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Hierarchical Network With Local-Global Awareness
for Ethereum Account De-anonymization

Jiahui Huang , Teng Huang , Changyu Dong , Sisi Duan , and Yan Pang

Abstract—The expansion of blockchain applications, partic-
ularly on platforms like Ethereum, brings escalating security
challenges as account anonymity provides breeding grounds for
criminals to commit crimes and cause significant economic losses.
As the mainstream architecture of de-anonymization technology,
graph neural networks (GNNs) provide empirical tools for law
enforcement agencies to investigate illegal activities. However, the
limited expressiveness of current GNNs leads to performance
degradation for Ethereum account de-anonymization. To address
this challenge, we propose an innovative Local-Global Awareness
(LGA) framework, which consists of a Local Structure-Aware
(LSA) module and a Global Information-Aware (GIA) module.
LSA integrates subgraph-level encoding strategies with local
attention to enhance the capture of microscopic interactions.
As a complementary measure, GIA introduces global attention
to facilitate the understanding of macroscopic information. The
LGA framework meticulously captures subgraph-level account
behavior patterns at a granular level while simultaneously
incorporating global contextual insights, demonstrating higher-
level expressive power and receptive fields over conventional
GNN. The efficacy of the LGA framework is corroborated
by experimental evaluations conducted on the lw-AIG dataset.
Our framework achieves exceptional performance, significantly
outstripping state-of-the-art GNN-based methods in terms of the
micro F1 score metric, with relative improvements ranging from
0.14% to 6.63%. Through its detailed and comprehensive analysis
of account interactions, the LGA framework aims to provide a
potent solution to the complex security challenges faced in the
expanding blockchain landscape. The code for LGA is available
at https://github.com/deepang-ai/LGA.
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I. INTRODUCTION

AS ONE of the essential supporting technologies in the
digital economy era, blockchain technology provides an

efficient, stable, and secure system architecture for the devel-
opment of the digital economy. It is expected to be utilized
in digital finance [1], supply chain management [2], identity
verification [3], and other fields [4], [5]. In recent years, the
scale of investment in the industry has shown a continuous
growth trend. According to data from Precedence Research,1

a leading international strategic market insight organization,
the global blockchain technology market is projected to reach
USD 9.31 billion in 2024 and is expected to grow at a
compound annual growth rate of 4.63% from 2024 to 2034.
The continuously growing market highlights the key role of
blockchain as a “trusted network” and “trusted machine” to
support the development of emerging digital ecosystems.

Escalating risks accompany the disorderly expansion of the
blockchain market. In particular, Ethereum network attackers
are becoming more sophisticated, deftly manipulating vari-
ous malicious incidents. Typical incidents, such as phishing
scam [6], money laundering [7], and cybercrime [8] are
rampant on the Ethereum network, causing massive economic
damage. According to data provided by Scam Sniffer,2 in
the first half of 2024, 266 713 victims suffered losses of
$314 million on Ethereum. The driving factor behind this
deterioration is the pseudonymity of Ethereum accounts, which
provides a natural shelter for criminals. Ethereum accounts
adopt the last 20 bytes of the hash of the public key as a
pseudonymous address, a virtual identity that has no explicit
association with a real identity [9]. Pseudonymous addresses
are designed to protect user privacy, but the unbridled use of
pseudonymous identities facilitates evasion of regulation.

In order to crack down on cybercrime that exploits anonymous
identities, various initiatives have been proposed to deanonymize
Ethereum accounts to date. These initiatives record behavior
patterns of anonymous accounts as empirical evidence and label
them into meaningful account categories, such as initial coin
offering (ICO) wallets, exchanges, miners, phishers, hackers,
etc. Existing de-anonymization methods generally fall into
two categories. One includes conventional machine learning
(ML)-based methods [10], [11], [12], [13], [14], [15], [16],
implemented by training a model that learns the relationship
between features and account categories from training data and
maps input account features to output account categories in the

1https://www.precedenceresearch.com/rigid-bulk-packaging-market
2https://x.com/realScamSniffer/status/1809089851859611908
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inference phase. However, ML-based methods exhibit two key
limitations: 1) they necessitate laborious manual feature design
contingent upon specific domain expertise, and 2) they ignore
to incorporate the intricate relationships between entities and
the rules that govern their interactions within the network.

Addressing the limitations inherent in ML-based
approaches, graph neural network (GNN)-based methods
present a promising alternative for de-anonymization tasks,
leveraging their inherent sophistication, generalizability, and
flexibility [17], [18]. These approaches [19], [20], [21], [22],
[23], [24] leverage the topological features between entities,
enabling models to achieve combinatorial generalization
and facilitate flexible relational reasoning. By computing
structured representations, GNN-based approaches excel
in capturing a richer tapestry of information compared to
conventional ML-based approaches. This inherent advantage
translates to superior performance in the challenging task
of de-anonymizing Ethereum accounts. However, a critical
examination of current GNN-based implementations reveals
a potential limitation: their constrained expressiveness and
receptive fields may not adequately capture the intricate
behavioral patterns and feature distributions inherent to
Ethereum network account de-anonymization tasks.

1) GNNs With Limited Expressiveness: GNNs based on
the Weisfeiler–Lehman (1-WL) [25] algorithm expose
limitations in the Ethereum account de-anonymization
task. The 1-WL algorithm iteratively aggregates the
features of adjacent nodes to the central node and
encodes the root subtree around the central node as
its final representation. The inherent limitations of the
tree structure make it fail to represent arbitrary sub-
graphs, especially complex subgraphs containing cycles.
This defect allows malicious transaction participants to
take advantage of special transaction channels to evade
detection, as shown in Fig. 1(a). In the Ethereum peer-
to-peer network, transactions are allowed to be initiated
between any participants, which self-evolves into a
large number of cyclic structures. Unfortunately, the
limited expressiveness of GNNs leaves these potential
transactions unregulated.

2) GNNs With Bounded Receptive Fields: The design
paradigm of GNNs follows 1-hop message passing,
where node representations are updated by the node’s
direct neighbors, as shown in Fig. 1(a). This design
implicitly assumes homophily in the graph, where
neighboring nodes belong to the same class as the
target node. However, as a ubiquitous property in the
Ethereum network, heterophily [26], [27] significantly
limits the performance of tailor-made GNNs with an
implicit homophily assumption. Specifically, the “oppo-
sites attract” phenomenon is observed in heterophilic
networks [28], [29], [30], [31], where nodes of the
same class are distributed over long-term distances
beyond 1-hop. GNNs with bounded receptive fields pose
significant challenges to learning and identifying nodes
with semantic similarity on heterophilic graphs.

