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block cipher, k is a secret key, and p is a plaintext block. The private key is k. Signing essentially
is to generate a non-interactive MPC-in-the-head proof of knowing/possessing the private key:

m = P{(C.p)); (k)IC = E(k,p)}

such that 7 is parsed in (r, s), and the internal challenge used in the above proof is generated by
H(r, pk||m) where H is a hash function and m is the message to be signed. The signature is .
Verification of the signature is then verifying & with regenerated challenges H(r, pk||m).

2.3 Group Signatures

A group signature scheme [20] allows users in a group to sign messages such that the signatures
can be verified using a group public key, and the actual signers’ identities are not revealed (beyond
the fact that they belong to the group). A typical group signature scheme involves the following
players:
— A manager manages the group membership and performs the related functionalities. In our
scheme, we split the manager role into two:
—An issuer decides who can be a group member and issues group credentials.
— A tracer can trace a group signature back to its signer when needed.
— Group members create group signatures.
— Verifiers verify group signatures.
— A revocation authority decides which group member should be removed from the group.
— A judge verifies tracing results.

Following the definition of a fully dynamic group signature scheme [10], the group signature
scheme proposed in this paper consists of the following algorithms/protocols:

— Init(n): In the initialization algorithm, the issuer takes a security parameter n as the input,
and outputs a master (group) key pair (mpk, msk). The master public key mpk is made public
and the master secret key is stored privately by the group issuer. In all other group signature
algorithms/protocols, we will assume mpk as an implicit input for all parties. The issuer,
tracer, and revocation authority also initialize their internal states.

— Join(msk, n): the group-joining protocol is an interactive protocol between the issuer, the
tracer, and the user who wants to join the group. The issuer has a private input msk and
the other parties do not have input. There is a public input that is the security parameter n.
At the end of the protocol, the issuer outputs a decision: accept or reject. If reject, then
stop. If accept, then the user obtains their signing key gsk, = (sky, tky, cred,) where sk, is
a secret key, tk,, is a tracing key, and cred,, is a group credential. Both sk, and tk,, are chosen
by the user, and cred, is generated by the issuer. The issuer and the tracer also update their
internal states.

— GSig(gsky, msg): the group signature generation algorithm allows a group member to pro-
duce a signature X on a message msg € {0, 1}* using its signing key gsk,,.

— GVf(msg, 3, RL): the group signature verification algorithm allows anyone who has access
to the group public key mpk (as an implicit input) to verify whether a signature X is a valid
signature of msg and whether the group signing key has been revoked (with a revocation
list RL).

— Trace(msg, X): In the tracing algorithm, the tracer outputs either a pair (id,, ;) or an error
symbol L, based on a valid signature X and its internal state, where id,, is the identifier of
the group member who produces X, and 7, is a proof of this claim.

— TV1(idy, m;, 2, msg): Given (idy, 7r;, 2, msg), the judge verifies ;. If this proof is valid, the
judge outputs accept; otherwise outputs reject.
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— Revoke(tk,): The revocation authority maintains and publishes a revocation list RL. The
user can be removed from the group by the authority adding tk,, to the revocation list (as a
consequence, this revokes the group signing key).

A group signature scheme needs to satisfy multiple security requirements [10], including:

— Correctness Correctness covers two aspects: (1) an honest user can successfully join the
group, despite the existence of other malicious users; and (2) a signature generated by an
honest group member should always be valid when being verified (if the member has not
been revoked).

— Anonymity Anonymity means that a group signature does not reveal the identity of its
signer, i.e., the adversary cannot distinguish which one of the two honest signers has signed
a targeted message while both signers and the message are at the adversary’s choice.

— Traceability Traceability ensures that a group member (even malicious) can be traced by
the group tracer through a valid signature, i.e., the tracer can output a convincing proof
showing that the signature was signed by the group member.

— Non-frameability Non-frameability means that even if the rest of the group as well as the
issuer/revocation authority are fully corrupted, they cannot falsely attribute a signature to
an honest member who did not produce it.

— Tracing Binding Tracing binding [55] guarantees that even if all authorities and users col-
lude, they should not be able to produce a valid signature that can be selectively attributed to
a different member, no matter whether this member is honest or one that already colluded.

— Tracing Soundness Tracing soundness guarantees that even if all authorities are corrupted,
they cannot attribute a signature generated by an honest user to a corrupted user.

3 CONSTRUCTION
3.1 F-SPHINCS+ and M-FORS

Design rationale The first design choice we need to make is how to achieve anonymity: by using
a one-time key/credential for each signature or by using a long-term key/credential with zero-
knowledge proof? The benefit of the one-time key approach is mainly its efficiency in signature
generation and verification. However, it also limits itself to application scenarios with small groups,
infrequent signatures, and well-connected networks. Hence, targeting more practical usage, our
group signature opts for the zero-knowledge proof approach.

The second design choice is about group credentials. A group credential essentially is a signa-
ture on the user’s keys generated by the issuer. Because we use only symmetric primitives, the
credential can be in the form of the following: (1) a Merkle signature; (2) a SPHINCS+ style signa-
ture; (3) a PICNIC-style signature. The first option is ruled out easily because, as discussed before,
it cannot handle a large group size. The last option is ruled out because of practical consideration:
we have to create a zero-knowledge proof that another zero-knowledge proof (i.e., the PICNIC sig-
nature) is valid. Unfortunately, the circuit for verifying a PICNIC-style signature is too big, which
results in prohibitively high computation cost and/or large proof size. Therefore, we focused on
utilizing a SPHINCS+ style signature as the group credential.

In the above, we said “SPHINCS+ style” rather than “SPHINCS+”. This is because SPHINCS+ is
still too heavy when being verified in zero knowledge. The main problem comes from the WOTS+
signature scheme. In WOTS+, verification involves verifying k blocks of d-bit strings. When veri-
fied in the clear, each block requires at most 2¢ — 1 hash operations to verify and the exact number
of hash operations required depends on the content of the block. However, in a zero-knowledge
proof, we will have to hash each block exactly 2¢ — 1 times and then choose the right hash value
in the chain blindly, to ensure the verifier is oblivious about the content of the block. Hence in
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Fig. 2. M-FORS signatures for k =4 and d = 2.

total, (2¢ — 1) - k hashes are required to verify a WOTS+ signature. Plug in concrete parameters,
which means 510 hashes at 128-bit security, and 990 at 256-bit security. The circuit implementing
the hash function typically has 103> AND gate. So verifying one WOTS+ signature requires a circuit
with over a million AND gates and in total, we need to verify h WOTS+ signatures, where h is at
least 7 in SPHINCS+.

To fix the problem, we propose a new variant of SPHINCS+ called F-SPHINCS+. As depicted in
Figure 1, in F-SPHINCS+ we use a hyper-tree that is a tree of M-FORS trees. The M-FORS signature
scheme is depicted in Figure 2 and this is our modification of FORS. Recall that FORS is a few-time
signature scheme such that each key pair can be used to sign up to g signatures. M-FORS, short
for Merkle FORS, differs from FORS in that the public key is generated as the root of a Merkle
tree. The leaf nodes in this Merkle tree are the root nodes of Merkle trees that authenticate each
block of the hash value being signed. So with M-FORS, the hyper-tree in F-SPHINCS+ is a g-ary
tree such that the public key in a child node is signed by the signing key in the parent node, and
the signing key in the leaf node signs the actual message hash. An F-SPHINCS+ signature then
contains a list of h + 1 signatures, where h is the height of the hyper-tree. The benefit of M-FORS
over XMSS that is used in the original SPHINCS+ scheme is the lower verification cost. To verify a
message hash that is k blocks of d-bit string, the cost is d - k + k — 1 hash operations. This is much
less than the (2¢ — 1) - k hashes for verifying a WOTS+ signature. On the other hand, the signing
time is more than that of WOTS+. However, this is a lesser concern because in our case signing
will be done in the clear (while verification needs to be done with zero knowledge).

The schemes We now describe M-FORS and F-SPHINCS+. M-FORS consists of the algorithms
below. For readability, we abstract away certain low-level details such as how the Merkle trees are
built. A more algorithmic description of M-FORS can be found in Appendix B.

— keyGen(seed, n, d, k, aux): it takes as input a random seed seed, a security parameter n, two
positive integers d and k, and aux that is either an empty string or some optional data. If
seed is an empty string, an n-bit random string will be chosen and assigned to it. Then a
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pseudorandom function prf is used to expand sk into k lists (x(o), o ,x”‘_l)), where each
x() contains 2¢ distinct n-bit pseudorandom strings.

Then k + 1 Merkle trees T = (mty, . . ., mty) are built. In particular, each of mty, . .., mtx_; has
24 leaf nodes. The jth leaf node in mt; is the hash ofxy). The leaf nodes of mty arery, . .., rre_q
that are the roots of (mtg, ..., mtg_q).

keyGen outputs (pk, sk, param), such that the public key pk = ry where ry is the root of mty,
the private key sk = seed, and the public parameters mp = (n, d, k, aux).

— sign(sk, MD, mp): to sign a message hash MD e {0, 1}k‘d, parse it into k blocks, each block
is interpreted as a d-bit unsigned integers (po, . . ., px_1). Then for the i-th block p;, x?) and
mt; (obtained by expanding sk) are used to generate authpath”, which is the authenti-
cation path of the p;-th leaf node in the i-th Merkle tree. Then (x(ii), authpath”) is put

into the signature. The signature is a list of k pairs o = {(xg;), authpath®), ..., (xg;j),
authpath*~V)}.

— recoverPK(o, MD, mp): This algorithm outputs the public key recovered from a signature o
and the message hash MD. First MD is parsed into k blocks (p;, ..., p; ). Thenfor 0 <i <
k — 1, o; = (x;, authpath) and p; are used to re-generate a Merkle tree root and get the
value r] (p] is used to determine the order of the siblings at each layer). Finally, r, . ..
are used to compute mt; and its root r, is returned.

