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Abstract
Local Differential Privacy (LDP) is widely employed to ad-
dress privacy concerns in data collection. Nevertheless, the
LDP model ignores the sensitivity distinction, as it regards
all personal data equally sensitive, leading to excessive obfus-
cation and the loss of utility. Utility-optimized LDP (ULDP)
aims to mitigate this issue. However, existing ULDP mecha-
nisms address sensitivity distinction in only a limited subset
of LDP mechanisms. To systematically address sensitivity
distinction in the LDP model, we propose the General LDP-
to-ULDP Transformation Framework. This framework can
convert any LDP mechanism into its corresponding ULDP
mechanism while preserving key properties such as order-
optimality and unbiased estimation. Then, we present the
pure ULDP framework, which generalizes a class of ULDP
mechanisms with strong performance guarantees. We develop
a universal aggregation and utility analysis method applica-
ble to all pure ULDP mechanisms, facilitating the analysis,
comparison, and optimization of different ULDP mechanisms.
After that, we transform three widely-used LDP mechanisms
into their ULDP counterparts (uSS, uUE and uLH). We theo-
retically demonstrate that our proposed mechanisms exceed
existing ULDP mechanisms in data utility and communication
costs. Specifically, our uSS, uUE and uLH match the mini-
max risk lower bound within the ULDP framework. We also
identify the optimal mechanism for various usage scenarios.
Finally, we conduct experiments on both real and synthetic
datasets, showing that uUE and uLH achieve the lowest Mean
Squared Error (MSE) when size of sensitive dataset is large,
and uSS consistently achieves the lowest MSE.

1 Introduction

Differential Privacy (DP) [1, 2] provides low computational
overhead and robustness against attackers with arbitrary back-
ground knowledge, and has become the de facto standard
in privacy-preserving data collection scenarios. However, it
requires a trusted third party for data aggregation, which is

impractical in many application scenarios. To address this
issue, Local Differential Privacy (LDP) [3] was proposed,
which inherits the advantages of DP while eliminating the
need for a trusted third party. In the local setting, the server
is assumed to be untrusted, and each user locally perturbs
their private data. The server then collects the perturbed data
from each user and performs statistical estimation. LDP is
suitable for distributed data collection and has been widely
adopted by industry. For example, Google [4], Microsoft [5],
and Apple [6] have used LDP in their applications to collect
user information while preserving privacy.

One of the most important problems in LDP is frequency
estimation for categorical data. Improving this fundamental
task can not only yield more accurate frequency estimates,
but also facilitate advancements in more complex tasks that
rely on it, such as heavy-hitter identification [7] and rela-
tion mining [8]. Although various LDP frequency estimation
mechanisms have been proposed, the LDP model has inherent
limitations that hinder further improvements in data utility.

LDP assumes that all private data are equally sensitive,
which is unrealistic in practical applications and leaves sig-
nificant room for improving data utility. For example, when
counting diseases, conditions like "AIDS" and "cancer" re-
quire stricter privacy protection compared to conditions like
"colds", as the sensitivity of the former is much higher. Treat-
ing all data as equally sensitive leads to what we refer to
as "a lack of sensitivity distinction", inevitably resulting in
excessive obfuscation, which in turn diminishes data utility.

Private data naturally exhibit differences in sensitivity, and
differentiating between sensitive and non-sensitive data en-
ables focused protection where it is most needed. In prac-
tice, users (although not privacy experts) often have intuitive
judgments. For example, individuals are reluctant to share
precise home addresses online but are more comfortable dis-
closing their workplace; similarly, detailed medical records
are protected carefully, while step counts or workout sum-
maries are frequently shared on social media. Motivated by
this observation, recent works have introduced a privacy no-
tion called Utility-optimized LDP (ULDP) [9] ( [10] and [11]
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Figure 1: Evaluation of data utility and communication cost
in existing ULDP mechanisms (uRR, uRAP and uHR) vs.
one of our proposed mechanisms (uLH) on large sensitive
dataset. Due to limitations in theoretical analysis, uHR in (a)
represents only the upper bound of MSE, with a significant
gap from the actual MSE.

independently proposed similar models). The ULDP frame-
work categorizes data into sensitive and non-sensitive groups,
applying LDP-level privacy guarantees only to the sensitive
subset, thereby improving overall data utility. Importantly,
ULDP does not rely on a universal definition of sensitive data;
instead, it accommodates user-specific sensitivity through a
personalization framework [9].

Although ULDP shows great promise, its full potential has
yet to be reached. To the best of our knowledge, there are
currently only three ULDP mechanisms: utility-optimized
Randomized Response (uRR) [9], utility-optimized RAP-
POR (uRAP) [9], and utility-optimized Hadamard Response
(uHR) [11]. The utility of existing ULDP mechanisms is often
suboptimal in various scenarios. For example, as illustrated
in Fig. 1, when the size of the sensitive dataset increases, the
data utility of the uRR mechanism decreases rapidly, while
the communication cost of the uRAP mechanism increases
significantly. Furthermore, within the medium privacy regime
(1< ε< logs, where s is the size of sensitive dataset), the uRR
and uRAP mechanisms do not achieve order-optimality [9],
leading to the introduction of unnecessary noise. Although the
uHR mechanism achieves a low communication cost, its de-
sign inherently prevents it from providing an accurate theoret-
ical MSE, making it challenging to determine its application
scenarios. These limitations hinder their broader applicabil-
ity and efficiency of these mechanisms in real-world data
collection tasks.

Thus, the issue of sensitivity distinction in the LDP model
has yet to be systematically addressed. This is primarily be-
cause current ULDP-related research focuses on developing
ULDP versions for individual LDP mechanisms, thereby tai-
loring them to specific scenarios. The limitations of exist-
ing ULDP mechanisms highlight that patchwork solutions
alone cannot effectively resolve the problem. A truly com-
prehensive solution must capitalize on the close relationship
between the LDP and ULDP models to establish a universal
transformation framework, allowing any LDP mechanism to

be converted into a ULDP mechanism. It is essential to build
a bridge between the LDP and ULDP models. This insight
has motivated our research.