In response to these limitations of existing GNNs in
Ethereum account de-anonymization, we propose the Local-
Global Awareness (LGA) framework. This end-to-end network

(a)

(b)

Fig. 1. Comparison of our proposed LGA framework with existing
GNN frameworks for Ethereum account de-anonymization. (a) Existing GNN
methods encode only a 1-hop subtree around the target node, which limits their
expressiveness and fails to capture transactions between neighboring nodes or
information from nodes multiple hops away. (b) In contrast, LGA effectively
identifies potential transactions between neighboring nodes and expands the
receptive field to consider the entire graph, enabling the aggregation of
information from all nodes to the target node.

architecture offers a comprehensive solution by characterizing
and analyzing account behavior patterns at both micro and
macro levels, as depicted in Fig. 1(b). The core components
of LGA include the Local Structure-Aware (LSA) module
and the Global Information-Aware (GIA) module. The LSA
module adopts a local self-attention mechanism to perform
message passing under the constraints of structured subgraphs,
accurately capturing various complex transaction patterns.
The GIA module uses a global self-attention mechanism
to learn long-range pairwise dependencies between nodes,
effectively widening the receptive field to exchange equivalent
information. This dual-module design works synergistically,
with LSA providing differentiated structural representations
for diverse structural patterns from a local perspective, com-
bined with GIA to discriminate the similarity of structures and
attributes from a global perspective. Compared with the pop-
ular GNNs design paradigm, the subgraph encoding strategy
integrated by LSA supports encoding of arbitrarily complex
transaction patterns, and the global attention mechanism of
GIA allows ignoring the assumption of strong heterophily.
Extensive evaluation on lightweight account interaction graph
(lw-AIG) and Elliptic datasets confirms that LGA achieves
state-of-the-art performance in account de-anonymization. The
advanced achievements of LGA reflect its capabilities in the
task of account de-anonymization, particularly in capturing
complex transaction patterns to prevent criminals from evading
detection through specific transaction linkages. Coupled with
global information awareness for comprehensive evidence col-
lection, this all-encompassing perception capability provides
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TABLE I
COMPARISON OF GRAPH-BASED LEARNING MODELS FOR ACCOUNT DE-ANONYMIZATION

valuable insights for enhancing the security governance of the
blockchain transaction ecosystem.

In summary, our work makes the following contributions.
1) This article conducts the first in-depth analysis and

study of complex transaction patterns and long-range
dependencies for the Ethereum account interaction graph
characterized by heterophily. A novel LGA framework
LGA is designed to capture local transaction patterns
and aggregate global information.

2) The LGA framework comprises two core modules:
the Local Structure Aware module, which encodes
subgraph-level structural information for precise trans-
action pattern representation, and the Global Information
Aware module, which models long-range dependencies
to capture account similarities and facilitate information
exchange on heterophilic graphs.

3) Extensive experiments conducted on the lw-AIG
and Elliptic datasets confirm the effectiveness of
our proposed framework. Our findings indicate that
LGA significantly outperforms state-of-the-art methods,
achieving a relative performance improvement in micro
F1 score ranging from 0.14% to 6.63%.

II. RELATED WORK

In this section, we briefly review the research on account
de-anonymization based on graph learning, which can be
categorized into two categories: 1) random walk (RW)-based
graph analytics and 2) GNN-based graph analytics, as shown
in Table I.

A. RW-Based Graph Analytics

DeepWalk [32] is a graph mining algorithm that employs
RWs and Word2Vec [42] to generate low-dimensional vec-
tor representations of network nodes. These embeddings
serve as input for subsequent tasks, such as account de-
anonymization. Building upon the foundations of DeepWalk
and Node2Vec [35], Trans2Vec [34] proposes a refined
network embedding technique. By incorporating transaction
timestamps and amounts into its RW process, Trans2Vec
captures the temporal and monetary attributes of account rela-
tionships, thereby enriching the resulting node embeddings.

Combined with a support vector machine (SVM), it distin-
guishes between normal nodes and phishing nodes. Inspired
by Trans2Vec, other studies such as [19] and [43] aim to
capture more comprehensive attributes of dynamic transaction
networks. They propose modeling the Ethereum transaction
network as a time-weighted, directed multigraph and devel-
oping various time-walking strategies to learn richer node
representations for this large-scale network. Béres et al. [44]
conducted quantitative comparisons of the latest DeepWalk-
based algorithms on real datasets from sources like Etherscan
and Tornado. Role2Vec [36] is statistically identified as the
most effective method. DeepWalk-based methods demonstrate
strong expressive capabilities and robust performance in node
de-anonymization tasks. However, RW-based methods have
limited generalizability to unseen nodes and do not easily
incorporate node or edge features. To address these issues,
GNN-based methods offer generalizability to unseen nodes,
consider node or edge attributes, and provide task-specific
training and training based on node similarity.

B. GNN-Based Graph Analytics

The massive amount of transaction data in Ethereum can
be modeled as an account interaction graph, where nodes
represent accounts and edges represent transactions. GNNs are
used to explore the relational inductive bias in the encoding of
graph connectivity, allowing this rich information to be used
to discover the true identity of anonymous accounts. In typical
GNN-based de-anonymization studies [19], [20], [21], [22],
[23], [24], [40], [41], end-to-end graph convolutional network
(GCN) models [38] map transaction patterns to account readl
identity. Addressing the lack of temporal information in
transactions, TTAGN [22] models the temporal relationships
of historical transactions between nodes, and GCN is used
to integrate the features of edges around nodes into the node
representations. To address the computational overhead of
training GCNs on the entire transaction graph, I2BGNN [20]
introduces a sampling mechanism to constrain the size of
the graph, and GCN is combined to learn representations
of the sampled graph to infer blockchain account identities.
However, methods based on GCN models are limited in
learning the correlations between interacting accounts. To
address this issue, Ethident [21], AEtransGAT [40], and
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(a) (b) (c)

Fig. 2. Message-passing flow of the LSA. It consists of three key phases: (1) Extracting 1-hop subgraphs around the target node from the original
graph; (2) Applying the local self-attention mechanism independently to each node on the subgraph; (3) Aggregating the node representations into a target
node representation using subgraph pooling. The subgraph-level representation highlights the cycle structure awareness, which is absent in the subtree-level
representation. Specifically, the cycle structures formed by nodes (v1, v2, v3), and (v1, v3, v4) are effectively captured by the subgraph-level representation.
(a) Local structure extraction. (b) Subgraph-level message passing. (c) Local representation aggregation.

ETGNN [41] employ graph attention encoders based on the
graph attention network (GAT) [39], effectively represent-
ing node-level account feature correlations. However, these
GAT-based approaches still struggle with capturing complex
transaction patterns and modeling long-range dependencies
in heterophilic Ethereum networks. In response, the LGA
framework is proposed to perceive local complex structures
and aggregate global equivalent information, highlighting its
importance in identifying Ethereum account categories accu-
rately.

III. METHOD

The LGA framework is specifically designed to enhance
Ethereum account de-anonymization by leveraging the
strengths of an attention-based hierarchical structure. As illus-
trated in Fig. 1(b), LGA is a hierarchical framework that
incorporates a sophisticated attention mechanism, consisting
of two integral modules: 1) the LSA module, which focuses
on encoding local subgraphs with a self-attention mecha-
nism to enhance transaction pattern recognition, and 2) the
Global Information-Aware (GIA) module, which employs a
global self-attention mechanism to capture long-range pairwise
dependencies between nodes, thus broadening the analytical
scope and preventing data over-smoothing. This dual-module
approach allows LGA to provide a comprehensive analysis tool
for Ethereum transactions, combining detailed local insights
with broad global perspectives.