— verify(o, pk, MD, mp): to verify a signature, call recoverPK(o, MD, mp). If the recovered pub-
lic key is the same as pk, accept the signature, otherwise reject.

’
Ty

The hyper-tree nodes in F-SPHINCS+ are addressed by a pair (a, b) where a is its layer and b
is its index within the layer. The root node is at layer 0, and the layer number of all other nodes
is the layer number of its parent plus 1. All nodes within a layer are viewed as an ordered list,
and index each node in the list is from left to right, starting from 0. F-SPHINCS+ consists of the
following algorithms:

— keyGen(n, g, h): This algorithm outputs (sk, pk, fp). It takes as input a security parameter n,
the degree of non-leaf nodes in the hyper-tree g, and the height of the hyper-tree h. Then
it chooses d, k which are the parameters for the underlying M-FORS signature scheme. The
public parameters are fp = (n, g, h, d, k). It also chooses an n-bit random string as the private
key sk. It generates the M-FORS key pair for the root node by calling genNode((0, 0), sk, fp),
and setting the public key pk to be the M-FORS public key pko 0.

— genNode(nodeAdr, sk, fp): This algorithm generates a node in the hyper-tree given the ad-
dress nodeAdr = (a,b). With the private key sk, the algorithm first generates a subseed
with a pseudorandom function seed, , = prf(seed, a||b), then it calls M-FORS key genera-
tion algorithm M-FORS.keyGen(seed, 5, n, d, k, a||b). The output (pk, b, Ska b, mpa.p) is the
content of the node at (a, b).

— mHash(msg, gr): This algorithm produces message hash and the leaf node index used in
generating the F-SPHINCS+ signature. The input msg is the message to be signed and gr is a
random string. The algorithm produces MD||idx < Hy,54(msg||gr), where Hpg : {0, 1} —
{0, 1}4-*+(og2 9 j5 3 public hash function, MD is d - k bit long and idx is interpreted as an
(log, q) - h bit long unsigned integer.

— sign(msg, sk, fp): This algorithm produces the F-SPHINCS+ signature as a chain of M-FORS
signature along the path from a leaf node to the root node of the hyper-tree. It chooses an
n-bit random string gr. Then obtain MD||idx <« mHash(msg, gr). A leaf node at (h, idx)
is then generated by calling genNode((h, idx), sk, fp). The M-FORS signing key sk, ;qx is
used to sign MD and generate ¢y. The parent node of (h, idx) is then generated by calling
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genNode((h—1,b), sk, fp) where (h—1, b) is the address of the parent node. Then the parent
secret key skyp_1 5 is used to sign the child public key pkp, ;4x, and the signature is 0. Repeat
the signing process until obtaining oy, that is signed by sko ¢ on pky ; for some b’. The F-
SPHINCS+ signature is then ¥ = (gr, (0y, . . ., 04)).

— verify(msg, 2, pk, fp): This algorithm verifies every M-FORS signature chained up in 2.
Given X = (gr, (09, ..., op)), first compute MD||idx <« Hygq(msgl|gr). Then ob-
tain pko < recoverPK(oy, MD, mpy), pk; <« recoverPK(o1, pko, mp1), repeat until pky «—
recoverPK(oy, pkp—1, mpy). If pk = pky, accept the signature, otherwise reject.

Remark 1. In M-FORS algorithms (see Appendix B), we use two tweakable hash functions [6]
(see also Appendix C) H; : {0,1}* — {0,1}" and H; : {0,1}* — {0,1}%*. Almost all hash
operations are done using H;. H; is only used to map the k-th Merkle tree to the k - d-bit M-FORS
public key, so that when used in F-SPHINCS+ the public key is of the right size to be signed by the
parent node. If M-FORS is to be used as a stand-alone signature scheme, the two hash functions
can be the same.

Remark 2. The tweakable hash functions follow Construction 7 for tweakable hash functions in
[6]. Namely, the hash of an input M is produced by calling a hash function with additional input as
H(P||ADD||M), where P is a public hash key and ADD is the tweak. The tweak is the address where
the hash operation takes place within the hyper-tree, and it is a five-part string a;||b;||v]||az||b,:

— (a1, b1), where 0 < a; < h,0 < by < 2% — 1, is the address of a hyper-tree node. Within the
node, an M-FORS key pair that is based on k + 1 Merkle trees is stored.

—0 < v < k is the index of a Merkle tree in the M-FORS key pair stored in the hyper-tree
node (ay, by). When 0 < v < k-1, the Merkle tree (of height d) is used to sign the v-th block
of the message; when v = k, the Merkle tree (of height [log, k1) is used to accumulate the
roots of all the previous Merkle trees into the public key.

— (az, by) is the address of a Merkle tree node. When 0 < v <k—1,0<ay; <dand0 < by <
2%2 —1; Whenv =k,0 < a; <[log,k]—1and 0 < b, < 2% —1.

We defer the security analysis of F-SPHINCS+ to Section 4.1.

3.2 The Group Signature

Design rationale In the previous section, we decided to use a SPHINCS+ style signature for the
group credential. Now we need to decide what should be used by the users to sign the actual
messages. The first requirement is that the user should be able to sign many signatures with one
key pair. This excludes the OTS scheme. Between SPHINCS+ and PICNIC, PICNIC wins because
it has no limit on the number of signatures, and it is already based on NIZK so can be integrated
easily with the NIZK for proving the group credential.

Then we need to consider other security properties required by group signatures. Anonymity, as
mentioned earlier, will be addressed using NIZK. It is trickier for traceability and non-frameability.
Since we rely solely on symmetric primitives, we cannot achieve traceability through a trapdoor
function, i.e., by revealing to the tracer a piece of data generated from the signing secret key so
that the tracer can trace a signature without knowing the signing key. However giving the signing
key to the tracer, the non-frameability is violated because now the tracer can sign on the user’s
behalf. To address this problem, we first split the group manager into two entities, a group issuer
and a group tracer, and then let the user to generate two keys when joining the group, a tracing
key and a secret signing key. Both keys will be authorized by the group credential and will be
used by the user in generating a signature. The tracing key is given to the tracer, which allows the
tracer to test whether a signature is generated by a particular user. With only the tracing key, the
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tracer cannot sign on the user’s behalf. Without knowing the tracing key, the issuer cannot create
another secret signing key associated with the tracing key, therefore they cannot forge a signature
that will be traced back to the user.

Overall, the group signature scheme is designed in this way: the group issuer generates an F-
SPHINCS+ key pair as the group master key pair. When a user joins the group, it generates a
tracing key and a secret signing key. The tracing key is given to the tracer. The issuer and tracer
decide together whether the user should be admitted into the group, if so a group credential is
generated as an F-SPHINCS+ signature on an entry token (a commitment of the user’s tracing and
signing keys). When signing a message, the user produces an MPCitH NIZK to show it possesses
a group credential and the signature is generated on the hash of the message (sid) under the keys
authorized by the group credential. Verifying the group signature involves checking the NIZK so
the verifier is convinced of the group membership. Each group signature also includes a tracing
token, essentially it is the ciphertext of sid produced using the tracing key. The tracer, when asked,
can decrypt the tracing token with a user’s tracing key to check whether the result matches sid, if
so the signature must have been generated by this user.

The scheme We now give the concrete construction of the group signature scheme.
— Initialization Init(n): Given a security parameter n, the group issuer does the following:

—Choose a pseudorandom function prf, three hash functions H; : {0,1}* — {0,1}", H, :
{0,1}* — {0,1}¢"* Hs : {0,1}* — {0,1}¢*+(og2 )" and a keyed pseudorandom function
F:{0,1}" x {0,1}" — {0,1}". H; and H, are used in the underlying M-FORS signature
scheme, and H3 will be used as H,ys, in the mHash algorithm.

—Decide the hyper-tree node degree g and the tree height h, then run the key generation al-
gorithm (sk, rpk, gp) < F-SPHINCS+.keyGen(n, g, h), where (rpk, sk) is the F-SPHINCS+
key pair, gp = (n, q, h, d, k) are the hyper-tree parameters.

—Publish mpk = (gp, rpk, Hy, Hy, Hs, F, prf) and keep msk = sk private.

In addition, the group issuer initializes a group list GL, the group tracer initializes a group
tracing list TL, and the group revocation authority initializes a revocation list RL. These
lists are empty when initialized.

— Group-joining protocol Join(msk, n): To join a group, the user, the issuer and the tracer
run the following protocol:

(1) A unique session ID u is assigned to the user. For simplicity, we can think of the session

ID as a monotonically increasing counter, and each invocation of the Join protocol will
increase it by 1.

(2) The user u chooses two random secret keys: (tk,, sky) & {0,1}" x {0, 1}", where tk, is
the user’s tracing key and sk, is a secret signing key.

(3) With mpk, the user computes the group identifier gid = H;(rpk), its user identifier id, =
F(tky, gid), and an entry token et,, = F(sk,,, id,). The user then chooses an n-bit random
string cr and computes a commitment ¢t = H;(et,||cr). The user produces an NIZK 7,
that is instantiated with MPCitH 1:

1y : P{(gp, gid, id,,ct); (tky, sky,cr)|id, = F(tky, gid) A ct = Hi(F(sky, id,)||cr)}

The user sends (u, tk,) to the group tracer and (u, id,, ct, m,) to the group issuer to
request to join the group.

Note that in MPCitH 1, [x] means that the value x is secret-shared when using an MPC al-
gorithm. The prover knows all the shares but the verifier does not. Therefore the verifier
cannot reconstruct x. MPC_X means the MPC subroutine implementing the function X
(e.g., MPC_F and MPC_H1 implement F and H;). These notations will be used through-
out the paper.
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MPCitH 1: 1,
Public: gp, gid, idy, ct
Private: [tk ], [sku]. [cr]
Output: id},, ct’
Check: id], = idy Act’ =ct
1 id], = MPC_F([[tky]. gid);
2 [ety] = MPC_F([sky], id),);
3 ct’ = MPC_H1([ety]|[cr])

(4) Upon receiving (u, tk,), the tracer first checks whether an entry with the same u or tk,, is
in TL.If yes, the tracer rejects the user; otherwise, the tracer computes id,, = F(tk,,, gid).
The tracer waits and if the group issuer sends u, replies with id,. Then if the issuer
acknowledges with Accept, add (u, id,, tk,) to TL; if Reject, discard the entry.