To systematically address the issue of sensitivity distinction
in the LDP model, we must overcome two major challenges:
generalizability and high data utility. For the first challenge,
both LDP and ULDP mechanisms exhibit significant differ-
ences in their perturbation and aggregation. The variations in
perturbation probabilities and privacy budget allocation across
different mechanisms make it difficult to establish a unified
mathematical notation for consistent representation, let alone
design a generalized perturbation and aggregation framework
based on it. For the second challenge, when transforming an
LDP mechanism into its ULDP version, it is crucial to care-
fully control the introduction of noise to avoid unnecessary
utility loss. Furthermore, maintaining key theoretical proper-
ties of the original LDP mechanism, such as order optimality
and unbiased estimation, throughout the transformation pro-
cess presents an additional layer of complexity.

In this paper, we propose a General LDP-to-ULDP Trans-
formation Framework (GLUTF) that can transform any LDP
mechanism into a ULDP mechanism. The core concept of
GLUTF is to utilize one existing LDP mechanism as a basic
building block, allowing users to apply it differently depend-
ing on the sensitivity of their private data. GLUTF is highly
adaptable and can be applied to any LDP mechanism.

Furthermore, we propose the pure ULDP framework, which
generalizes a class of ULDP mechanisms with desirable per-
formance. We develop a simple and general aggregation and
utility analysis method applicable to all pure ULDP mech-
anisms, ensuring unbiased estimation and providing an ac-
curate theoretical mean squared error (MSE). This frame-
work enables the precise evaluation and comparison of dif-
ferent mechanisms in terms of data utility and facilitates the
optimization of the mechanism based on theoretical MSE.
Through utility analysis, we found that if an LDP mechanism
is inherently order-optimal or provides unbiased estimates,
these desirable properties are preserved after transformation
to a ULDP mechanism via GLUTF.

Finally, based on three widely used and efficient LDP
mechanisms, we propose three new ULDP mechanisms:
utility-optimized Subset Selection (uSS), utility-optimized
Unary Encoding (uUE), and utility-optimized Local Hashing
(uLH). We demonstrate that these mechanisms achieve order-
optimality within commonly used privacy regime (0 < ε <
logs), and the uLH mechanism can simultaneously provide
high data utility and low communication cost when the size
of sensitive dataset is large.

Our contributions are summarized as follows:

• We propose the GLUTF framework that enables the con-
version of any LDP mechanism into its corresponding
ULDP mechanism. We also demonstrate that GLUTF
preserves the order-optimality and unbiased estimation
properties of the underlying LDP protocols.



• We propose the pure ULDP framework and develop a
general aggregation and utility analysis method appli-
cable to all pure ULDP mechanisms. This framework
enables the analysis, comparison, and optimization of
different ULDP mechanisms. We also demonstrate how
to extend these methods to non-pure ULDP mechanisms.

• We develop three new ULDP mechanisms: uSS, uUE and
uLH. The MSE of each mechanism is O( s

nε2 ) (0< ε< 1)
or O( seε

n(eε−1)2 ) (1< ε< logs), indicating that these mech-
anisms have achieved order-optimality. The communi-
cation cost of uLH is O(log(eε +d − s)), which is bet-
ter than that of all existing ULDP mechanisms (when
ε < lns).

• We conduct systematic experiments on real and sim-
ulated datasets. The experimental results validate the
design and analysis of the GLUTF and the pure ULDP
framework, demonstrating their advantages and effec-
tiveness.

2 Preliminaries

2.1 Problem Definition and Notations
In this paper, we focus on frequency estimation for categorical
data. Our system model involves one data server and n users.
We assume each user possesses a single categorical value, and
the server aims to determine the proportion of users with a
specific private value. To ensure privacy, users locally encode
and perturb their data before sending it to the server.

Formally, the problem is defined as follows: there are n
users, each possessing a private data x ∈ X , where X =
{1,2, . . . ,d}. The frequency distribution of the private data is
represented by the vector ccc = (c1,c2, . . . ,cd), where cx repre-
sents the frequency of private data x. Each user encodes their
private data x into encoded data ẋ, then applies a perturba-
tion mechanism, producing the perturbed data y ∈ Y . For
simplicity, we denote the combined encoding and perturba-
tion processes as A , defined as y = A(x). In addition, there
is a server that collects perturbed data from each user and
performs statistical estimation to obtain ĉcc = (ĉ1, ĉ2, . . . , ĉd),
an estimate of ccc.

Based on data sensitivity, the private data set X is divided
into two subsets: the sensitive data set XS and the non-sensitive
data set XN , where |XS| = s, |XN | = d − s and XN = X \XS.
The total frequency of all non-sensitive data is expressed as
θ = ∑x∈XN cx. The perturbed data set Y is divided into the
protected data set YP and the invertible data set YI , where
YP = {y|x ∈ XS,Pr[y = A(x)]> 0} and YI = Y \YP.
Threat Model. As a convention, we assume the semi-honest
security model. Our focus is on protecting individual privacy,
without considering robustness against user misbehavior or
data poisoning.

2.2 Local Differential Privacy
Local Differential Privacy (LDP) [3], a privacy model that
allows data collection without a trusted third party, is defined
as follows:

Definition 1 (ε-LDP [3]). Given ε > 0. A randomized al-
gorithm A : X → Y satisfies ε-LDP if and only if for any
x1,x2 ∈ X and any y ∈ Y , we have:

Pr[A(x1) = y]≤ eεPr[A(x2) = y]. (1)

In Definition 1, ε is referred to as the privacy budget. This
parameter quantifies how closely the perturbed outcomes of
two different pieces of private data resemble each other, thus
serving as a measure of the strength of privacy protection. A
larger privacy budget leads to reduced privacy protection but
enhances data utility.