A. Local Structure-Aware Module

As a critical component of the LGA framework, the LSA
module is specifically designed to enhance the detection
and analysis of transaction patterns. It introduces a robust
approach that surpasses the limitations of traditional GNNs,
which primarily focus on encoding rooted subtrees around
central nodes [21], [45], [46]. Addressing this challenge, the
LSA module extracts subgraphs instead of subtrees, enabling
a deeper and more accurate representation of transaction
dynamics. As shown in Fig. 2, a comparison between subgraph

encoding and subtree encoding is provided, with the for-
mer message-passing flow indicated in blue and the latter
in gray. Subgraph-level message passing captures the direct
surroundings of the target node and perceives transactions
between neighboring nodes, thereby enhancing the detection
and analysis of complex transaction patterns. The message-
passing flow of the LSA involves three main stages, as shown
in Fig. 2.

1) Local Structure Extraction: Extracts 1-hop subgraphs
around the target node from the original graph.

2) Subgraph-Level Message Passing: Independently applies
a local self-attention mechanism to each node within the
subgraph.

3) Local Representation Aggregation: Aggregates the node
representations into a target node representation through
subgraph pooling.

1) Local Structure Extraction: In the context of graph
classification, let G = (V, E) denote a graph, where V =
{v1, .., vn} represents the set of nodes and E ⊆ V × V
represents the set of edges. Each node vi ∈ V is associated
with a feature vector xi ∈ X, where X ∈ R

n×d is the
feature matrix. The neighborhood of a node vi is defined as
N (vi) = {vj|(vi, vj) ∈ E}. For a given target node vu, its
neighborhood is defined as N = N (vu) ∪ {vu}. The LSA
module’s structure extractor operates on this neighborhood N
to derive the induced subgraph S. This subgraph S comprises
all nodes in N and the edges between them, thus forming a
subgraph of the original graph G, denoted by S ⊆ G.

2) Subgraph-Level Message Passing: Within the context of
these extracted subgraphs, the LSA module employs a sophis-
ticated local self-attention mechanism to compute attention
coefficients between a node vi and its neighbors vj in

e(l)
ij = φ1

(
W(l)

e ·
[
h(l)

i ‖h(l)
j

])
(1)

where h(l)
i is the hidden state of node vi at the lth layer,

W(l)
e is a layer-specific linear transformation matrix and φ1

is a nonlinear activation function, such as LeakyReLU. This
operation highlights the importance of the hidden features
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(a) (b) (c)

Fig. 3. Message-passing flow of GIA. It consists of three key phases: (1) Extracting node representations encoding local subgraphs using LSA; (2) Generating
node representations encoding global information using the global self-attention mechanism; (3) Aggregating the final node representations into a graph
representation using graph pooling. (a) LSA-based representations extraction. (b) Global information aggregation. (c) Graph representation learning.

of account vj concerning account vi at each layer l of
the model, with the concatenation [h(l)

i ‖h(l)
j ] combining the

features of both nodes to feed into the linear transformation.
The initial hidden states are set as h(0)

i = xi, where xi are
the initial feature inputs of the nodes. The softmax function is
employed to compute the attention coefficients of neighboring
nodes in (2), ensuring that the computed attention coefficients
remain contextually relevant across different nodes within the
subgraph

α
(l)
ij = φ2

(
e(l)

ij

)
=

exp
(

e(l)
ij

)

∑
vx∈N (vi|S)∪{vi} exp

(
e(l)

ix

) (2)

where N (vi|S) is the set of vi’s neighbors on the subgraph
S and φ2 denotes the Softmax function. Once the atten-
tion coefficients are obtained, the neighborhood context is
aggregated to update the features of the target node

h̄(l)
i = φ3

⎛
⎝α

(l)
ii · W(l)

α · h(l)
i +

∑
vj∈N (vi|S)

α
(l)
ij · W(l)

α · h(l)
j

⎞
⎠ (3)

where a linear transformation parameterized by W(l)
α and

a ReLU activation function φ3 are applied to produce the
hidden representation h(l)

i . It’s worth noting that the local node
representations are aggregated in a position-sensitive manner
from the representations of neighboring nodes vj ∈ N (vi),
ensuring effective capture of the local structural relationships.

3) Local Representation Aggregation: In order to integrate
local structure into node representations, we aggregate the
representations of all nodes within the subgraph using pooling
functions, such as summation to obtain a subgraph repre-
sentation. Subsequently, the original features of the target
node are enhanced by concatenating them with the subgraph
representation, resulting in the updated representation of the
target node vu

ĥ(l)
u = h(l)

u +
∑

vi∈N (vu)∪{vu}
h̄(l)

i (4)

where ĥ(l)
u is a structure-aware node representations of target

node vu and h(l)
u represents the hidden feature of target node

vu before feeding into the LSA module.

B. Global Information-Aware Module

Building on the capabilities of the LSA module, the GIA
module is designed to capture long-range dependencies across
large-scale graph data, expanding the receptive field for
better performance and enhancing the flexibility and pattern
recognition of the LGA framework. While traditional graph
transformer-based methods [47], [48], [49] only encode posi-
tional relationships, the GIA module addresses this limitation
by explicitly encoding structural information and correlations
between all node representations on top of the LSA module.
The synergistic integration of LSA and GIA simultaneously
captures both structural and attribute similarities among nodes,
ensuring a detailed and comprehensive analysis. The message-
passing flow of the GIA module also includes three stages, as
illustrated in Fig. 3.

1) LSA-Based Representations Extraction: Utilizes LSA to
extract node representations that encode local subgraphs.

2) Global Information Aggregation (GIA): Generates node
representations incorporating global information through
the global self-attention mechanism.

3) Graph Representation Learning: Aggregates these node
representations into a comprehensive graph representa-
tion via graph pooling.

1) LSA-Based Representations Extraction: This process
provides a comprehensive analysis of transaction dynamics
across all accounts by modeling the structural interactions of
all nodes V in the graph G. Specifically, the LSA module is
used to encode the local subgraph around each node in the
entire graph to obtain structure-aware node representations.
These node representations effectively capture the transaction
patterns and attribute information of each node in G to provide
analysis from a global perspective. The global attention mech-
anism is then introduced to learn diverse transaction patterns
and attribute information under a global window, enabling the
aggregation of various equivalent complex transaction patterns
and attribute information.
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2) Global Information Aggregation: The GIA module aims
to preserve the relevance of all accounts in the Ethereum
interaction graph by learning node representations that cor-

relate the target node representation, ĥ
(l)
u , with all other

node representations within the graph G. Using a global
attention mechanism, the GIA module ignores the original
graph structure and models interactions between all node pairs.
It efficiently infers node similarities through the aggregation
function in

h(l+1)
u =

∑
vv∈V

κexp

(
ĥ(l)

u , ĥ(l)
v

)

∑
vw∈V κexp

(
ĥ(l)

u , ĥ(l)
w

) f
(

ĥ(l)
v

)
(5)

where f (h) = WVh represents a linear function, and κexp
denotes an exponential kernel parameterized by WQ and WK.
The exponential kernel is defined as in

κexp
(
h, h′) := exp

(〈
WQh, WKh′〉/

√
dout

)
(6)

where the dot product 〈·, ·〉 captures the similarity between
node features. The LSA module’s node features, which
integrate local structures, allow the exponential kernel to
effectively identify both feature and structural similarities.