(5) Upon receiving (u, id,, ct, m,), the issuer:

— Checks whether an entry with the same u or id,, is in GL. If yes, rejects the user.

— Otherwise, verifies the NIZK 7,,. If invalid, rejects the user.

— Otherwise, the issuer sends u to the tracer, who then sends back the corresponding
id,, from TL. If id, from the user and the tracer are different, reject the user and send
Reject to the tracer.

— Otherwise, if the issuer would like to accept the user, the issuer chooses a random

string gry, & {0,1}" and sends it to the user. The user responds by sending (et,, cr)
back. The group issuer verifies ct = Hy(ety||cr). If so, compute the group credential
S « F-SPHINCS+.sign(et,, gry, msk, gp). Otherwise, the issuer rejects the user and
sends Reject to the tracer.

— The group issuer adds (u, id,, ety,gry,S) to GL, sends S to the user, and Accept to the
tracer.

(6) The user, if accepted by the issuer, sets its group membership secret key gsk, =
(tky, sky, gry, S).

— Group signature generation GSig(gsk,, msg): To produce a group signature on a message

msg, using gsk, = (tky, sku,gru, S):

(1) The user first computes the signature identifier sid = Hj(msg||str), where msg is the
message to be signed and str is an n-bit random string. Then the user produces the
signature tracing token stt = F(tk,, sid) and signature signing token sst = F(sk,, sid).

(2) The user then computes com = Hy(sst||pkyl| - - - ||rpk)} where pkp, . . ., rpk are the public
keys for verifying the signatures in S, from the layer h to layer 0 (the public key at the
layer 0 is rpk).

(3) The signature > = (str, stt, com, ng), where 7 is an NIZK. Roughly, the proof 7 asserts
that the user indeed knows a valid group signing key and uses that in generating the sig-
nature. “Valid" means both the user’s tracing key and signing key have been authorized

by the group issuer (through the signature chain S).

To generate 7, the user computes gid = Hy(rpk), id, = F(tky,, gid), et, = F(sky, id,),
mt,|lidx = F-SPHINCS+.mHash(et,, gr,,), then produces 7 as (details of 75 will follow
in Section 3.3):

76 : P{(gp, rpk, gid, sid, stt, com);(tky, sky, ety, sst, gru, S={op, ..., 00})|stt = F(tky, sid) A sst = F(sky, sid)
A ety = F(sky, F(tky, gid)) A mt,|lidx = Hs(ety||gry) A pky = recoverPK(oy, mty, (n, d, k, (h, idx)))
idx

A pkp_1 = recoverPK (o’h,l,pkh, (n, d, k, (h -1, {
q

J))) A -+ A rpk = recoverPK(oy, pk1, (n, d, k, (0, 0)))

A com = Hy(sst|pkpll - - - |Irpk)}
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— Group signature verification GVf(msg, 2, RL): Given the message msg, the signature X =
(str, stt,com, 75), and the revocation list RL, the verifier performs the following: computes
sid = Hy(msg||str) and gid = Hy(rpk). If 3tk, € RL such that stt = F(tk,, sid), then reject.
Otherwise, verify 7g. Accept the signature if 75 verification succeeds, otherwise reject.

— Tracing algorithm Trace(msg, 2): The tracer maintains a tracing key list TL including all
(u, idy, tky) triples in the group. Given X = (str, stt, com, 7g), the tracer computes sid =
Hji(msg||str), then for 3tk, € TL computes stt’ = F(tk,, sid). If there is an stt’ = stt, the
tracer outputs the corresponding id,. If no matching stt’ is found, the tracer outputs L.

In the case that an id,, is output in the last step, the tracer retrieves the whole (u, id,, tk,)
triple from TL, also takes sid and stt from the signature, then computes gid = H;(rpk) and
a tracing proof 7;:

7y = P{(idy, gid, stt, sid); (tky)|id, = F(tky, gid) A stt = F(tk,, sid)}

The above proof bounds id, to the signature by showing that id, and stt (in the signa-
ture) were generated using the same tracing key tk,. This proof can be instantiated with
MPCitH 2.

MPCitH 2: 7,
Public: (idy, gid, stt, sid)
Private: [tk,]
Output: id], stt’
Check: id], = idy A stt’ = stt
1 id], = MPC_F([[tky], gid);
2 stt’ = MPC_F([tky], sid)

The tracer then outputs (id,, m;) or L.

e Tracing proof verification Given (id,, n;, X, msg), the judge verifies ;. If this proof is
valid, the judge outputs 1 to indicate that id, is the identifier of the ¥’s signer. Otherwise
the judge outputs L.

e Revocation To revoke the group membership of the user u, the group revocation authority
retrieves the user’s tracing key tk, via the group tracer and then adds tk,, in RL.

The security analysis of this group signature scheme, under the security notion [10], is given in
Appendix 4.2.

Remark 3. The revocation algorithm in our scheme follows the idea of verifier-local revocation,
which was introduced in [9]. It currently does not support forward anonymity: when a user is
revoked, its tracing key is published in the revocation list and that allows everyone to trace the
useraAZs past signatures. If forward anonymity is desirable, we can modify our scheme as follows:
when revoking a user u, the revocation authority adds H(tk,) to the revocation list, where H is a
collision-resistant hash function and tk,, is the user’s tracing key. Also, when generating a signa-
ture, the signer needs to extend 7 with a non-membership proof such that the hash of the signer’s
tracing key is not in the revocation list. The complexity of generating this non-membership proof
is logarithmic to the size of the revocation list. This revocation mechanism follows Camenisch
and Lysyanskaya’s approach [18]. Now because the revocation list contains only the hash value of
the tracing key, which cannot be used to trace a user, forward anonymity can be achieved. How-
ever, this approach shifts the burden of proof of (non-)revocation to the signer and increases the
signature size.
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Fig. 3. M-FORS Partial Verification using mt; (with k = 4 and d = 2).

3.3 The Proof g

The most important part in the group signature ¥ = (str, stt, com, ng) is the proof 7. In this
section we dissect it to show the design rationale and explain a change we made to MPC-in-the-
Head, which greatly improves the efficiency and may be of independent interest.

As ¥ is a signature of a message msg, the foremost thing 7 needs to prove is that the signer
knows a group signing key gsk, = (tky, sky, gry, S) and it was used to sign msg. Besides that, 7
also needs to prove that gsk, is authorized by the group issuer. To do that, in s the following is
done:

(1) It proves that stt, sst and com in the signature are produced from some tk,, sk,, and the
message msg (in the form of sid = Hy(msg||str)). The commitment com also bounds . to all
public keys used to blindly verify the signatures in S.

(2) It proves that the same sk, and tk, are used to generate mt, from gid. Essentially, mt, is a
commitment of both sk, and tk,.

(3) It proves that mt, is signed under a private key in a leaf node of the hyper-tree generated
by the group issuer. This is done by verifying all the signatures in S such that mt, and oy,
produce the leaf public key pkp, which in turn with o;_; produces pkj_;, and so on until
reaching the root. The last public key produced is rpk which is published by the group
issuer. All public keys recovered in this process match those committed in the commitment
com.

The challenge for implementing 7g with MPCitH comes from the cost of 4 + 1 M-FORS signa-
ture verifications required by the proof. Recall that in an M-FORS signature (Section 3.1, also the
example in Figure 2), the message hash to be signed is broken into k blocks, and each block is
authenticated with a Merkle-tree of height d. Then the k Merkle tree roots are organized into a
new Merkle tree whose root is the public key. Verifying the full signature means checking whether
the public key can be recovered from the message hash, the secret strings corresponding to the
hash blocks (xgi)), and the hashes along the Merkle tree authentication paths. In total, to verify a
single M-FORS signature, k - (d + 1) + (k — 1) = kd + 2k — 1 hashes are needed, which is in the order
of 10? for a practical setting. The h + 1 factor means that if implemented naively, the MPC used
in g would need to call thousands of times the sub-procedure that implements the hash function,
and the size of the circuit for the whole MPC can go easily above million-gate. Even worse, to
reduce the soundness error, the same circuit needs to be executed tens to hundreds of times in an
MPCitH proof. Thus, a naive implementation of 7z will result in a very large signature size and a
high computational cost.

Our more efficient strategy for implementing 7 is: in MPCitH, rather than repeating t times an
MPC procedure in which the M-FORS signatures are fully verified, we run ¢’ > k MPC procedures
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in which the M-FORS signatures are partially verified, one block in each run (see the example of par-
tial verification in Figure 3). More precisely, we extend the M-FORS with the following algorithms:
— partial-sig(o, MD, i, mp): to extract a partial signature of the i-th block of MD from a full
signature o = {(x, authpath(o)), oy (X2, authpath(kfl))}. The Merkle tree mt; can be
recomputed from o. The partial signature is 9, ; = (x;, authpath(i), authpath(k’i)) where
(xi, authpath(i)) is a copy of the i-th pair in ¢, and authpath(k’i) is the authentication path
of r; (the root of the i-th Merkle tree) in mty.
— partial-rec(0,. i, pi, i, mp): This algorithm recovers the public key from 0, ; and p;.
Given d,; = (x,authpath,authpath’), first compute the Merkle tree root r; from
(x, authpath, p;), then compute the Merkle tree root r, from (r1, authpath’, i). Output r,.

With partial-rec, only one path is used to recover the M-FORS public key instead of k paths.