2.3 Pure LDP
Wang et al. [12] proposed the notion of pure LDP protocols.
To be pure, an LDP protocol requires a "support" function,
denoted as Supp(·), which maps each output y to a set of input
values it supports. Pure LDP is defined as follows:

Definition 2 (Pure LDP [12]). Given Supp(·). An LDP mech-
anism A : X → Y is pure if and only if there exist two proba-
bility values p∗ > q∗ such that for all x1 ∈ X,

Pr[A(x1) ∈ {y|x1 ∈ Supp(y)}] = p∗, (2)
∀x2 ̸=x1Pr[A(x2) ∈ {y|x1 ∈ Supp(y)}] = q∗, (3)

where p∗ and q∗ are called pure probabilities, and {y|x1 ∈
Supp(y)} is referred to as the support set of x1.

For input x, its "support set" is a subset of the output space
where x is more likely to fall (with probability p∗) than other
input (with probability q∗). Obviously, pure LDP is a strict
subset of LDP. Most existing LDP protocols for frequency
estimation are pure, including GRR [13], basic RAPPOR [4],
SS [14, 15], OUE [12], OLH [12], and Wheel [16].

2.4 Utility-Optimized LDP
The Utility-optimized LDP (ULDP) model [9] is a variant
of LDP. In the ULDP model, private data is divided into
two types: sensitive data and non-sensitive data. This novel
privacy model provides the same level of protection as LDP
only for sensitive data, hence significantly enhancing data
utility. ULDP is defined as follows:

Definition 3 ((XS,YP,ε)-ULDP [9]). Given ε > 0, XS ⊂ X,
XN =X \XS,YP ⊂Y and YI =Y \YP, an randomized algorithm
A : X → Y satisfies (XS,YP,ε)-ULDP if and only if it satisfies
the following properties:



1. For any y ∈ YI , there exists an x ∈ XN such that

Pr[A(x) = y]> 0 and Pr[A(x′) = y] = 0 for any x′ ̸= x,
(4)

2. For any x, x′ ∈ X, any y ∈ Yp

Pr[A(x) = y]≤ eεPr[A(x′) = y]. (5)

(XS,YP,ε)-ULDP provides a privacy guarantee equivalent
to ε-LDP for any sensitive data x ∈ Xs (with regard to a re-
stricted output domain YP). For non-sensitive data x ∈ XN , no
privacy guarantee is provided, thereby enabling the server to
obtain a more accurate estimation. To the best of our knowl-
edge, only three ULDP mechanisms exist: uRR [9], uRAP [9]
and uHR [11].

2.5 Utility Metrics
We assess the data utility of the mechanism using Mean
Squared Error (MSE), a utility metric widely used in prior
studies. MSE is defined as follows:

MSE[ĉcc] = E[∥ ĉcc− ccc ∥2
2]. (6)

A smaller MSE indicates a closer approximation to the true
values. When ĉcc is an unbiased estimate of the true frequency
ccc, the MSE corresponds to the average of the variances:

MSE[ĉcc] =
d

∑
i=1

Var[ĉi]. (7)

Lower bounds on the l2 losses. Ye et al. [15] showed that
the lower bounds on the l2 losses (minimax rates) of any ε-
LDP mechanism is Θ( d

nε2 ) (when ε ∈ (0,1)) and Θ( deε

n(eε−1)2 )

(when ε ∈ (1, logd)). By directly applying these bounds to
XS and YP, the lower bounds on the l2 losses of any ULDP
mechanisms can be derived as Θ( s

nε2 ) (when ε ∈ (0,1)) and
Θ( seε

n(eε−1)2 ) (when ε∈ (1, logs)). In Section 5.4, we will show
that when ε< logs, our ULDP mechanism match the minimax
lower bound of ULDP model. This property is commonly
referred to as order-optimality, a standard notion in LDP
indicating near-optimal utility, which is defined as follows:

Definition 4 (Order-optimal). A mechanism is order-optimal
if its error achieves the minimax lower bound up to constant
factors.

We also consider the communication cost of the mecha-
nism, which is defined as follows:

Definition 5 (Communication cost). The communication cost
of a mechanism is defined as the minimum number of bits
needed to uniquely represent an output. For an algorithm
A : X → Y , its communication cost scales as O(log |Y |).

In this definition, we consider only the perturbed data y sent
from the user to the server, excluding any overhead from prior
sharing of sensitive/non-sensitive sets or other coordination
information.

Algorithm 1 Perturbation of GLUTF

Input: Sensitive data set XS, non-sensitive data set XN , pure
LDP mechanism ALDP, pure probabilities p∗LDP and q∗LDP,
private data x, perturbation probabilities z and f

Output: perturbed data y
1: if x ∈ XS then
2: y = ALDP(x)
3: else
4: if UniformRandom(0.0, 1.0) < f then
5: Uniformly randomly select an element x′ from XS
6: if UniformRandom(0.0, 1.0) < z then
7: y = ⟨ALDP(x′),x⟩
8: else
9: y = ALDP(x′)

10: end if
11: else
12: y = x
13: end if
14: end if

3 Generalized LDP-to-ULDP Transformation
Framework

To improve the data utility of LDP mechanisms and develop
more efficient ULDP mechanisms, we propose the Gener-
alized LDP-to-ULDP Transformation Framework (GLUTF)
that can convert any LDP mechanisms into their correspond-
ing ULDP counterparts. Although pure and non-pure LDP
differ significantly, we find that they share similar structures
and steps in the process of converting to ULDP mechanisms.

GLUTF’s intuition is simple: it utilizes an existing LDP
mechanism ALDP as its basic building block and applies it to
sensitive and non-sensitive data differently to achieve ULDP
conversion. The overview of GLUTF is shown in Fig. 2.