3) Graph Representation Learning: This process retains
complex patterns within graph structures. Node representations
are initially processed through a feed-forward network (FFN)
that incorporates residual connections in

h(L)′
u = h(L−1)

u + h(L)
u

h(L)′′
u = FFN

(
h(L)′

u

)
:= φ3

(
h(L)′

u W1

)
W2. (7)

After this step, a graph pooling layer aggregates the refined
node representations into a final graph representation in

g =
∑
vu∈V

h(L)′′
u . (8)

Combining the local structural learning of LSA with the
global reasoning abilities of GIA provides a comprehensive
understanding of transaction networks. The LSA module
excels at learning localized subgraph patterns, capturing
intricate neighborhood structures, while the GIA module
adds a layer of global reasoning that recognizes long-range
dependencies between nodes. This complementary relation-
ship enables accurate mapping of structural and attribute
similarities across the entire graph, significantly improving
the ability to identify complex patterns. The result is an
enhanced model capable of handling heterophilic networks
like Ethereum, providing robust performance in tasks, such as
account de-anonymization.

C. Loss Function

In our approach to the Ethereum account de-anonymization
task, we employ a dual-component loss function that integrates
both classification and self-supervised learning mechanisms.
The classification task is formulated using a cross-entropy loss,

where the mapping function f (·) transforms graph representa-
tions into labels that reflect account identities. This mapping
is quantified through the loss function Lp in

Lp = − 1

N

N∑
i=1

yi · log(f (gi)) (9)

where yi are the true labels for the account identities.
In order to alleviate the scarcity of labeled data, the model

incorporates a self-supervised loss function that enhances
its discriminative ability. This function utilizes a contrastive
mechanism, maximizing the cosine similarity between two
augmented views of the same graph. By doing so, the model
focuses on aligning related graph representations in the con-
trastive space, as defined in (10), which effectively strengthens
its ability to discern subtle patterns and relationships within
the dataset

Li = − log
ecos

(
z1

i ,z
2
i

)
/τ

∑N
j=1,j 
=i e

cos
(

z1
i ,z

2
j

)
/τ

(10)

where z1
i and zi2 are two different augmented representations

of the same graph, τ is the temperature parameter, and
cos denotes the cosine similarity function. The overall self-
supervised loss, Ls, is then calculated by averaging Li over
all pairs in

Ls = 1

N

N∑
i=1

Li. (11)

The complete loss function combines these two aspects with
a balancing hyperparameter λ, integrating the self-supervised
and classification losses in

L = Lp + λ · Ls (12)

where λ adjusts the emphasis between the two loss functions,
allowing for tailored learning dynamics based on the available
dataset characteristics.

IV. EXPERIMENTS

A. Datasets

1) lw-AIG: The lw-AIG dataset is sourced from the
blockchain data of the Xblock website, encompassing
transactions, smart contracts, and publicly labeled account
identities [50]. The dataset is constructed from Ethereum user
relationships, using interaction merging and feature construc-
tion operations to form a lw-AIG [21]. The lw-AIG dataset
contains a total of 5732 graphs for binary classification. In
lw-AIG, nodes represent accounts, node features represent the
contract call information of the account, and edges indicate
transaction data and contract callbacks.

The lw-AIG dataset is divided into four subsets based on
account identity labels obtained from the Ethereum blockchain
explorer’s Label Word Cloud: 1) ICO wallets; 2) min-
ing accounts; 3) exchange accounts; and 4) phishing&hack
accounts, as shown in Table II. Each subset exhibits distinct
interaction patterns. ICO wallets are characterized by a high
number of outbound edges, which distribute investment returns
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TABLE II
STATISTICS OF GRAPH DATASETS SAMPLED FROM THE ACCOUNT

INTERACTION GRAPH OF ETHEREUM. |G| IS THE NUMBER OF GRAPHS,
AVG. |N| AND AVG. |E| ARE THE AVERAGE NUMBER OF NODES AND

EDGES IN GRAPHS, RESPECTIVELY, |x| AND |e| ARE THE NUMBER OF

NODE AND EDGE FEATURES IN GRAPHS

from a central ICO account to surrounding supporters. Mining
accounts display numerous outbound edges from a central
pool to peripheral mining nodes and accumulated rewards.
Due to frequent client interactions, exchange accounts function
as highly central hub nodes with significant in-degree and
out-degree. Phishing&hack accounts are identified by a few
bidirectional edges between the central node and surrounding
nodes, with high in-degree and low out-degree for the central
node. Long-distance nodes are common in these graphs, and
transactions between nodes form a variety of complex cycle
structures. These diverse categories and complex transaction
patterns provide reliable empirical scenarios for exploring the
effectiveness of LGA.

Each graph in lw-AIG is sampled by TopK according to
different edge information (transaction amount, transaction
times, or average transaction amount), generating three types
of graph data sets represented by “Amount,” “Times,” and
“avgAmount,” respectively, as shown in Table II. For each
type of identity label (ICO wallet, mining, exchange, and
phishing&hacking), lw-AIG samples the target account graphs
with the specified identity label as positive samples, and
randomly samples the same number of account graphs with
other labels as negative samples to ensure data balance. Each
graph in lw-AIG corresponds to a target account, forming a
dataset D = {(gi, yi) | ∀(vi, yi) ∈ Y} for binary classification.
The labels of target accounts are assigned to the graphs,
facilitating the learning of a function that maps the graph
patterns to the identity labels of the accounts.

2) Elliptic: We also curate the Bitcoin transaction network
dataset, Elliptic, for experiments to demonstrate the scalability
of the proposed LGA framework. The Elliptic dataset origi-
nates from a labeled Bitcoin transaction dataset released by
Elliptic. This dataset associates Bitcoin transactions with real-
world entities, classified into licit categories (exchanges, wallet
providers, miners, and licit services) and illicit categories
(fraud, malware, terrorist organizations, ransomware, and
Ponzi schemes). It encompasses Bitcoin transactions across
49 time intervals, each approximately two weeks in duration.