The MPC procedure for proving the v-th block in 7 is shown in MPCitH 3. The signer needs to
use partial signatures in the MPC. Recall that in the group signing key gsk,,, alist S = {0}, ..., 00}
of h + 1 signatures are stored, one for each layer in the hyper-tree of F-SPHINCS+. The signer can
extract a partial signature for the v-th block from each signature, ie., {05, 0, ..., 00} In Line
10, an MPC subroutine MPC_pRec that implements partial-rec is used. This subroutine uses the
input to compute the corresponding public key at the I-th layer in the hyper-tree (stored in [M]
and also appended to [COM]). After the last iteration, [COM] is hashed and [M] is revealed. The
results will be checked by the verifier to see whether they match com and rpk. If so, the signer is
likely to possess valid partial signatures along the path from the idx-th leaf node to the root node
in the hyper-tree.

Why does this strategy make sense? In an MPCitH proof, the same procedure is run multiple
times. Each run has a soundness € that a cheating prover can succeed without being detected. Thus,
t runs are needed so that €’ is negligibly small. In our case, the main cost of the MPC procedure
comes from verifying all the M-FORS signatures. The full verification requires every block of the
message digest or the child public key to be verified. Our observation is that if a cheating prover is
to succeed, then they have to succeed with a high probability in more than one block. If the prover
has to cheat in A out of k blocks, then using partial verification with ¢’, such thatt’-A/k > t, ensures
that the prover has to cheat in more than ¢ runs, and hence with a negligible success probability.
As we analyzed, the implementation with full signature verification requires ¢ - (h+1) - (k - d + 2k —
1) calls to the MPC hash procedure. The partial verification-based implementation, on the other
hand, requires only ¢’ - (h + 1) - (d + 1 + [log k]) MPC hash calls. The improvement is roughly tt—lf
times.
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Experiment Expgl'g‘g\'CMA (n)

- (sk,pk) « kg
- (M*,6*) « AS19n(K) (pk) and A can query the sign Oracle at most g times.
- Return 1iff of (pk, M*, %) = 1 AM* ¢ {M;}L,

Fig. 4. ¢-EU-CMA game.

MPCitH 3: MPC instance for the v-th block in g
Public: gp = (n, q, h, d, k), rpk, sid, gid, stt, com, v
Private: [tky], [sku], [gru], [0c,,0]- -, [0op,0]
Output: pko, stt’, com’

Check: pko = rpk A stt’ =stt A com’ = com
1 stt’ = MPC_F([tky], sid);

2 [[sst] = MPC_F([sky], sid);

3 [idy]] = MPC_F([tky], gid);

4 [et,] = MPC_F([sky], [idu]);

5 [mty]||[idx] = MPC_H3([et, ]| [gr.]);

o IM] = [t

7 [COM] = [sst];

s forl=h;1>0;]—-do

9 parse [M] into k blocks [po]., ..., [pr_1], each block is d-bit;

10 [M] = MPC_pRec([0s,,0], [pol. [idx], gp, 1, v);

u | [com] = MPC_H1([coM]||[M]):

| [idx] = [Lidx/q]];

13 end

14 com’ = [COM];

15 pko = Reveal([M]);

The soundness analysis of 7 is given in Appendix D.

4 SECURITY ANALYSIS
4.1 Security Analysis: F-SPHINCS+

The standard security definition for digital signature schemes is existential unforgeability un-
der adaptive chosen-message attacks (EU-CMA). It can be extended to a few-time signature
by limiting the adversary’s call to the signing oracle to g times where ¢ is the maximum number
of signatures that the few-time signature scheme is allowed to generate for each signing key. Let
SIG = (kg, sign,vf) be a g-time signature scheme, Figure 4 shows the g-EU-CMA game.

Definition 1 (q-EU-CMA). Let SIG be a digital signature scheme. It is said to be q-EU-CMA secure,
if for any adversary A, the following holds:

q-EU-CMA

q-EU-CMA
CCs1G (n)

Su (A(n)) = Pr EXPgic.a n) = 1| < negl(n)

THEOREM 1. For suitable parameters, n,d, k, h, q, the F-SPHINCS+ signature is qh—EU—CMA secure
— H, is SM-TCR and SM-DSPR secure;
— H; is TSR secure with at most q queries;
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— H,y,54 is ITSR secure with at most qh queries;
— prf is a secure pseudorandom function.

Proor. To successfully forge a group issuer’s signature on a message M chosen by the adversary,
there are the following mutually exclusive cases:

(1) Let MD||idx =54 (M]|gr) for some gr. In the forged signature, all secret strings correspond-

ing to MD = pol| - - - ||pk-1, i-€., {xgi)}fz_ol, are the same as generated from leaf;;,’s secret

key. This case consists of the following sub-cases:

(a) The adversary learns all secret strings from signatures obtained in the query phase.

(b) Some secret strings are not leaked from previous signatures, and for each of them, the
adversary either:

(i) learns it by breaking the pseudorandom function that is used to expand the secret key
into x;;
(ii) or learns it by looking at their H; hash values and finding the Preimages.

(2) Let MD||idx = H,,54(M||gr) for some gr. In the forged signature, some secret strings cor-
responding to MD = po||---||pk-1, ie., {xgi)}fz’ol, are NOT the same as generated from
leaf;gy’s secret key. Then let S be the list of A + 1 M-FORS signatures in the forged sig-
nature, we can find i such that when verifying the i-th signature (0 < i < h), we obtain
the same public key as would be generated by the signer, but for all 0 < j < i, we obtain a
different public key as would be generated by the signer. This means:

(a) The adversary has found at least one second-preimages of H; so that some Merkle trees
in the ith signature are computed with the second-preimages. They end up having the
same roots as the trees computed by the group issuer.

(b) The adversary knows all secret strings corresponding to the public key produced from
verifying the (i — 1)th signature. This public key is different from the public key at the
same location generated by the group issuer. This can be done by either:

(i) learning all from previous signature queries;
(ii) or breaking the pseudorandom function;
(iii) or finding some Preimages of Hj.
Given the above, we analyze the F-SPHINCS+ signature scheme through a series of games:

Game 0: The original EU-CMA game in which the adversary needs to forge a valid group issuer’s
signature after g, queries.

Game 1: Exactly as Game 0 except all outputs of prf are replaced by truly random n-bit strings.
We eliminate from the above list Case 1.2.1 and 2.2.2 by this modification. Since each call to prf
uses a secret key and a distinct value as input, assuming prf is a pseudorandom function, we have:

ISucc®™e0(A(n)) — Succ®®™(A(n))| < negl(n)

Game 2: Game 2 differs from Game 1 in that we consider the adversary lost if the adversary outputs
a forgery by breaking the ITSR security of Hp,s4. This modification eliminates from the above list
Case 1.1. The winning condition in Figure 4 is changed to:

- Return 1iff ITSR(Hynsg, M) = 0 A 0f (pk, M*, ") = 1 A M* ¢ {M;}7 .
The predicate ITSR is defined as the following:

— Let M* be the message that the adversary chooses to generate the forgery on, and gr* the
random string used by the adversary to compute MD*||idx* = Hp,54(M*||gr™").

— Parse MD* = p(||---||p;_, where each p; € [0,2¢ — 1]. From the above we obtain a set
C* = ((idx",0,pp), . .., (idx", k = 1,p; ).
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— For each message queried in the query phase M; (1 < i < ¢"), and gr; the random string,
compute MD;||idx; = Hpsq(M;||gr;) and obtain C; = ((idx;, 0, pi0), . . ., (idxi, k — 1, pji k—1)).
h
—Return 1iff C* C Uiq:1 C;
We can see that ITSR(Hp,sg, M*) = 0 iff the adversary can break the ITSR security of Hp,g.
Hence, we have:

[Succ®4meL(A(n)) — Succ®™¢(A(n))| < Succg'fiqh (A) < negl(n)

Game 3: Game 3 differs from Game 2 in that we consider the adversary lost if the forgery con-
tains a second-preimage for an input to H; that was part of a signature returned as a signing-query
response. Here the second-preimage can be included explicitly in the signature, or implicitly ob-
served when verifying the signature. This eliminates from the above list Case 2.1. Then we have:

|Succ®4me2(A(n)) — Succ®m 3 (A(n))| < SuccSM TCR(A) < negl(n)

Game 4: Game 4 differs from Game 3 in that we consider the adversary lost if the adversary outputs
a forgery by breaking the TSR security of H,, which allows the adversary to forge an intermediate
signature in S, and then any signature earlier in the chain. This eliminates from the above list Case
2.2.1. The winning condition in Figure 4 is changed to:

h

— Return 1iff TSR(Hz, M*) = 0 A ITSR(Hpmsg, M*) = 0 Avf(pk, M*,0*) = 1 AM* ¢ {M;}L,

The predicate TSR is defined as the following:

— The adversary chooses an intermediate node in the hyper-tree at address (a, b), and two n-bit
string L*, R".