Detailed steps of GLUTF are shown in Algorithm 1. Given
sensitive data set XS and any LDP mechanism ALDP : XS →
YLDP, private data with different sensitivities will be perturbed
in different ways. For any sensitive data x ∈ XS, it is di-
rectly used as the input of ALDP, producing the perturbed
data y = ALDP(x). For any non-sensitive data x ∈ XN , it re-
mains unaltered with a probability of 1− f , and it maps to
any sensitive data with a probability of f

s , where s = |XS|.
If x is retained as is, it is directly output. In case where x

is mapped to sensitive data x′, the output is ALDP(x′), and x
is also output simultaneously with probability z. In summary,
the probability of x ∈ XN producing output y is as follows:

Pr[y = i] =


f (1− z), if i = ALDP(x′)

f z, if i = ⟨ALDP(x′),x⟩
1− f , if i = x,

(8)

where ⟨ALDP(x′),x⟩ represents the simultaneous output of
ALDP(x′) and x.
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Figure 2: Overview of GLUTF. Dashed boxes illustrate input/output partitions; arrows indicate data perturbation pathways.

f Selection: Pure vs. Non-pure. Although the pure LDP and
non-pure LDP mechanisms follow the same transformation
process in GLUTF, key differences remain in the choice of
the parameter f . In the pure LDP mechanism, any private data
maps to its own support set with probability p∗, and to any
other private data’s support set with probability q∗. This strict
probability drives a simple and general aggregation method
and utility analysis method for pure LDP mechanism. To
preserve this property, we set f as follows:

f =
sq∗LDP

p∗LDP +(s−1)q∗LDP
. (9)

With this parameter setting, the ULDP mechanisms converted
by pure LDP mechanisms retain a general aggregation method
and a utility analysis method, which will be explored in Sec-
tion 4. In contrast, the non-pure LDP mechanisms lack re-
strictions on perturbation probability, making it challenging
to identify commonalities. Therefore, we can only rely on the
basic parameters defined in the LDP model to set f :

f =
s

eε + s−1
(10)

We also discussed how to aggregate and analyze this type of
ULDP mechanisms in Section 4.

The domain of the perturbed data is comprised of three
parts: YLDP, XN and {⟨y1,y2⟩|y1 ∈YLDP,y2 ∈XN}, where YLDP
is the output domain of ALDP. To adapt the ULDP structure,
we divide the perturbed data into:

YP = YLDP, (11)
YI = XN ∪{⟨y1,y2⟩|y1 ∈ YLDP,y2 ∈ XN}. (12)

After presenting the core ideas and parameter selection of
GLUTF, we will next prove that the protocol generated by
this framework indeed satisfies the definition of ULDP.

Theorem 1. The mechanism A we construct based on any
LDP mechanism satisfies the ULDP model when z ≤ 1−
1
eε max{ pim

∑
s
t=1

f
s ptm

}, where pim is the probability that xi maps

to ym in the LDP mechanism.

Proof. For any y ∈ YI , it necessarily contains an element x ∈
XN . Evidently, the output y is possible only if x is the input.

Furthermore, any x′ ̸= x cannot map to y. Thus, the mechanism
A satisfies the first property outlined in Definition 3.

The intuition behind the following proof is to perform a
case analysis, verifying whether A satisfies the second prop-
erty outlined in Definition 3.

For any xi,x j ∈ XS and ym ∈ YP, it is evident that their per-
turbation processes are identical to those of a LDP mecha-
nism. Consequently, they necessarily satisfy Pr[A(xi) = ym]≤
eεPr[A(x j) = ym]. For any xi,x j ∈ XN and ym ∈ YP, it is mani-
fest that Pr[A(xi) = ym] = Pr[A(x j) = ym] holds.

For any xi ∈ XS, x j ∈ XN and ym ∈ YP, we have:

Pr[A(x j) = ym]

Pr[A(xi) = ym]
=

(1− z)∑
s
t=1

f
s ptm

pim
, (13)

where pim denotes the probability that xi maps to ym in the
LDP mechanism ALDP. From Definition 1, it becomes appar-
ent that ptm ≤ eε pim, so we have:

Pr[A(x j) = ym]

Pr[A(xi) = ym]
≤ (1− z) f eε ≤ eε. (14)

Let’s consider another case:

Pr[A(xi) = ym]

Pr[A(x j) = ym]
=

pim

(1− z)∑
s
t=1

f
s ptm

. (15)

We also know that pim ≤ eε ptm, then we get:

Pr[A(xi) = y]
Pr[A(x j) = y]

≤ seε

(1− z) f (eε + s−1)
. (16)

Regardless of whether GLUTF uses a pure (Eq. (9)) or non-
pure (Eq. (10)) LDP protocol, we can obtain Pr[A(xi)=y]

Pr[A(x j)=y] ≤ eε if
z = 0. However, it is important to note that in many cases, set-
ting z to 0 results in a waste of the privacy budget. Specifically,
in such cases, Pr[A(xi)=y]

Pr[A(x j)=y] = eε′ < eε, where ε′ < ε. Therefore,
to maximize the data utility while satisfying the ULDP, we
generally aim to increase the value of z. The optimal z can be
determined as 1− 1

eε max{ pim

∑
s
t=1

f
s ptm

}. In summary, A satisfies

the second property outlined in Definition 3.

In GLUTF, the parameter z controls the probability of dis-
closing the true value of non-sensitive data after it has been



disguised as sensitive data. The core purpose of this param-
eter is to leak as much information as possible while still
meeting privacy requirements. Also within GLUTF, different
LDP protocols have varying privacy guarantees after under-
going the same transformation process. The introduction of z
enables fine-grained adjustments to different protocols. This
strategy not only enhances the data utility of the mechanism
but also improves GLUTF’s compatibility with different LDP
mechanisms.

4 Pure ULDP Framework

We propose the pure ULDP framework, summarizing a class
of concise and efficient ULDP mechanisms. In this section,
we provide simple, generic aggregation and utility analysis
methods for both pure and non-pure ULDP mechanisms. Fur-
thermore, we theoretically prove that the "pure" property is
preserved during the GLUTF transformation, enabling us to
swiftly apply the aggregation and utility analysis methods to
the ULDP mechanisms constructed by GLUTF.