TABLE III
HYPERPARAMETERS FOR LGA MODELS TRAINED ON LW-AIG DATASET

AND ELLIPTIC DATASET. THE ELLIPTIC DATASET FOLLOWS THE NUMBER

OF SAMPLES PER TIME STEP AS THE BATCH SIZE

The network comprises 203 769 nodes and 234 355 edges,
where nodes represent transactions and edges indicate that the
output of one transaction serves as the input for the subsequent
transaction. Furthermore, there are 166 features associated
with each node. About 33% of transactions are labeled, of
which 4545 are illicit and 42 019 are licit.

B. Comparison Methods

For the lw-AIG dataset, we systematically evaluate the
effectiveness of LGA by comparing two principal methodolog-
ical categories for account identification: 1) graph embedding
techniques and 2) GNN-based approaches. In the graph
embedding category, we utilize established techniques, such
as DeepWalk [32], Node2Vec [35], Struc2Vec [33], and
Trans2Vec [34] to transform the account data into vector
spaces. These embeddings are then analyzed using ML clas-
sifiers, specifically logistic regression (LR) and random forest
(RF), to perform the identification tasks. Concurrently, we
explore the capabilities of GNN-based methods employing
models, such as GIN [37], GAT [39], and GCN [38], which are
enhanced for subgraph classification through the integration
of pooling layers and prediction heads. Our approaches are
benchmarked against advanced models, such as Ethident [21],
AEtransGAT [40], and ETGNN [41], which leverages node-
level attention for high precision, and the I2BGNN [20]
method, offering two variants, I2BGNN-A and I2BGNN-T,
to address account identification challenges using varied edge
information. The comprehensive performance comparison of
these methods is detailed in Table IV. For the Elliptic dataset,
Trans2Vec, I2BGNN, AEtransGAT, and ETGNN are not
included in the comparison methods because they require edge
attributes that are not provided by the Elliptic dataset. The
comprehensive performance comparison of illicit transaction
classification is shown in Table V.

C. Implementation Details

The LGA is implemented using the PyTorch framework and
Torch Geometric library, and it operates on an NVIDIA Tesla
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TABLE IV
MICRO F1 SCORE (%) COMPARISONS WITH STATE-OF-THE-ART METHODS FOR ETHEREUM ACCOUNT DE-ANONYMIZATION ON THE LW-AIG

DATASETS. THE PERFORMANCE METRICS OF OUR METHOD ARE HIGHLIGHTED IN BOLD. COMPARING THE PERFORMANCE OF DIFFERENT METHODS

WITH LGA, THE GAPS OVER ARE RECORDED IN RED. ∗ INDICATES A METHOD DESIGNED SPECIFICALLY FOR THE ACCOUNT DEANONYMIZATION TASK

(a) (b) (c) (d)

Fig. 4. Comparison with state-of-the-art methods for Ethereum account de-anonymization on the lw-AIG dataset, reporting precision, recall, and F1 score.
(a) Eth-ICO. (b) Eth-Mining. (c) Eth-Exchange. (d) Eth-Phish&Hack.

V100S-PCIE-32GB GPU for computational support. Table III
summarizes the hyperparameters of training LGA models on
different datasets. The training settings include the initial
learning rates of 0.0003 for the lw-AIG dataset and 0.001
for the Elliptic dataset, respectively. The training regimen

features a 10-epoch linear warm-up, followed by a cosine
annealing learning rate scheduler to optimize performance.
The AdamW optimizer, with a weight decay of 0.0001,
manages the optimization process. We conduct the training
over 1000 epochs, integrating early stopping with a patience
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TABLE V
ILLICIT TRANSACTION CLASSIFICATION RESULTS ON THE ELLIPTIC

DATASET, REPORTING PRECISION (%), RECALL (%), F1 SCORE (%), AND

MICRO F1 SCORE (%). THE GAPS ARE RECORDED IN RED

threshold of 20 epochs to mitigate overfitting. To obtain
statistically significant experimental results, a threefold cross-
validation is performed 10 times, and the average result and
its standard deviation are reported. We divide the lw-AIG
dataset into training, validation, and testing sets according
to the proportion specified by Ethident [21]. For the Elliptic
dataset, the task is a binary classification of nodes, where the
two classes of licit and illicit transactions are unbalanced, and
the identification of a small number of illicit transactions is
more important. To this end, we train the LGA model using a
weighted cross-entropy loss with a ratio of 0.7:0.3 for the illicit
and licit classes to give higher importance to illicit samples.
Since the Elliptic dataset is used for node-level classification,
the Graph pooling layer is abolished. The Elliptic dataset is
divided into training and testing sets according to the 0.7:0.3
temporal split. The first 34 time steps are used to train the
model, and the last 15 time steps are used for testing.

D. Evaluation Metrics

The task of classifying accounts can be transformed into
a binary classification problem. We consider precision, recall,
F1 score, and micro F1 score as evaluation metrics. A higher
precision indicates that the model is less likely to misclassify
negative samples as positive samples. A higher recall indicates
that the model is more capable of capturing samples that are
truly positive. F1 score can be considered the harmonic mean
of the model’s precision and recall. Micro F1 provides a single
score that reflects the model’s performance across all classes.

E. Classification Performance

We conducted a comprehensive comparison of our proposed
LGA framework with other baseline methods on the lw-AIG
dataset, as shown in Table IV and Fig. 4, where our model
demonstrated state-of-the-art results. The micro F1 score
achieved by LGA on four subdatasets significantly exceeded
all the methods using graph embeddings, with improvements
ranging from 3.96% to 40.88%, as shown in Table IV.
This enhancement in performance can be attributed to our
LGA’s superior capability in capturing the behavior patterns

of different accounts when acquiring subgraph features. In
comparison with the state-of-the-art GNN-based methods,
such as Ethident [21], ETGNN [41], and AEtransGAT [40], the
micro F1 score achieved by LGA improved by 1.93%–6.63%
on the Eth-ICO and Eth-Mining subdatasets. Improvements
of approximately 0.1%–0.5% were also observed in the Eth-
Exchange and Eth-Phish&Hack datasets compared to the best
performance. We further visualize the comparison results of
LGA and the comparison methods in terms of precision, recall,
and F1 score, as shown in Fig. 4.

The extended experiments are conducted on the Elliptic
dataset derived from the Bitcoin transaction network to verify
the transferability of LGA on the illicit transactions detection
task. The detailed experimental results are shown in Table V.
From these results, it is evident that the proposed LGA
outperforms all other methods, achieving significantly better
outcomes. Specifically, the precision, recall, F1 score, and
micro F1 score for LGA are 86.06%, 65.00%, 74.07%,
and 97.04%, respectively, surpassing the second-best method,
GAT, which recorded scores of 84.05%, 62.79%, 71.88%, and
96.81%. Notably, we observe a significant drop in performance
for graph embedding methods. In the Elliptic dataset, each
node is associated with transaction-related features that pro-
vide insights into various categories of entities. Therefore,
we conclude that graph embedding methods that do not
incorporate node or edge features are insufficient to address
the challenges of illicit transactions detection.