— For each signature obtained in the query phase, if S; includes a signature generated using
the secret key in node (a, b) over the public key in one of its child nodes, parse this public
key into k blocks, each of d-bit pk; = piol| - - - ||pi. k-1, and generate a set C; = {(j,p,-,j)}j’.‘:_()1

— Compute pk* = Hy(aux||k[[0[[0]|L*[|R"), parse pk™ into pg||---||p;_,, and generate a set
C' = {G ¥

—Return 1iff C* c UL, C

Note that each M-FORS public key is the root of a Merkle tree generated from pseudorandom
strings. Also for each intermediate node in a hyper-tree, it has at most g children, hence no more

than q signatures signed by the secret key in this intermediate node can be obtained by the adver-
sary. So TSR(H,, M*) = 0 iff the adversary can break the TSR security of H,. Hence, we have:

[Succ®4me3(A(n)) — Succ®me4(A(n))| < Succ}Tq‘: (A) < negl(n)

Now the cases in which the adversary can forge a signature are all eliminated except Case 1.2.2
and 2.2.3, which requires the adversary to find a Preimage of at least one hash value produced by
H;. The success probability of finding a Preimage is as analyzed in [6]:

SuccPUmet(A) < 3 SucciIMp TCR(A) + AdVSM DSPR(A) < negl(n)

So overall, the advantage of the adversary is negligible. O

4.1.1 TSR Security of H,. In any case, q signatures can be generated under the secret key of a
non-leaf node in the hyper-tree. Assuming the adversary knows all of them, then for each block
of the chosen pk*, the probability of the secret string has been leaked is 1 — (1 — Zld)q, so all secret

strings have been leaked is (1 —(1— 2Ld)q)k_ Ford = 16, = 1024, k = 68, this probability is 2746387,
if k = 35, this probability is 27210-37,
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4.1.2 ITSR Security of Hs. For a leaf node of the hyper-tree, it may have been used to sign y
signatures out of the total g5 signature queries. So the probability that all secret strings of a chosen
message M being leaked through a query is:

D=3 () 0-5)"

I Y] T h “hy
e 2 Y q q

Ford = 16,q = 1024,k = 68,h = 6, qs = 2°, this probability is 274°7-32_if k = 35, this probability
{s 2-208.95

4.2 Security Analysis: the Group Signature

We follow the security model for fully dynamic group signature schemes by Bootle et al. [10]. This
model is intended to be general enough to accommodate many possible designs and is defined
with the flexibility to allow certain aspects to be governed by policies defined out of the model
(e.g., whether the group manager is one or two separate entities, how the user is activated and
revoked). We adapt the model by concretizing the policies with our design choices.

In our scheme, group membership is maintained through three lists: GL, TL, RL. In particular,
GL and TL record information about users who have joined the group, and RL records information
about users who have been revoked. In the model, we abstract GL and TL into a registry Reg that
is a table storing various data of a group member. For (u, id,, tk,) in TL and (u, id,, et,, gry, S) in
GL, the entry Reg, = (u, idy, tky, ety, gry,S). The revocation list RL is maintained by the group
revocation authority and is made public. In the model, RL is modeled as a list with versions. The
lifetime of the group is divided into epochs. Each update on RL triggers a new epoch. We use
RL; to denote the version of RL at epoch 7. The following algorithm/oracle can be used to check
whether a user has been revoked:

— IsActive(u, 7): Given u € N, if Reg,, # L, and tk, ¢ RL,, return 1. Otherwise, return 0.

In this model, the security of a dynamic group signature scheme is captured through security

properties, including correctness, anonymity, traceability, non-frameability, tracing binding, and
tracing soundness. In the following, we will go through the properties and show why they hold in
our scheme.
Correctness Informally, correctness covers two aspects: (1) an honest user can successfully join
the group, despite the existence of other malicious users; (2) a signature generated by an honest
group member should always be valid when being verified (if the member has not been revoked).
More formally, correctness is defined as an experiment in Figure 5. In the experiment, several global
variables are defined: h tracks the honest user, K tracks the number of attempts that the honest user
tries to join the group, N tracks the number of users who invoked Join protocol, Tement> Tjoins Trevoke
track the current epoch as well as the epoch in which the honest user joins and is revoked. The
adversary has access to the following oracles:

— AddHU(): This oracle adds a single honest user to the group. In each call, the oracle executes
the Join protocol by simulating the honest user and the honest group issuer/tracer. The oracle
can be called at most k(n) times where k() is any polynomial. Once the user is admitted
into the group, further calls will be ignored. It returns the honest user’s group membership
secret key gsky, as well as all parties’ views to the adversary. Each view records the messages
received by the party in the Join protocol.

— AddCU(i): This oracle allows an adversary to add a corrupt user i to the group and get the
corrupted user’s view and output. The oracle plays both roles of honest group issuer and
tracer in the Join protocol. The adversary can deviate from the Join protocol by sending
arbitrary messages to the oracle.
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Experiment Expiiiq 4(n)

- h=1;K = 0; N = 0; Tcurrent = 0; Tjoin = ©9; TRevoke = ©0.
mpk, msk) < Init (n); Reg = 0; RLy = 0.

(mp

_ (msg) T) — AAddHU, AddCU, Revoke, ReadReg (mpk, RL())

- If K = k (n) and Trevoke = % and 7joi, = 00 return 0.

If h =1 or 7 > Tcupren: return 1.

If Tjoin < T < TRevoke and IsActive (h, 7) = 0, return 0.
If IsActive (h,7) = 0 return 1.

> « GSig (gskp, msg).

- Return GVf (msg, %, RL;).

Fig. 5. Correctness game.

— Update(R): This oracle allows the adversary to update the revocation list RL, to remove the
set of users R from the group. If & is revoked in this update, set 7., oxe tO Teurren:-
— ReadReg(u): Given u € N, return the entry Reg,,, or L if no such entry for u.

Orales in Experiment Expif ;¢ 4(n)

AddHU() AddCU(i)
—If K = k (n) return L —Ifi¢[N+1]Vi=hreturn L
— K=K+1 —Ifi=N+1:
—Ifh=1: - N=N+1

- N=N+1h=N+1 — Join?I’TR means i is corrupted, GI and TR are honest.
— (gskp, Viewy, Viewg, Viewrg) « Join(msk, n) — (gsk;, View;, Viewgy, Viewrg) Join?I’TR(msk,
—1If gskp #1: n)

— Toin = TCurrent — Return (gsk;, View; )

— K = k(n) // maximal number of rounds
— Return (gsky,, Viewy, Viewgy, Viewrg)

Update(R) ReadReg(u)
—If R ¢ [N] return L —Ifu ¢ [N] return L
— Foreach u € R do — Return Regy,

- Retrieve Reg,,

- get tky from Reg,,

- Revoke(tky)
— TCurrent = TCurrent + 1
—If h € R and TRevoke = OO S€t TRevoke = TCurrent
— Return RL =RL

TCurrent

Note that the correctness of the tracing algorithm and tracing proof verification algorithm is not
involved in this experiment. It will be covered in the traceability experiment as shown in Figure 7,
which guarantees that if a group signature scheme holds traceability a signature generated by an
honest or corrupted signer should always be traced to the correct signer.

THEOREM 2. Our group signature scheme is correct, that is for any PPT adversary A:
Pr [Expc"" (n) = 1] =1 — negl(n)

FDGS,A

assuming the correctness of the signature S generated by the group issuer and the proof systemI1, and
the collision-resistance of the function F.
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Experiment Expa™? (n) // b € {0,1}

FDGS,A
-C=0,H=0,U=0,N =0, 7curent =0

- (mpk, msk) < Init (n) ;Reg = 0; RLy = 0
- b* « AAAHU, AddCU, Chal, Tracel, ReadReg Update,GSigU (m nk msk, RLo)

- return b*

Fig. 6. Anonymity game.

Proor. Following the correctness experiment, the adversary A only wins the game in any of the
following three cases: (1) The join process (via AddHU) fails to let the honest user & join the group
(i.e., K = k(n) and Tgepor = 0 and 7;,;, = ©0); (2) The joined and unrevoked user A is considered to
be inactive (i.e., Tjoin < T < Trq,,,.. and IsActive(h, 7) = 0); (3) The produced signature > created
under gsky, fails to verify (i.e., GVf(msg, 2, RL;) = 0).

Case 1 can happen if A can predict the honest user’s tracing key tkj; and successfully registered
with the same idy, = F(tky, gid) in a previous session (via AddCU(i)). In AddHU, the Join protocol
is executed between the honest user h and the honest group issuer/tracer, so tk; must be selected
at random, and the probability of A can pick the same key, i.e., tk; = tk, in AddCU is negligible
in the security parameter. Apart from this, the only possibility is that tky, # tk; but id, = id;.
This means F(tkp, gid) = F(tk;, gid) - a collision of F is now found, which contradicts the assump-
tion that the function F is collision-resistant. Therefore, the probability of Case 1 happening is
negligible.

Case 2 only happens if there is another user i created by A (via AddCU(i)) with tk; = tky, and
this user i is revoked when h is active (joined but not revoked). If the user i joined the group
via AddCU before the user h, this is discussed in Case 1, and the probability is negligible. If the
adversary tries to add i with tk; = tkj (the adversary can get gskj, that include tkj when calling
AddHU so does not need to guess) to the group via AddCU after the user A, it will be detected by
the honest group issuer/tracer because, in the step 4 of the Join protocol, the group tracer checks
whether tk is in TL and the protocol terminates if yes. Then the adversary’s attempt will always
fail.

It remains only Case 3. In this case, X is generated and verified in the epoch 7 when IsActive(h,
RL;) = 1, that indicates h is not revoked. Following the description of our group signature
scheme, X will verify, given that the group issuer’s signature used as the user h’s credential and
the proof system II used in the group signature are both correct. Therefore, the probability of
Case 3 happening is also negligible.