We identified a class of ULDP mechanisms with advanta-
geous properties. Specifically, each private data corresponds
to a perturbed data set, referred to as the support set. All pri-
vate data within the same sensitivity are mapped to their own
support set with the same probability, and all other private
data are mapped to this set with another uniform probability.
To define the support set, we introduced the function Supp.
Supp(y) represents all private data supported by the pertur-
bation data y, and {y|x ∈ Supp(y)} represents the support set
of the private data x. We propose the pure ULDP framework
to encapsulate the above mechanisms, which is defined as
follows:

Definition 6 (pure ULDP). Given the Supp function, a ULDP
mechanism A is pure if and only if there exist three probability
values p∗ > q∗ and z∗ that satisfy the following properties:

∀x1∈XS Pr[A(x1) ∈ {y|x1 ∈ Supp(y)}] = p∗, (17)

∀x2 ̸=x1∈X Pr[A(x2) ∈ {y|x1 ∈ Supp(y)}] = q∗, (18)

∀x3∈XN Pr[A(x3) ∈ {y|x3 ∈ Supp(y)}] = z∗, (19)

∀x4 ̸=x3∈X Pr[A(x4) ∈ {y|x3 ∈ Supp(y)}] = 0, (20)

where p∗, q∗ and z∗ are called pure probabilities.

Using p∗, q∗ and z∗ to define perturbation probabilities, we
can use the same symbols to represent different encoding and
perturbation processes, which is a necessary prerequisite for
general theoretical analysis.

For any pure ULDP mechanism, the server can estimate
the frequency of private data x as following:

ĉx =


∑

n
i=1 1support(yi)(x)−nq∗

n(p∗−q∗)
, if x ∈ XS

∑
n
i=1 1support(yi)(x)

nz∗
, if x ∈ XN ,

(21)

where yi is the perturbed data of user i, and 1support(y)(x)
is a indicator function. The function determines whether a
perturbed data y supports the private data x, defined as follows:

1support(y)(x) =

{
1, if x ∈ Supp(y)
0, if x /∈ Supp(y).

(22)

Theorem 2. For any pure ULDP mechanism, the estimated
frequency ĉx in Eq. (21) is an unbiased estimate of the true
frequency cx.

Proof. For x ∈ XS, we observe that ∑
n
j=1 1support(yi)(x) can be

viewed as the sum of two binomial distributions, B(ncx, p∗)
and B(n(1− cx),q∗). Thus, we have

E[ĉx] =
ncx p∗+n(1− cx)q∗−nq∗

n(p∗−q∗)
= cx. (23)

For x ∈ XN , ∑
n
j=1 1support(yi)(x) equates to the outcome of a

single binomial distribution B(ncx,z∗). Thus, we have

E[ĉx] =
ncxz∗

nz∗
= cx. (24)

In summary, ĉx is an unbiased estimate of cx.

Having introduced a unified frequency estimation approach
within the pure ULDP framework, the subsequent question
arises regarding the accuracy of these estimations. In the
following convention, we utilize MSE as the utility metric.
As demonstrated in Section 2.5, MSE is equivalent to the
sum of variance for unbiased estimations. Therefore, we first
calculate the variance of ĉx.

Theorem 3. For any pure ULDP mechanism, the variance of
the estimation ĉx in Eq. (21) is:

Var[ĉx] =


cx

1− p∗−q∗

n(p∗−q∗)
+

q∗(1−q∗)
n(p∗−q∗)2 , if x ∈ XS

cx
1− z∗

nz∗
, if x ∈ XN .

(25)

Proof. The variance of the estimated value can be calculated
by utilizing the characteristics of binomial distribution. For
x ∈ XS, we have:

Var[ĉx] =Var[
∑

n
i=1 1support(yi)(x)−nq∗

n(p∗−q∗)
]

=
Var[∑n

i=1 1support(yi)(x)]
n2(p∗−q∗)2

=
ncx p∗(1− p∗)+n(1− cx)q∗(1−q∗)

n2(p−q)2

= cx
1− p∗−q∗

n(p∗−q∗)
+

q∗(1−q∗)
n(p∗−q∗)2 .

(26)



For x ∈ XN , we have:

Var[ĉx] =Var[
∑

n
i=1 1support(yi)(x)

nz∗
] = cx

1− z∗

nz∗
. (27)

Combining Eq. (7) and (25), we can directly obtain the
MSE of ĉcc = (ĉ1, ĉ2, . . . , ĉd).

Theorem 4. For any pure ULDP mechanism, the MSE of the
estimation ĉcc is:

1
n
((1 − θ)

1− p∗−q∗

(p∗−q∗)
+ s

q∗(1−q∗)
(p∗−q∗)2 + θ

1− z∗

z∗
). (28)

We proposed general aggregation and utility analysis meth-
ods for pure ULDP mechanisms, offering powerful tools for
analyzing and comparing these mechanisms. A natural ques-
tion arises: can the ULDP mechanisms generated by GLUTF
in Section 3 benefit from these tools? Fortunately, we found
that the "pure" property is preserved during the GLUTF con-
version. Specifically, when we use GLUTF to convert any
pure LDP protocol, the resulting ULDP mechanism remains
pure. The Supp function for this pure ULDP is as follows:

Supp(y)=


SuppLDP(y), if y ∈ YP

{y}, if y ∈ XN

SuppLDP(y1)∪{y2}, if y = ⟨y1,y2⟩,
(29)

where SuppLDP is the support function of the pure LDP mech-
anism and ⟨y1,y2⟩ represents the simultaneous output of y1
and y2.

Theorem 5. Given the Supp function as defined in Eq. (29),
the ULDP mechanism A generated by GLUTF from a pure
LDP mechanism must be pure. Specifically, p∗ = p∗LDP, q∗ =
q∗LDP and z∗ = (1− f )+ f z, where p∗LDP and q∗LDP are the
pure probabilities of the pure LDP mechanism.

Proof. For any private data x ∈ XS, {y|x ∈ Supp(y)}= {y|x ∈
SuppLDP(y)}∪ {⟨y1,y2⟩|x ∈ SuppLDP(y1)}. For any private
data x ∈ XN , {y|x ∈ Supp(y)}= {x}∪{⟨y1,y2⟩|y2 = x}. Thus
we can see that for any x1 ∈ XS, the probability of mapping
to {y|x1 ∈ Supp(y)} is always p∗LDP. For any x2 ̸= x1, the
probability of mapping to {y|x1 ∈ Supp(y)} is either q∗LDP
or f ( 1

s p∗LDP +
s−1

s q∗LDP). As delineated in Eq. (9), the latter
probability equates to q∗LDP. For any x3 ∈ XN , the probability
of mapping to {y|x3 ∈ Supp(y)} is always (1− f )+ f z, and
no other private data can be mapped to this set.