From the experimental results, it was observed that the
performance of graph embedding methods was significantly
lower than that of GNN-based methods, and they ranked
relatively lower. Graph embedding methods are unable to learn
end-to-end task-relevant features and are highly dependent on
the chosen classifiers to achieve relatively high performance.
In contrast, GNN methods can learn transaction patterns
from the graph’s topological structure, thus obtaining more
expressive information about account behaviors, giving them a
relative performance advantage. However, GNN-based meth-
ods still have shortcomings in learning critical information
at the edges, and the generated subtree structures are overly
simplistic and lack rich semantic expression. In contrast to
these methods, LGA extracts node subgraphs for information
aggregation to obtain subgraph-level representations of nodes.
Additionally, the GIA module is employed to capture long-
range dependencies between global nodes and implement
structural and attribute similarity detection between nodes,
thus achieving state-of-the-art performance on the lw-AIG
dataset.

F. Sensitivity Analysis

To evaluate the performance of LGA in multiclass classi-
fication tasks, we further extracted an equal number of 65
positive samples (limited by the number of positive samples in
the mining subdataset) from four subdatasets to form a dataset
for multiclass classification. Table VI reports key metrics, such
as Precision, Recall, and F1-score. According to different
sampling strategies, LGA shows variations in its sensitivity to
the multiclass nature of the dataset. For example, under the
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TABLE VI
MULTICLASS CLASSIFICATION RESULTS ON THE LW-AIG DATASET. THE EXPERIMENTAL RESULTS UNDER THREE SAMPLING STRATEGIES: AMOUNT,

TIMES, AND AVGAMOUNT ARE REPORTED

TABLE VII
COMPARATIVE ANALYSIS OF EFFICIENCY ON THE ETH-ICO “VOLUME”
SUBDATASET. REPEAT THE THREEFOLD CROSS VALIDATION 10 TIMES

AND REPORT THE AVERAGE INFERENCE DURATION (S), AVERAGE

INFERENCE SPEED (GRAPH/S) AND STANDARD DEVIATION

“Amount” sampling strategy, the recall for Eth-Phish&Hack
is 87.81%, significantly higher than Eth-Mining’s 73.95%;
whereas in the “Times” sampling strategy, Eth-Mining leads
with a recall of 81.52%; under the “avgAmount” sampling
strategy, Eth-Phish&Hack leads again with a recall of 84.63%,
demonstrating high sensitivity in identifying malicious account
behavior. These results emphasize the effectiveness and
flexibility of LGA as a malicious behavior detection
tool.

G. Efficiency Performance

Assume a graph has n nodes with a maximum degree of
d, and the maximum number of nodes in a rooted subgraph
is m. In the LSA module, message passing needs to be
performed for the rooted subgraphs of all n nodes, with a
time complexity of O(n · md). To improve the scalability
of LSA, a small k-hop setting can be used to achieve a
smaller m. GIA interacts with the features of all nodes in the
global perspective graph, with a time complexity of O(n2).
Focusing on the item with the highest growth rate, the total
time complexity of LGA is O(n2). In order to comprehensively
evaluate the practical value of LGA, a statistical analysis of
the inference execution time of different methods under the
“Amount” sampling strategy of the Eth-ICO subdataset was
performed. As shown in Table VII, compared with methods
specifically designed for account deanonymization, such as
I2BGNN-A, I2BGNN-T, Ethident, AEtransGAT, and ETGNN,
LGA ranks third in efficiency performance. Compared with
Ethident, AEtransGAT, and ETGNN, the inference duration is

reduced by 0.006, 0.003, and 0.032 s, respectively, and the
inference speed is increased by 30.47graph/s, 20.30graph/s,
and 111.83graph/s, respectively. Compared with I2BGNN,
although LGA introduces additional computation time, it
significantly improves the classification performance, as shown
in Table IV.

H. Ablation Studies

1) Evaluating the Effectiveness of Local Attention
Mechanism: Table VIII provides an ablation study on how
the local attention mechanism affects account classification
performance, showing the micro F1 scores obtained by
LSA and LSA without local attention LSA(w/o LA). From
the experimental results, it is evident that LSA does not
achieve significant positive gains compared to LSA (w/o
LA). Furthermore, we investigate how the local attention
mechanism affects the performance of the LGA framework.
Table VIII demonstrates the performance differences between
LGA(w/o LA) and LGA. Specifically, the integration of
the local attention mechanism has precisely captured the
relevance of interacting accounts, resulting in an increase of
the micro F1 score by 0.49%–2.73%. These results indicate
that focusing on local correlation is insufficient to achieve
good performance, and the introduction of global correlation
promotes better performance.

2) Evaluating the Effectiveness of Structural Subgraph:
Table VIII provides a detailed analysis of the impact of differ-
ent encoding strategies on account classification performance.
This study first explores the impact of two encoding strate-
gies: 1) subtree encoding and 2) subgraph encoding, on the
performance of the LSA module. Experimental results show
that the LSA module based on subgraph coding does not show
obvious performance advantages over the one based on subtree
coding. In contrast, LGA with subgraph encoding achieves
an overall performance improvement, ranging from 0.41%
to 3.20%. This finding suggests that the subgraph encoding
strategy can better capture behavioral patterns, effectively
enhancing account identification performance. Another insight
from these results is that the synergistic effect of the GIA
module with structured subgraphs enables the LGA frame-
work to precisely delineate the subtle differences between all
transaction patterns.

3) Evaluating the Effectiveness of LSA Module: To inves-
tigate the impact of the LSA module on account classification
performance, we conduct ablation experiments on the LSA
module. The micro F1 score is reported in Table VIII. Clearly,
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TABLE VIII
PERFORMANCE COMPARATIVE ANALYSIS FOR ETHEREUM ACCOUNT DE-ANONYMIZATION ON THE LW-AIG DATASET WITH DIFFERENT

CONFIGURATIONS OF LGA, REPORTING MICRO F1 SCORE (%) IN DIFFERENT SETTINGS. THE GAPS ARE RECORDED IN RED

(a) (b) (c) (d)

Fig. 5. Performance of LGA with different hyperparameters is analyzed on the lw-AIG dataset, showing how changing the k-hops of the subgraph affects the
performance. Perform threefold cross-validation ten times and report the average micro F1 score. The filled areas represent the standard deviation. (a) Eth-ICO.
(b) Eth-Mining. (c) Eth-Exchange. (d) Eth-Phish&Hack.

Fig. 6. T-SNE visualization of graph embeddings learned by LGA, where
the account graph embeddings for the specified identity label are shown in
red, and the sampled account graph embeddings with other labels are shown
in blue.

the performance of the LGA framework significantly outper-
forms that of the GIA module, highlighting the differences
between the complete model and the variant that lacks the
LSA module. Specifically, the integration of the LSA mod-
ule allows the LGA to capture various complex transaction
patterns, improving the LGA’s micro F1 score from 0.98% to
4.74%. Different types of accounts are associated with their
unique transaction patterns, which are crucial for accurately
categorizing account types. The standalone GIA module fails

to capture the distinctions between different patterns, resulting
in a decrease in classification performance.