Throughout these three cases, this theorem is held. m]

Anonymity This property means that a group signature does not reveal the identity of its signer,
i.e., the adversary cannot distinguish which one of the two honest signers has signed a targeted
message while both signers and the message are at the adversary’s choice. In particular, as long
as the signer’s signing key is not leaked and the group tracer is not corrupted by the adversary,
the adversary should not be able to breach anonymity even if it fully controls the group issuer
and other users. Anonymity is captured by a game in Figure 6. In the game, a global variable C is
used to track the challenge signature chosen by the oracle, { maintains the set of honest users,
U tracks the users chosen for the challenge, and N tracks the number that the Join protocol has
been invoked.
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The adversary has access to the following oracles:

Oracles in Experiment Exp&™9%2  (n)

AddHU()
—h=N+LN=N+1,H=HU{h}

— (gskp, Viewy, Viewgy, Viewrg) < Join(msk, n)

— Return (Viewy, Viewgr)

Chaly(RLy, » 159, d0s i1)

— if {io, i1} € H return L

— 3y « GSig(gski,, msg)

— X1 « GSig(gski,, msg)

—If GVf(msg, 2o, RL ) = 0 return L
—If GVf(msg, 21, RLy 0, ) = 0 return L
—C={msg,2p}, U = {io, i1}

— Return 3,

TCurrent

ReadReg(u)

—Ifu ¢ [N] return L
— Retrieve Reg,, = (u, idy, tky, ety, gru, S)
—IfuelU
- Return (u, idy, ety, gry, S)
— Else
~-lfueH, H=H-u

FDGS, A

AddCU(i)

—Ifi¢g[N+1]Vie Hreturn L

—Ifi=N+1,N=N+1

— (gsk;, View;, Viewgy, Viewrg) < Join; g1 rr
(msk, n)

— Return (gsk;, View;, Viewgy, Viewrrg )

TraceURL, msg, X)

—If (msg, %) € Creturn L
— If GVf(msg, 2, RL) = 0 return L
— return Trace(msg, %)

GSigU(msg, u)
—Ifu ¢ [N] return L
— return GSig(gsky, msg)

Update(R)
—IfRZ[N]VRNU+# 0 return L
— Foreach u € R do

- Retrieve Reg,,

- get tk, from Reg,,

- Revoke(tky)

— TCurrent = TCurrent + 1

- Return (u> idiu tklh ety, gru, S) — Return RLTCurrem =RL

— AddHUY(): This oracle allows the adversary to add multiple honest users, one each time, to
the group. The Join protocol is executed by the oracle, and the adversary gets the honest
user’s and group issuer’s views.

— AddCU(i): This oracle allows an adversary to add a corrupt user i to the group. In this
version, the user, group issuer and tracer are all corrupted. The adversary can deviate from
the Join protocol arbitrarily, and get the corrupted parties’ outputs and views.

— Chal, (RL, msg, iy, i1): This oracle returns a challenge signature and can be called only once.

The oracle is given a message msg and two honest users i, i;. Then for a b i {0, 1}, user
ip’s group signing key gsk;, is used to generate a challenge signature. Both users must not
be revoked with respect to RL.

— TraceU(RL, msg, X): Returns the ID id,, of the user who produced a valid signature ¥ on msg,
and the corresponding NIZK ;. This oracle cannot be invoked with the signature generated
from Chal,.

—ReadReg(u): Given u, if u € U return the entry in group issuer’s GL list; if u ¢ U, return
the whole Reg, (GL+TL) and also remove u form H if u € H.

— Update(R): This oracle allows the adversary to update the revocation list RL, to remove the
set of users R from the group.

— GSigU(msg, u): This oracle allows the adversary to obtain a signature of msg, under an hon-
est user u’s group signing key.
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THEOREM 3. Our group signature scheme is anonymous, that is for any PPT adversary A,

iPr [Epr"O"_1 (n) = 1] - Pr [Epr"O”‘o (n) = 1]| < negl (n)

FDGS,A FDGS,A

if the function F is a PRF, the function Hy is a prefix-free PRE, and the proof system Il is a zero-
knowledge proof system.

ProoF. The adversary A enters either Expyis | or Expiies . and needs to figure out which
experiment it is in to win the anonymity game. In the experiments, an oracle interacts with the
adversary and answers any oracle queries from the adversary. At the start of the experiment, the
oracle chooses iy, i1 uniformly at random from [N]. If Chal,, is invoked with users other than iy, iy,
the oracle rewinds the adversary to the start of the experiment. The probability that an experiment
proceeds without rewinding is # which is polynomial in n and computable. In either experiment,
the only piece of data that contains information about b is X, returned by the oracle Chal,. Hence,
in the cases that Chal, returns L, no information about b could possibly be given to the adversary
A, so A cannot do better than random guess and its advantage is 0:

|Pr [Eprnon'l (n) = 1] —Pr [Eprn(’n_0 (n) = 1” =0

FDGS,A FDGS,A

Hence in the following, we only consider the case that Chal, returns %;,. We process this proof
by using a series of games.

Gamey: This game is the original experiment Expie?  (n).

Game;: This game differs from Game, only in that, when calling the oracle Chal, (RL, msg, iy, i1),
the oracle replaces 7 with the output of the simulator of 7, and returns (strp, sttp, comp, Simy,)
instead of 2. The advantage that the adversary can distinguish whether it is in Game, or Game,
is negligible, otherwise, it contradicts the assumption that 7 is zero-knowledge.

Now let us move on to other parts in 3. Recall that stt, = F(tk;,, sid) and sid = H;(msg||str),
where tk;, is a uniformly random secret key held by the user i;,. We need to ensure the adversary
knows nothing about tk;, . From the pseudocode of the oracles, we can conclude that the adversary
cannot obtain tk;, or tk;, directly. In particular:

— By calling AddHU, the returned views do not contain tk of the honest user directly;

— By calling AddCU, the adversary obtains tk of the corrupted user because gsk is given to
the adversary, but the adversary cannot nominate this user in the challenge because it is not
in H so Chal, will return L;

— The output of TraceU and GSig does not contain tk of any user;

— By calling ReadReg, the adversary can get tk for any user u except {io, i1};

— Lastly, the adversary cannot add tk of either iy or i; into RL by calling Update, because if
iy or iy has ever been revoked, GVF will output 0 and the oracle Chal, will return L.

While tk;, and tk;, are not given directly to the adversary, id;, = F(tk;,, gid) can be seen by the
adversary. We then have the next game:

Game,: This game is modified from Game;. In this game id;, is replaced by the output of a
random function f : {0,1}" — {0, 1}", also 7, and 7; are replaced by the output of their simulator.
We can say Game, and Game; are indistinguishable, otherwise, it contradicts either the fact that
F is a pseudorandom function, or that x, and x; are zero-knowledge.

In Game;,, the adversary gets absolutely no information about tk
now proceed to the next game:

Games: This game is modified from Game;,. In this game, stt; is replaced by the output of a
random function f : {0,1}" — {0,1}". Games; and Game, are indistinguishable, otherwise it
contradicts to the fact that F is a pseudorandom function.

directly or indirectly. We

ips
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Next, let us move to com = Hi(sstp||pkpl| - - - ||rpk)}. We first argue that the adversary knows
nothing about sst, = F(sk;,, sid). We start by using a similar argument as above that sk;, has never
been leaked directly, and then the following game that deals with indirect information of sk;, :

Gamey: This game is modified from Games. In this game, et;;, = F(sk;, ;q,) is replaced by the
output of a random function f : {0,1}"* — {0,1}". Game, and Games are indistinguishable,
otherwise it contradicts to the fact that F is a pseudorandom function. Note that sk;, is also used
as a private input in 7, and since 7, has already been replaced in Game, by the output of its
simulator, we do not need to do anything in Game,.

Then we have a game to deal with sst;:

Games: This game is modified from Game,. In this game, sst, = F(sk;,, sid) is replaced by
the output of a random function f : {0,1}" — {0,1}". Games and Game, are indistinguishable,
otherwise it contradicts to the fact that F is a pseudorandom function.

Now we can deal with com, = Hi(sstp||pkpl||- - |[rpk)}. In Games, sstp, is already a random
string, so we have the following game:

Gameg: This game is modified from Games. In this game, com;, is replaced by a random n-bit
string. Now we discuss the fact that H; in the com; computation can be treated as a PRF. Let
H:{0,1}" x {0,1}° — {0,1}" denote the underlying compression function that is a PRF. H; is a
cascade construction of H. Based on [5], a cascade construction with its underlying compression
function being a PRF is a prefix-free PRF, meaning that it is a PRF as long as no input is a prefix
of another input. In our group signature scheme, com;, = Hi(sstp||pkpl| - - - ||rpk)} is implemented
by using H as follows: Let ko = sst;, and pko = rpk,

k,’ = H(ki—l,pkh+1—i)7 fori=1,...,h+1,

where h is the number of M-FORS layers in the Group-tree, and finally com;, = kp1. Here, sst}
serves as an n-bit key that is not known by the adversary A, and all inputs pky, pkp_1, ..., rpk are
of the same length, so no query of the adversary to H is a prefix of another query. Therefore, in
this case, H; is a PRF. This concludes that Games and Games are indistinguishable otherwise it
contradicts the fact that H; in the com;, computation is a PRF.

Now if the adversary enters the 1 version or the 0 version of Games, in which Chal; or Chal,
is executed respectively, and the output of Chaly, is not L, then the output is stry, rlp, 12, Simy,
where r1; is the random string from random function f replacing stt;, and r2; is the random
string replacing com;. The four parts in the output are all independent of b (stry, is also a random
string). Hence given the output,

\Pr [EprnO“'1 (n) = 1] —Pr [Eprnon‘O (n) = 1]| =0

FDGS,A FDGS,A

All games from Gameg to Game, can only be distinguished with negligible probability with the
previous one, so we have

|Pr [Eprn"n‘1 (n) = 1] —Pr [Eprn"n‘O (n) = 1]| < negl(n)

FDGS,A FDGS,A

O

Traceability Traceability ensures that a group member (even malicious) can be traced by the
group tracer through a valid signature, i.e., the tracer can output a convincing proof showing that
the signature was signed by the group member. The game is as shown in Figure 7. In the game, a
counter N is maintained to track the number that the Join protocol has been invoked.

The adversary has access to the following oracles:

— AddCU(i): This oracle allows an adversary to add a corrupt user i to the group. In the Join
protocol, the group issuer is honest, and the user and the tracer are corrupted.
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Trace (n)

Experiment Expp 555 4

- N =0; Tcurrent =0

- (mpk, msk) « Init (1");Reg = 0; RLy = 0

_ (msg, >, T) — AAddCU,Update,ReadReg,WriteReg (mpk, RL())
- If GVf(msg, 2, RL;) = 0 Return 0

- (idy, m;) < Trace (msg, )

- If IsActive (u, 7) = 0 Return 1

- If TVf (idy, 7+, 2, msg) = 0 Return 1

- Return 0

Fig. 7. Trace game.

— Update(R): This oracle allows the adversary to update the revocation list RL, to remove the
set of users R from the group.

— WriteReg(u, M): Given u, if Reg,, is not empty, set Reg,, = M.