The lower bounds of the l2 error under the LDP model have
been proven to be Θ( d

nε2 ) (when ε ∈ (0,1)) and Θ( deε

n(eε−1)2 )

(when ε ∈ (1, logd)) [15], indicating that some LDP mecha-
nisms have achieved optimal utility. A natural question arises:
If GLUTF transforms an optimal mechanism under the LDP
model, will the resulting ULDP mechanism remain optimal?
We found that the order-optimality is also preserved in the
GLUTF transformation process.

Theorem 6. If a pure LDP mechanism is order-optimal, then
the ULDP mechanism generated by GLUTF from this LDP
mechanism is also order-optimal.

Proof. From Theorem 4, the MSE of ULDP mechanism gen-
erated by GLUTF is 1

n

(
(1−θ) 1−p∗−q∗

(p∗−q∗) + s q∗(1−q∗)
(p∗−q∗)2 +θ

1−z∗
z∗

)
, where the first and second items are the errors caused by
sensitive data, and the third item is the error caused by non-
sensitive data. We know that z∗ > 1− f = p∗−q∗

p∗+q∗(s−1) , thus we

have θ
1−z∗

z∗ < s q∗(1−q∗)
(p∗−q∗)2 . This indicates that regardless of the

size of sensitive data set s or the frequency of all sensitive data
1−θ, the error caused by sensitive data always dominates the
MSE. Therefore, if a high data utility LDP mechanism is trans-
formed by GLUTF, the derived ULDP mechanism must have
high data utility. The MSE of a pure LDP mechanism [12]
can be expressed as: 1

n

(
1−p∗−q∗
(p∗−q∗) +d q∗(1−q∗)

(p∗−q∗)2

)
. Specifically,

if the MSE of LDP mechanism is Θ( d
nε2 ) or Θ( deε

n(eε−1)2 ), then
the MSE of the corresponding ULDP mechanism is Θ( s

nε2 )

or Θ( seε

n(eε−1)2 ), reaching the lower bound of the l2 error under
the ULDP model [9]. This demonstrates that our GLUTF
framework preserves order-optimality.

By substituting p∗, q∗, and z∗ into Eq. (28), the MSE of any
pure ULDP mechanism can be effectively computed. This
not only facilitates the comparative assessment of different
pure ULDP mechanisms but also enables the subsequent opti-
mization of specific mechanism parameters. It is noteworthy
that the true frequency θ is incorporated in the MSE calcu-
lation. This is distinct from some previous works because
we use the complete variance, including the term with the
true frequency, rather than omitting it. The value of θ can be
determined based on some prior knowledge, or estimated in a
manner similar to that used by Qian et al [17]. Consequently,
θ in Eq. (28) does not impede the design or execution of the
mechanism.
Aggregation and utility analysis methods for non-pure
mechanisms. When aggregating and analyzing the utility
of non-pure ULDP mechanisms, the situation becomes sig-
nificantly more complex. This complexity arises because the
perturbation processes of non-pure ULDP mechanisms dif-
fer and cannot be represented by a unified symbol like in
pure ULDP. However, we can extract commonalities from
the structure of the ULDP mechanism. According to the defi-
nition of ULDP, users holding sensitive data are equivalent
to executing an LDP mechanism. We denote the aggrega-
tion method of this LDP mechanism as Agg and the utility
analysis method (variance calculation method) as UA. In this
section, we will continue to use some of the symbols defined
in Section 3. However, this will not affect the generality of
the conclusions. The following analysis is also applicable to
any non-pure ULDP mechanism.

For any non-pure ULDP mechanism, the server can esti-



mate the frequency of private data x as following:

ĉx =


Agg(Y ′)− f (1− z)

s
θ
′, if x ∈ XS

∑
n
i=1 1x(yi)

n(1− f )
, if x ∈ XN ,

(30)

where Y ′ = {yi|yi ∈ YP,1 ≤ i ≤ n}, θ′ = ∑x∈XN ĉx and 1x(y)
is an indicator function that outputs 1 when x = y and 0
otherwise.

Since the proofs of the following theorems are straightfor-
ward, we present the results directly here, with the full proofs
provided in Appendix A.

Theorem 7. If Agg is an unbiased estimation method, then the
estimation methods presented in Eq. (30) are also unbiased.

Theorem 8. For any non-pure ULDP mechanism, the vari-
ance of the estimation ĉx in Eq. (30) is:

Var[ĉx] =


UA(Agg(Y ′))+

f 3(1− z)2

ns2(1− f )
θ, if x ∈ XS

cx
f

n(1− f )
, if x ∈ XN .

(31)

The inherent flaw of the non-pure ULDP mechanism is
its susceptibility to covariance, which makes accurate utility
analysis impossible. In Theorem 8, we disregard covariance
and obtain an approximate result. Similarly, the uHR [11]
protocol also encounters this problem. Although it considers
the influence of covariance, it only obtains a loose bound.

5 Mechanism Instantiation

In this section, we will propose three ULDP mechanisms
based on some commonly used and highly effective LDP
mechanisms (the fourth, uWheel, is detailed in Appendix B
as its performance is nearly identical to that of uLH). Subse-
quently, we will compare the communication cost and data
utility of these mechanisms to give the recommended mech-
anisms for different scenarios. The theoretical analysis re-
sults demonstrate that the performance of our proposed mech-
anisms surpasses that of existing ULDP mechanisms. In
GLUTF, we treat the LDP protocol as a black box. Therefore,
we will not describe the specific steps of LDP mechanisms in
detail in this section.