4) Evaluating the Effectiveness of GIA Module: To explore
the contribution of the GIA module in enhancing account
classification performance, we conduct ablation experiments
on the GIA module and verify the micro F1 scores on the
lw-AIG dataset, as shown in Table VIII. The results show
that integrating the GIA module on top of the LSA module
leads to significant performance improvements, with increases
ranging from 0.68% to 4.51%. These findings indicate that
the introduction of a global attention mechanism plays a
crucial role in heterophilic Ethereum transaction networks.
This effect stems from establishing long-range dependencies
between nodes in large-scale graph datasets and adaptively
filtering appropriate accounts for information aggregation
through attention weights. It is noteworthy that the excellent
performance results from the synergistic action between the
LSA and GIA modules. The underlying idea is that the
LSA module captures the transaction patterns of all accounts,
while the flexible integration of the LSA and GIA modules
simultaneously captures the similarities of transaction patterns
and features among accounts.
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Fig. 7. Example graph and attention map retrieved from LGA. The vertical axis corresponds to the attention weights that the target node receives from other
nodes, and the horizontal axis corresponds to the attention weights that a specific node allocates to other nodes. Attention weights sum to 1 on the horizontal
axis. Nodes that receive more attention from other nodes are displayed in red, while nodes that receive less attention are displayed in blue. (a) Eth-ICO.
(b) Eth-Mining. (c) Eth-Exchange. (d) Eth-Phish&Hack.

(a) (b) (c) (d)

Fig. 8. Specific example analysis of binary classification errors. (a) Eth-ICO.
(b) Eth-Mining. (c) Eth-Exchange. (d) Eth-Phish&Hack.

I. Hyperparameter Studies

LSA explicitly incorporates local structural information into
the local attention mechanism. It is worth noting that multihop
LSA exerts a wide receptive field and forms a functional local-
ization that overlaps with GIA. In order to explore how LSA
and GIA work together to achieve their respective advantages,
we use error bar with filled areas to show how the choice
of k-hops of the subgraph affects the results, where the filled
area represents the standard deviation. Fig. 5 shows the impact
of changing the k-hops hyperparameters of LGA on the test
micro F1 score on the lw-AIG dataset. It is observed that
smaller k-hops can significantly improve performance. As
k-hops increase, the performance of LGA gradually decreases.
Stacking GNN layers aggregate information from outside the
local neighborhood, effectively expanding the GNN receptive
field. For example, node A must pay attention to remote node
B that is k hops away, which can be achieved by stacking
k layers of GNN. However, as the depth increases [51],

the performance of GNN drops drastically because node A
receives signals from other nodes, thus diluting the signal
from node B. GNNs with multiple layers cause node rep-
resentations to become equivalent throughout the graph, a
phenomenon called over-smoothing [52]. Node representations
are not equivalent across the entire graph when k-hop is small,
and the GIA module uses a global attention mechanism to
perform global reasoning and magnify the global interactions
of equivalent nodes. As a powerful global reasoning module,
GIA’s global reasoning capability effectively routes equivalent
information on the highly heterophilic Ethereum network by
modeling long-range dependencies.

J. Qualitative Visualization

1) t-SNE Visualization of Embeddings Learned by LGA:
Assume that the LGA model has learned relevant information
about account categories based on the features of the accounts.
In this case, we should expect to observe account clusters
in the embedding space, where accounts with the same label
belong to the same cluster. We use t-Distributed Stochastic
Neighbour Embedding (t-SNE) [53] to simplify these embed-
ding vectors into 2-D vectors, so that we can intuitively
observe the distribution of the embedding vectors on a standard
2-D scatter plot. Fig. 6 shows the t-SNE visualization of the
graph embeddings generated by the four subdatasets.

2) Example Graph and Attention Map Retrieved From LGA:
We carefully chose several example graphs from our dataset
to illustrate the distinct transaction patterns inherent to various
types of accounts. Further, we retrieve the attention map
from the LSA to reveal the fundamental insights driving
the outstanding performance of the LGA. An ICO wallet is
an account designated for storing the proceeds from token
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sales, which serve to raise funds for blockchain projects by
issuing tokens, as shown on the left side of Fig. 7(a). The
exchange account provides asset trading services to users,
which is manifested in frequent interactions with customers.
It is a hub node with extremely high centrality in the graph,
as shown in Fig. 7(b). The mining team finds new blocks
through the sharing of computational power resources, with the
associated transaction pattern distinctly represented as a cycle
structure on the left side of Fig. 7(c). Phishers and hackers
are malicious accounts that spread illegal transactions, and in
some cases cooperate to trick recipients into making direct
remittances in order to obtain Ether, as shown in Fig. 7(d).
The LSA module is specifically designed to harness a variety
of complex transaction patterns, using graph connectivity
encoding to facilitate selective message aggregation and cycle
structure awareness. In collaboration with LSA, the GIA
module allocates special attention weights to these essential
transaction patterns, as shown in the attention map on the right
side of Fig. 7.

3) Analysis of Error Classification Examples: In order to
explore the limitations of LGA, we collect specific examples
for a more detailed analysis of binary classification errors. As
shown in Fig. 8, atypical interaction patterns are observed in
these error examples. These atypical patterns lack complex
structures or multihop neighbors, which limit LGA from
exerting its unique advantages. In future work, dynamically
adjusting the LGA framework according to the characteristics
of the input graph is expected to break the existing limitations
of LGA and further optimize the performance.

V. CONCLUSION AND FUTURE WORK

We introduced the LGA Framework, which integrates the
novel LSA and GIA modules for effective feature extraction
and global pattern analysis, respectively. Our empirical tests
on real-world Ethereum transaction data clearly demonstrate
LGA’s superiority over existing baseline methods, thereby
confirming its potential to enhance security governance on the
Ethereum platform. Importantly, this study serves as a foun-
dational exploration into the de-anonymization space, urging
further research into sophisticated evasion tactics by malicious
entities, the scalability of large-scale graph analyses, and the
real-time application constraints on Ethereum. Furthermore,
we posit that the LGA framework holds promise for broader
application across various blockchain platforms, contingent
upon verification with multiplatform data. Moving forward, we
aim to refine our methodologies to develop more efficient and
broadly applicable de-anonymization techniques for improving
blockchain security.

REFERENCES

[1] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
“Blockchain-enabled smart contracts: Architecture, applications, and
future trends,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 11,
pp. 2266–2277, Nov. 2019.

[2] J. Leng et al., “ManuChain: Combining permissioned blockchain with a
holistic optimization model as bi-level intelligence for smart manufactur-
ing,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 1, pp. 182–192,
Jan. 2019.

[3] Y. Liu, D. He, M. S. Obaidat, N. Kumar, M. K. Khan, and
K.-K. R. Choo, “Blockchain-based identity management systems: A
review,” J. Netw. Comput. Appl., vol. 166, p. 102731, Sep. 2020.