— ReadReg(u): Given u, return the whole Reg,, (GL+TL).

Oracles in Experiment Exp;’D“ég a(n)
AddCU(i) Update(R)
—1Ifi¢ [N + 1] return L —If R ¢ [N] return L
—Ifi=N+1,N=N+1 — Foreach u € R do
— (gsk;, View;, Viewgy, Viewrg) — — Retrieve Reg,,
Join{l . (msk, n) - get tk,, from Reg,,

— Return (gsk;, View;, Viewrg ) — Revoke(tky,)

— TCurrent = TCurrent + 1

— ReturnRL,, ... = RL
WriteReg(u, M) ReadReg(u)
— IfReg,, #L return L —Ifu ¢ [N] return L
—Reg, =M — Return Reg,,

THEOREM 4. Our group signature scheme is traceable, that is for any PPT adversary A

T
Pr [Epr%CéS’A(n) = 1| < negl (n)
if the group issuer’s signature S is unforgeable, the function F is collision-resistant, and the proof
system I1 is a zero-knowledge proof system with simulation-sound extractability.

Proor. Recall that the adversary A wins the traceability experiment if it generates a valid sig-
nature that either:
— Case 1: it traces to an inactive user, i.e., IsActive(u, 7) = 0;
— Case 2: it traces to an active user but an associated proof 7, is invalid, i.e., TVf (id,,, 7r;, 2, msg)
=0.

In the following, we will prove that the probability for these two cases is negligible. Let
(msg, 2, 7) be the output of A in the experiment Exp;%‘g’sﬂ(n). Parse X as (str, stt, com, ng). When
Case 1 occurs, the signature is traced to an inactive user u, which means either Reg, = L or
tk, € RL;. It then leads to two sub-cases.

— Case 1,: Reg, = 1 means that A has successfully created a group signature without suc-
cessfully joining the group. In other words, the adversary can obtain an unauthorized group
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Non-Frame (n)

Experiment Expp 5 &gy

- Regp=1;5=0

- (mpk, msk) « Init (1”); Reg = 0; RLy = 0

_ (msg’ >, 1y, T) — AAddHU,TraceU,GsigHU (mpk, msk, RL0>
- If GVf(msg, 2, RL;) = 0 return 0.

- If (msg, %) € S return 0

- Return TVf (idy, s, 2, msg).

Fig. 8. Non-frameability game.

signing key and generates X with it. A group signing key is gsk,, = (tky, sky, gry, S). While
it is easy for A to generate tk,, sk, gr, by itself, S is a chain of signatures generated by the
group issuer. Obtaining an unauthorized group signing key hence can be reduced to forging
the signatures in S. Assuming the group issuer’s signatures are unforgeable, the probability
of this case is negligible.

— Case 1p: In this case tk, € RL;, but also note that this case also requires GVf(msg, >, RL,)
to output 1, otherwise Expra_ = returns 0. This can happen if the adversary can find

FDGS, A
two distinct tracing keys tk, and tk], such that id, = F(tky,,qgid), id, = F(tk],gid),
and et, = F(sky,id,) = F(sk,,id]). The adversary A computes id, = F(tky,gid) and
et, = F(sky,idy,) in the Join process, but computes stt = F(tk,, sid), id,, = F(tk], gid) and
et, = F(sk}, id},) in the signing process. Then tk, can be revoked but GVf(msg,%,RL;) = 1.
This case requires the adversary to find a collision of F, and due to the property of simulation-
sound extractability of II, this collision can be extracted. Since F is collision-resistant, Case

1p can happen only with a negligible probability.

When Case 2 occurs, the signature is traced to an active user i through a legitimate tk,, that
has been recorded by the group tracer. In this case, the tracer should also have recorded id, =
F(tky, gid), so assuming 7; is complete, the probability of this case is also negligible.

Throughout these two cases, this theorem is proved. O

Non-frameability Non-frameability is a security notion that even if the rest of the group as well
as the group issuer/revocation authority (but not the tracer) are fully corrupted, they cannot falsely
attribute a signature to an honest member who did not produce it. In the game Expll}]}’)“él;ra;‘“e(n) (see
Figure 8), the adversary can add at most one honest user. We note that the adversary controls the
group issuer and hence a session identifier no longer carries much meaning the adversary can
pretend the user has any session identifier. Instead, without loss of generality, we simply identify
the honest user h with a generic record Regy, and require that this is written once when created
and cannot be modified afterward. We also maintain a global list S of signatures produced by the
honest user. We grant the adversary access to the oracles described below. Note that since the
group issuer and revocation authority are corrupted, they can manipulate the revocation list and
create corrupted users. The adversary also obtains the content of Regj except tk; when adding
the honest user.

— AddHU(): This oracle allows the adversary to add a single honest user to the group. In the
Join protocol, the user and the tracer are honest, and the adversary controls the group issuer
and also gets the honest user’s and group issuer’s views.

— TraceU(RL, msg, %): This oracle allows the adversary to obtain the tracing result of a valid
signature which could be either a forgery or an output of the GSigHU oracle. The tracing
result includes the id of the user who generated this signature and the corresponding ;.
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Note for signatures generated by the adversary on behalf of corrupted users, the adversary
can generate the tracing result locally since it knows tk,,.

— GSigHU(msg): This oracle allows the adversary to obtain a signature of msg, under the hon-
est user’s group membership secret key gskj. The tracing token of the signature is recorded

in S.
: : Non-Frame
Oracles in Experiment Expy S¢r 5 44 (n)
AddHU() TraceURL, msg, X)
— IfRegy, #.L return L — Given X = (str, stt, com, 7G)
— (gsky, Viewy, Viewgy, Viewrg) «— JoinZ’ITR(msk, — If GVf(msg, %, RL) = 0 return L
n) — return Trace(msg, X)

— Regy, = (h, idy, tky, ety, mty, idx, S)
— Return (Viewy, Viewgr)

GSigHU(msg)

— IfRegy, = L return L
— % = GSig(gskp, msg)
— S =SU(msg,2)

— return X

THEOREM 5. If the proof system 11 (including (n,, g, 714)) is a zero-knowledge proof system with
simulation-sound extractability, the function F is a PRF, additionally collision-resistant, then our group
signature scheme offers non-frameability. That is, for any PPT adversary A,

Pr [Expg"D"éFgf’A”e(n) = 1] < negl (n)

ProoF. In the experiment, the adversary wins if it can generate (msg, 2, 1;, 7), such that the X
is a valid signature of msg at epoch 7, and this signature was not generated by the honest user but
the signature can be traced to the honest user. We process this proof by using a series of games.

Gamey: This game is the original experiment Expg[")’é_SF 24me(n).

Game;: This game differs from Game, only in that, when calling the oracles AddHU, GsigHU,
and TraceU, the zero-knowledge proof 7, 7 and 7, are replaced by the output of their simulators.
The advantage that the adversary can distinguish whether it is in Game, or Game; is negligible,
otherwise, it contradicts the assumption that ,, 7, and 7; are zero-knowledge.

Game,: This game differs from Game; only in that, idj is replaced by an n-bit random string.
Recall that idy, = F(tky, gid) where tky, is a uniformly random key not disclosed to the adversary
in any way. Hence, the advantage of the adversary can distinguish Game, and Game; is negligible,
otherwise, it contradicts the assumption that F is a PRF.

Then by transitivity, we have:

|Pr [Exp?%“g;rif‘ne(n) = 1] — Pr[Game, a(n) = 1]| < negl (n)

In Gamey, idy is chosen independently of tkj (or any tk chosen by the adversary), hence
intuitively the adversary should not be able to attribute a signature that is not generated by
GSigHU to idj,. Next, we formally prove this. The adversary outputs (msg, %, 7;, 7), where ¥ =
(str, stt,com, 1), and there are three cases in which TVf(idy, 7;, 2, msg) = 1 (hence the output of
Game; is 1):

(1) The adversary added a corrupted user u, such that F(tk,, gid) = idy. Then ¥ and 7, are

generated using u’s group membership secret key gsk,,. Given that idj, is uniform, the proba-
bility of this case is negligible. If this case happens, due to the property of simulation-sound
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Tracing-Binding (n)

Experiment Exp. 4 4

- (mpk, msk) « Init (1")

- (RL,msg, 3, idy, n}}, idy, 7)) «— A(mpk, msk)
- If GVf(msg, 2, RL) = 0 return 0

- If TVf(idy, 7}, %, msg) = 0 return 0

- IfTVf(idy, n7, %, msg) = 0 return 0

- If idy, # idy return 1, else return 0

Fig. 9. Binding tracing game.

extractability of 7 and n;, the value tk, can be extracted, therefore, it contradicts the as-
sumption that F is a pseudorandom function.

(2) The adversary generates ¥ using gsk, in which id, = F(tk,, gid) # idy, but in the signature
3, stt = F(tky,sid) = F(tkp,sid) for tk, # tky. X can be traced to idj, through the oracle
TraceU. This case indicates that the adversary has found a collision of F. When this case
happens, due to the property of simulation-sound extractability of 7, the value tk, can be
extracted. As tk, was recorded in Reg,, then the collision pair (tky, tk,) can be extracted.
The probability of this case is negligible, otherwise, it contradicts the assumption that the
function F is collision-resistant.

(3) The adversary generates ¥ using gsk, in which id,, = F(tky, gid) # idy and the adversary
also generates ;. For TVf(idp, m;, 2, msg) = 1 to hold, verification of 7; must be successful.
Therefore, the probability of this case is negligible, otherwise, it contradicts the assumption
that 7; is a zero-knowledge proof with soundness because the relation F(tk,,gid) = idy
must be proved in 7; but it does not hold.

O

Tracing Binding The tracing binding property [55] guarantees that even if all authorities and
users collude, they should not be able to produce a valid signature that can be selectively attrib-
uted to different members. Traceability concerns about the adversary producing a signature and
attributing it to an honest user, while tracing binding concerns about an already generated signa-
ture, and the goal of the adversary is to create a signature and two distinct attributions to who
signed it. It considers a strongly adversarial setting, where both the authorities and users may be
adversarial but wants the guarantee that each signature must be attributed to a unique record in
the registry. We describe the tracing binding game in Figure 9.