5.1 uSS
We propose the utility-optimized Subset Selection (uSS)
mechanism based on the Subset Selection (SS) mecha-
nism [14, 15]. The SS mechanism is currently one of the
best performing mechanisms in the medium privacy regime
(1 < ε < logs) and is a pure LDP mechanism. Given the

privacy budget ε and the input domain XS, in the SS mech-
anism, it follows that p∗LDP = keε

keε+s−k , q∗LDP = k(keε+s−k−eε)
(keε+s−k)(s−1)

and YLDP = {y|y ⊆ XS, |y|= k}. Here, k represents the number
of elements in one perturbed data, i.e., k = |y|. Subsequently,
we will analyze to determine the optimal value of k in the uSS
mechanism.
Perturbation. According to Eq. (9), we can calculate that

f =
s(eεk− eε − k+ s)
(s−1)(eεk− k+ s)

. (32)

For any ym ∈ YP, Eq. (15) can be maximized when xi ∈ ym.
At this point, among ptm (i = 1,2, . . . ,s), there are k values
equal to pim and s− k values equal to pim

eε . Thus, we have:

Pr[A(x1) = y]
Pr[A(x2) = y]

= eε

p∗LDP
q∗LDP

+ s−1

(1− z)(keε + s− k)
= eε. (33)

Therefore, the maximum value of z is (eε−1)(k−1)
eε(k−1)−k+s .

Utility analysis. It is evident that in the uSS mechanism,
YP = {y|y ⊆ XS, |y|= k} and YI = XN ∪{⟨y1,y2⟩|y1 ∈YP,y2 ∈
XN}. The Supp function for uSS is defined as follows:

Supp(y) =

{
{x|x ∈ y}, if y ∈ YP ∪XN

{x|x ∈ y1}∪{y2}, if y = ⟨y1,y2⟩.
(34)

Given the Supp function, the uSS mechanism satisfies
ULDP and is pure, with p∗ = keε

keε+s−k , q∗ = k(keε+s−k−eε)
(keε+s−k)(s−1) and

z∗ = k(eε−1)
k(eε−1)+s . By substituting p∗, q∗ and z∗ into Eq. (28), we

can calculate the MSE of the estimated frequency:

MSE[ĉcc] =
1
n
(s
(keε − eε + s− k)(keε − k+ s−1)

k(s− k)(eε −1)2

+(1−θ)
k(1− k)(eε −1)+(s−1)(s−2k)

k(s− k)(eε −1)

+θ
s

k(eε −1)
). (35)

Parameter optimization. We determine the optimal k from
a data utility perspective by computing the partial derivative
of the MSE:

∂MSE[ĉcc]
∂k

=
1

k2n(eε −1)2(k− s)2 ((e
ε −1)θ(k2(eε(s−1)

−1)+2ks− s2)− (s−1)2((eε −1)k+ s)(s− (eε +1)k)).
(36)

By setting ∂MSE[ĉcc]
∂k = 0, we can obtain the optimal value of k:

k =
s

eε

√
(s−1)(eε(s+θ−1)−θ)
eε((eε−1)θ+(s−1)2)

+1
. (37)



5.2 uUE
We propose the utility-optimized Unary Encoding (uUE)
mechanism based on the Unary Encoding (UE) mecha-
nism [12]. The UE mechanism employs Unary Encoding,
which is one of the most common approaches to encod-
ing. Given privacy budget ε and input domain XS, in the UE
mechanism, it follows that p∗LDP = p, q∗LDP = p

eε(1−p)+p and
YLDP = {0,1}s, a binary bit vector of size s. Subsequently, we
will analyze to determine the optimal value of p in the uUE
mechanism.
Perturbation. According to Eq. (9), we can calculate that

f =
s

s+(eε −1)(1− p)
. (38)

For any ym ∈ YP, we denote the number of 1 in the vector y
as j (0 ≤ j ≤ s). It is evident that Eq. (15) reaches its global
maximum when j = 1 and the corresponding position of xi in
ym is 1, so we have:

Pr[A(x1) = y]
Pr[A(x2) = y]

= eε

p∗LDP
q∗LDP

+ s−1

(1− z)(eε + s−1)
= eε. (39)

Therefore, the maximum value of z is p(eε−1)
eε+s−1 .

Utility analysis. It is evident that in the uUE mechanism,
YP = {0,1}s and YI = XN ∪{⟨y1,y2⟩|y1 ∈ YP,y2 ∈ XN}. The
Supp function for uUE is defined as follows:

Supp(y) =


{x|y[x] = 1}, if y ∈ YP

{x}, if y ∈ XN

{x|y1[x] = 1}∪{y2}, if y = ⟨y1,y2⟩.
(40)

Given the Supp function, the uUE mechanism satisfies
ULDP and is pure, with p∗ = p, q∗ = p

eε(1−p)+p and z∗ =
eε−1

eε+s−1 . By substituting p∗, q∗, and z∗ into Eq. (28), we can
calculate the MSE of the estimated frequency:

MSE[ĉcc] =
1
n
(s

eε

p(1− p)(eε −1)2

+(1−θ)
p2 − eε(1− p)2

p(p−1)(eε −1)
+θ

s
eε −1

) (41)

Parameter optimization. We determine the optimal p from
a data utility perspective by computing the partial derivative
of the MSE:

∂MSE[ĉcc]
∂p∗

=
1

n(eε −1)2(p∗−1)2(p∗)2 (e
2ε(p∗−1)2(θ−1)

+ eε(2p∗−1)(s+θ−1)− (p∗)2(θ−1)). (42)

By setting ∂MSE[ĉcc]
∂k = 0, we can obtain the optimal value of p:

p =
1√

eεs+(eε−1)(θ−1)
eε(s−(eε−1)(θ−1)) +1

. (43)

5.3 uLH
We propose the utility-optimized Local Hashing (uLH) mech-
anism based on the Local Hashing (LH) mechanism [12]. The
LH mechanism employs the Hash function to encode private
data, thereby achieving high data utility and low communi-
cation cost, especially when dealing with large-dimensional
private data. Given privacy budget ε and input domain XS, in
the LH mechanism, it follows that p∗LDP = eε

eε+g−1 , q∗LDP = 1
g

and YLDP = {⟨H,y⟩|H ∈ H ,y ∈ {1,2, . . . ,g}}. Here, H de-
notes a collection of hash functions, with each element having
a value domain {1,2, . . . ,g}. Subsequently, we will analyze
what the optimal value for g is.
Perturbation. According to Eq. (9), we can calculate that

f =
s(eε +g−1)

eεg+(eε +g−1)(s−1)
. (44)

For any ⟨H,ym⟩ ∈ YP, Eq. (15) can be maximized when
H(xi) = ym, in which case pim = eε

eε+g−1 and ptm = 1
g (1 ≤

t ≤ s, t ̸= i). Thus, we have:

Pr[A(x1) = y]
Pr[A(x2) = y]

= eε g
(1− z)(eε +g−1)

= eε. (45)

Therefore, the maximum value of z is eε−1
eε+g−1 .