[4] Y. Pang et al., “Slim UNETR: Scale hybrid transformers to effi-
cient 3D medical image segmentation under limited computational
resources,” IEEE Trans. Med. Imag., vol. 43, no. 3, pp. 994–1005,
Mar. 2024.

[5] T. Huang et al., “AdaptFormer: An adaptive hierarchical semantic
approach for change detection on remote sensing images,” IEEE Trans.
Instrum. Meas., vol. 73, pp. 1–12, Apr. 2024.

[6] B. He et al., “TxPhishScope: Towards detecting and understand-
ing transaction-based phishing on Ethereum,” in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), Copenhagen, Denmark, Nov. 2023,
pp. 120–134.

[7] D. Lin, J. Wu, Y. Yu, Q. Fu, Z. Zheng, and C. Yang, “DenseFlow:
Spotting cryptocurrency money laundering in Ethereum transaction
graphs,” in Proc. World Wide Web Conf. (WWW), Singapore, May 2024,
pp. 4429–4438.

[8] L. Su et al., “Evil under the sun: Understanding and discovering attacks
on Ethereum decentralized applications,” in Proc. 30th USENIX Conf.
Secur. Symp., Aug. 2021, pp. 1307–1324.

[9] H. Du, Z. Che, M. Shen, L. Zhu, and J. Hu, “Breaking the anonymity
of Ethereum mixing services using graph feature learning,” IEEE Trans.
Inf. Forensics Security, vol. 19, pp. 616–631, 2024.

[10] T.-H. Chang and D. Svetinovic, “Improving bitcoin ownership identi-
fication using transaction patterns analysis,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 50, no. 1, pp. 9–20, Sep. 2018.

[11] S. Farrugia, J. Ellul, and G. Azzopardi, “Detection of illicit accounts
over the Ethereum blockchain,” Exp. Syst. Appl., vol. 150, Jul. 2020,
Art. no. 113318.

[12] Y. Pang et al., “Efficient breast lesion segmentation from
ultrasound videos across multiple source-limited platforms,”
IEEE J. Biomed. Health Inform., early access, Feb. 19, 2025,
doi: 10.1109/JBHI.2025.3543435.

[13] F. Victor, “Address clustering heuristics for Ethereum,” in Proc.
Financ. Cryptogr. Data Secur., Kinabalu, Malaysia, Feb. 2020,
pp. 617–633.

[14] S. Linoy, N. Stakhanova, and S. Ray, “De-anonymizing Ethereum
blockchain smart contracts through code attribution,” Int. J. Netw.
Manag., vol. 31, no. 1, Aug. 2021, Art. no. e2130.

[15] R. Agarwal, T. Thapliyal, and S. K. Shukla, “Detecting malicious
accounts showing adversarial behavior in permissionless blockchains,”
2021, arXiv:2101.11915.

[16] C. Wang et al., “Demystifying Ethereum account diversity: Observations,
models and analysis,” Front. Comput. Sci., vol. 16, pp. 1–12, Dec. 2022.

[17] Y. Pang et al., “Sparse-Dyn: Sparse dynamic graph multirepresentation
learning via event-based sparse temporal attention network,” Int. J. Intell.
Syst., vol. 37, no. 11, pp. 8770–8789, Jul. 2022.

[18] Y. Pang et al., “Graph decipher: A transparent dual-attention graph
neural network to understand the message-passing mechanism for the
node classification,” Int. J. Intell. Syst., vol. 37, no. 11, pp. 8747–8769,
Jul. 2022.

[19] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “T-edge: Temporal weighted
multidigraph embedding for Ethereum transaction network analysis,”
Front. Phys., vol. 8, p. 204, Jun. 2020.

[20] J. Shen, J. Zhou, Y. Xie, S. Yu, and Q. Xuan, “Identity inference on
blockchain using graph neural network,” in Proc. Int. Conf. Blockchain
Trustworthy Syst., Aug. 2021, pp. 3–17.

[21] J. Zhou, C. Hu, J. Chi, J. Wu, M. Shen, and Q. Xuan, “Behavior-aware
account de-anonymization on Ethereum interaction graph,” IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 3433–3448, 2022.

[22] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, and G. Xiong, “TTAGN: Temporal
transaction aggregation graph network for Ethereum phishing scams
detection,” in Proc. World Wide Web Conf. (WWW), New York, NY,
USA, Apr. 2022, pp. 661–669.

[23] S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, and L. Liu, “BERT4ETH: A
pre-trained transformer for Ethereum fraud detection,” in Proc. World
Wide Web Conf. (WWW), Apr. 2023, pp. 2189–2197.

[24] H. Zheng, M. Ma, H. Ma, J. Chen, H. Xiong, and Z. Yang,
“TEGDetector: A phishing detector that knows evolving transaction
behaviors,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 3, pp. 3988–
4000, Jun. 2024.

[25] B. J. Weisfeiler and A. A. Lehman, “A reduction of a graph
to a canonical form and an algebra arising during this reduc-
tion,” Nauchno-Technicheskaya Informatsiya, vol. 2, no. 9, pp. 12–16,
1968.

[26] X. Liu, Z. Tang, P. Li, S. Guo, X. Fan, and J. Zhang, “A graph learning
based approach for identity inference in DApp platform blockchain,”
IEEE Trans. Emerg. Topics Comput., vol. 10, no. 1, pp. 438–449,
Sep. 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/JBHI.2025.3543435


14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[27] T. Huang, D. Lin, and J. Wu, “Ethereum account classification based on
graph convolutional network,” IEEE Trans. Circuits Syst. Exp. Briefs,
vol. 69, no. 5, pp. 2528–2532, May 2022.

[28] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proc. Int. Conf. Mach. Learn. (ICML), Stockholm, Sweden, Jul. 2018,
pp. 5453–5462.

[29] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica,
“Representing long-range context for graph neural networks with global
attention,” in Proc. 35th Conf. Neural. Inf. Process. Syst., vol. 34,
Dec. 2021, pp. 13266–13279.

[30] Y. Pang et al., “Online self-distillation and self-modeling for 3D brain
Tumor segmentation,” IEEE J. Biomed. Health Inform., early access,
Jan. 16, 2025, doi: 10.1109/JBHI.2025.3530715.

[31] Q. Wu et al., “SGFormer: Simplifying and empowering transformers for
large-graph representations,” in Proc. 37th Conf. Neural. Inf. Process.
Syst., vol. 36, Dec. 2024, pp. 64753–64773.

[32] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Disc. Data Min., New York, NY, USA, Aug. 2014, pp. 701–710.

[33] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec:
Learning node representations from structural identity,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., Aug. 2017,
pp. 385–394.

[34] J. Wu et al., “Who are the phishers? Phishing scam detection on
Ethereum via network embedding,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 52, no. 2, pp. 1156–1166, Sep. 2020.

[35] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Disc. Data
Min., Aug. 2016, pp. 855–864.

[36] N. K. Ahmed et al., “Learning role-based graph embeddings,” 2018,
arXiv:1802.02896.

[37] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.
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