THEOREM 6. Our group signature scheme offers tracing-binding, that is for any PPT adversary

Pr Exp?ffé?fmdmg (n) = 1| < negl(n)

if the proof m; is a zero-knowledge proof system with simulation-sound extractability, and the function
F is collision-resistant.

Proor. For Exp?chmsgfmdmg(n) to output 1, it is necessary that given a single signature %, for

two user identities id,, # id,, both TVf(id,, n/, %, msg) and TVf(id,, 7}, =, msg) output 1. In ﬂti
(i € {u,v}), the relation id; = F(tk;, gid) and stt = F(tk;, sid) is proved. If TVf(id,,, 7}, %, msg) and
TVf(id,, 77, 3, msg) both output 1, then the aforementioned relation must hold except a negligible
probability, otherwise it contradicts to the assumption that ; is sound. However, this also means
stt = F(tky,sid) = F(tk,, sid), i.e., the adversary finds a collision of the function F. Since 7; also
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Experiment EXP”IA;racmg-soundness (n)

- idp =1;Regy =L1;gskp = L;Zp =1.

- (mpk, msk) « Init (1");

- (RL, idy, msg, m;) «— AAAHUGSIERU. (1 ke sk ),
- If TVf(idy, ¢, Ep, msg) = 0 return 0.

- If id,, # idy Return 1, else return 0.

Fig. 10. Tracing soundness game.

has the property of extractability, these two collision values tk; (i € {u,v}) can be extracted from
;. The probability of this case is negligible, assuming F is a collision-resistant function. ]

Tracing Soundness The tracing soundness property guarantees that even if all authorities are
corrupted, they cannot attribute an honest useraAZs signature to a corrupted user. This prop-
erty differs from traceability in that traceability concerns attributing a signature generated by a
corrupted user to an honest user. The tracing soundness experiment is defined in Figure 10. The
following oracles can be accessed by the adversary:

— AddHUY(): This oracle allows the adversary to add a single honest user to the group. In the
Join protocol, the user is honest, and the adversary controls the group issuer and tracer. The
group membership secret key of the honest user and the views of all parties are given to the
adversary.

— GSigHU(msg): This oracle generates a single challenge signature under the honest user’s
group membership secret key gsky, on a message chosen by the adversary.

. . Tracing- d;
Oracles in Experiment Exp ,~¢ "6 *0U1MesS (1)

A
AddHU() GSigHU(msg)
—If idy, #L return L —IfRegy, = L V3, # Lreturn L
— (gsk;, View;, Viewgy, Viewrg) «— Joiné”.R(msk, — X, = GSig(gskp, msg)
n) — return 3p,

—If gsk; =L return L

—idy = id;; gskp, = gski;

— Regy, = (i, id;, tkj, etj, mt;, idx, S)
— return (gsk;, View;, Viewgy, Viewsg)

THEOREM 7. Our group signature scheme offers tracing soundness, that is for any PPT adversary
A’

FDGS,A
if the proof m; is a zero-knowledge proof system with simulation-sound extractability, and the function
F is a PRF with the property of second-preimage-resistance.

Pr [EXmecing-soundness (n) — 1] < negl (n)

Tracing-soundness

PROOF. EprDGS’A (n) = 1 means TVf(idy, n;, 2y, msg) = 1 and id,, # idy. In ;, the rela-
tion id, = F(tk,, gid) and stt = F(tk,, sid) is proved. Due to the soundness of 7, if TVf(id,,, ;, 2,
msg) outputs 1, then the same tk, must be used in generating id, and stt. However, X}, is generated
under gskp, which means stt = F(tkp, sid). There are two cases:

— Case 1: tky, = tky,. This case is possible when the malicious tracer generates a corrupted user
u by using the honest user h’s tkj, and u’s secret signing key is different from h’s, sk, # skj,.
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Table 2. The Parameters used for Testing

n | k|d q NR | NU
129 | 35 | 16 | 1024 | 560 35

255 (70 | 16 | 1024 | 1120 | 70

This misbehaviour should be noticed by the issuer during the join protocol, but since we
are assuming that both the tracer and the issuer are controlled by the adversary, this case
can happen. However, for a group with the group identifier gid, a user i’s identity id; =
F(tk;, gid), and so tky = tk, means to id, = idy. Given X} with stt = F(tky, sid), to make
the attack work, the tracer needs to compute 7; with id, # idy = F(tky,gid) and stt’ =
stt = F(tkp, sid). This is impossible because as a PRF, F is deterministic, and so the adversary
cannot create two distinct user identifiers from the same tracing key.

— Case 2: tky, # tk,. This means stt = F(tky,sid) = F(tk,, sid), so the adversary has found
a second-preimage of F. Since 7; holds the property of simulation-sound extractability, the
second-preimage value tk, can be extracted from 7;. This case can happen with only negli-
gible probability under the assumption that F is second-preimage-resistant. O

5 IMPLEMENTATION

As a proof of concept, we implemented the generation of an F-SPHINCS+ signature with an M-
FORS signature chain, S, and the 7 signing and verification components of the scheme using
partial algorithms. These parts of the joining, signing and verification protocols are the most com-
pute intensive and allow us to assess the times involved, we did not implement the full protocols?.
For ease of implementation, we chose LowMC and KKW, which had readily available implementa-
tions that we could use as building blocks. We instantiate the pseudorandom functions prf and F
with the LowMC block cipher. The hash functions H;, H,, Hs are also instantiated using LowMC,
through the Davies-Meyer transformation (see Appendix E.2). Note that our protocols are not re-
stricted to the use of LowMC and KKW, they could be replaced by more secure/efficient schemes.

The implementation was written in C++ and for some subroutines related to MPC-in-the-head,
we used the code from the Picnic KKW scheme (namely picnic3) implementation [61] submit-
ted to the NIST Post-Quantum Cryptography Standardization project [52]. The code for LowMC
(and its MPC-in-the-head version) was re-written using 64-bit words as this was more efficient
than the picnic3 implementation. In Appendix E, we provide more detailed discussions on our
implementation.

In our implementation, we used two different security parameters, i.e., n = 129 and n = 255.
This parameter is determined by the block size and the key size of the LowMC instances, which
were chosen by picnic3. The case of n = 129 can offer 128-bit security against classical attacks
while the case of n = 255 can offer 128-bit security against quantum computer attacks. The other
values for the parameters at the corresponding security level that we used are given in Table 2.
The parameters k, d, q are for F-SPHINCS+, NR and NU are the total number of MPC instances
and the number of unopened MPC instances, respectively (KKW uses a cut-and-choose strategy
and randomly opens NR — NU MPC instances to detect cheating).

We measure the performance of our group signature scheme based on our C++ implementation.
The programs were compiled using the GNU GCC compiler [27] version 9.4.0 and executed on a
laptop (Intel i7-8850H CPU @2.6GHz : 32Gb RAM) with the Ubuntu operating system. Although

2Code is available at: https://github.com/UoS-SCCS/HBGS
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Table 3. Test Results

n | group size | join | sign | verify | cred. size | sig. size
210 66.3 | 8.7 4.4 60.6 571
129 220 99.2 | 129 | 6.3 90.9 851
240 164.7 | 21.4 | 10.2 152.5 1419
200 230.6 | 29.4 | 13.9 214.4 2000
210 2745 | 364 | 17.3 229.9 2336
)55 220 4103 | 53.0 | 25.6 344.8 3483
240 682.8 | 89.4 | 43.0 576.8 5784
260 952.2 | 125.1 | 60.0 809.4 8097

Time is measured in seconds, size is measured in KB.

the CPU has multiple cores, the timings were obtained using a single core. The performance figures
are given in Table 3 and are averages for six runs. The timings are in seconds and the sizes in
kilo-bytes (KB). For the join protocol, the time measured refers to the time taken for the group
issuer to generate the user’s membership credential. Computing a membership credential using
the F-SPHINCS+ signature scheme is the most time intensive part of the protocol. However, note
that this protocol only runs once when a user joins the group. For signing and verification, the
running time with large groups is in the order of minutes. The current implementation is not
optimized, it was written just using C++ for clarity and not speed. There are a number of possible
improvements that we target as the next step: (1) Currently the NIZK proof is obtained by using
the Fiat-Shamir transformation from the 3-round KKW interactive protocol. Because the MPC
protocol in KKW is with pre-processing and cut-and-choose, an NIZK proof transformed from
the 5-round interactive protocol can be more efficient; (2) An optimized implementation can use
multiple-cores, available SIMD instructions and a fast matrix library (for example, M4RI [2]) to
improve the overall performance; However, this will mean that we lose generality and will require
different executables for each processor.

The sizes in Table 3 are in KB. For the signatures the size is measured from the raw binary data,
while for the credential, this is the output file size. The credential files do contain some extra meta
information and are written out as hex strings. A binary format would reduce these figures.

6 CONCLUSIONS

Research into post-quantum group signatures based on symmetric primitives has recently drawn
a lot of attention from both academia and industry, but it is still at an early stage. This paper
addresses an open problem: how this type of group signature can handle a large group size while
maintaining robust security properties. We propose a new group signature scheme from symmetric
primitives, which supports a large group size suitable for real-world use. To do this, we modify the
SPHINCS+ signature scheme to create a new group membership credential and use the MPC-in-
the-head paradigm to prove the possession of the credential and the signing key in a NIZK manner.
The security analysis of our scheme shows that it supports all of the properties required from a
state-of-the-art security model for group signatures. We present several optimizations to improve
performance and provide a prototype implementation. Our future work on group signatures from
symmetric primitives will focus on designing schemes with more robust security properties, such
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as forward anonymity. While, for the current scheme, we will work on improving performance,
obtaining more practical benchmarks.
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