Utility analysis. It is evident that in the uLH mecha-
nism, YP = {⟨H,y⟩|H ∈ H ,y ∈ {1,2, . . . ,g}} and YI = XN ∪
{⟨y1,y2⟩|y1 ∈ YP,y2 ∈ XN}. The Supp function for uLH is
defined as follows:

Supp(y) =
{x|H(x) = y′}, if y = ⟨H,y′⟩ ∈ YP

{y} if y ∈ XN

{x|H(x) = y1}∪{y2}, if y = ⟨⟨H,y1⟩,y2⟩.
(46)

Given the Supp function, the uLH mechanism satisfies
ULDP and is pure, with p∗ = eε

eε+g−1 , q∗ = 1
g and z∗ =

(eε−1)(g+s−1)
eε(g+s−1)+(g−1)(s−1) . By substituting p∗, q∗, and z∗ into
Eq. (28), we can calculate the MSE of the estimated fre-
quency:

MSE[ĉcc] =
1
n
(s

(eε +g−1)2

(eε −1)2(g−1)
+(1−θ)

(g−1)2 − eε

(eε −1)(g−1)

+θ
gs

(eε −1)(g+ s−1)
). (47)

Parameter optimization. Considering the application sce-
nario of the uLH mechanism, it is known that s ≫ g −
1. To simplify the process of calculating partial deriva-
tives and to avoid overly complex results, we let MSE ≈
1

nd (s
(eε+g−1)2

(eε−1)2(g−1) + (1 − θ) (g−1)2−eε

(eε−1)(g−1) + θ
g

(eε−1) ). We deter-
mine the optimal g from a data utility perspective by comput-



Table 1: Comparison of communication costs and MSE among various mechanisms.

Mechanism Communication cost High privacy regime (0 < ε < 1) Medium privacy regime (1 < ε < logs)
MSE Order-optimal MSE Order-optimal

uRR O(logd) O( s2

nε2 ) No O( s2

n(eε−1)2 ) No

uRAP O(log(2s +d − s)) O( s
nε2 ) Yes O( seε/2

n(eε/2−1)2 ) No

uSS O(log(C
s

eε+1
s +d − s)) O( s

nε2 ) Yes O( seε

n(eε−1)2 ) Yes

uUE O(log(2s +d − s)) O( s
nε2 ) Yes O( seε

n(eε−1)2 ) Yes

uLH O(log(eε +d − s)) O( s
nε2 ) Yes O( seε

n(eε−1)2 ) Yes
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Figure 3: Theoretical evaluation results of MSE for each
ULDP mechanism in different scenarios.

ing the partial derivative of the MSE:

∂MSE[ĉcc]
∂g

=
1

n(eε −1)2(g−1)2 (e
ε((g−2)g+θ)

+(g−1)2(s−1)− (e2ε(s+θ−1))). (48)

By setting ∂MSE[ĉcc]
∂k = 0, we can obtain the optimal value of g:

g = eε

√
eε(s+θ−1)−θ+1

eε(eε + s−1)
+1. (49)

5.4 Comparison of the mechanisms
We have converted several commonly used LDP mechanisms
in the domain of frequency estimation to ULDP mechanisms.
The communication costs and MSE of these mechanisms have
been analyzed, with the findings presented in Tab. 1.

Communication costs. Based on Definition 5, the commu-
nication cost of a mechanism can be expressed as O(log |Y |).
For uRR and uRAP, |Y | is d and (2s+d−s), respectively. For
other mechanisms, |Y | is (|YP|+ |XN |+ |YP| · |XN |). We adopt
the relaxed bound O(log(|YP|+ |XN |)) for simplicity, since
log(|YP|+ |XN |+ |YP| ∗ |XN |)< 2∗ log(|YP|+ |XN |).

Tab. 1 presents the existing ULDP mechanisms: uRR and
uRAP (uHR is excluded from comparison due to its loose
bound on data utility), along with our three proposed ULDP
mechanisms: uSS, uUE, and uLH. It is evident that our pro-
posed ULDP mechanisms achieve order-optimality in both
high and medium privacy regimes, a feat that existing ULDP
mechanisms cannot accomplish. When s is large, our pro-
posed uLH mechanism also achieves the lowest communica-
tion cost (with the optimal value of g approximating (eε +1)).

We have selected a range of scenarios, showcasing the
theoretical MSE of each mechanism, as depicted in Fig. 3. It is
evident that the uSS mechanism serves as an optimized variant
of the uRR mechanism. Similarly, the uUE mechanism can
be regarded as an optimized version of the uRAP mechanism.
In light of these observations and the data presented in Fig. 3,
we propose the following recommendations:

• Low-sensitive data scenarios. When s is small, the
uSS mechanism demonstrates optimal data utility cou-
pled with low communication cost, making it our recom-
mended choice.

• High-sensitive data scenarios. When s is large, the
uSS, uUE and uLH mechanisms exhibit very similar
data utility. Considering the communication cost, our
recommendation leans towards uLH mechanism.

• Communication-cost prioritized scenarios. The uLH
protocol incorporates a hash function in its perturba-
tion process, significantly reducing communication costs
when s is large, making it our top recommendation. How-
ever, when s is small, the hash function provides no sig-
nificant benefit, and we instead recommend the uSS and
uUE mechanisms.



• Computation-cost prioritized scenarios. The aggrega-
tion process of uLH requires executing a large number
of hash functions, which significantly increases compu-
tational overhead. In such cases, we recommend the uSS
and uUE mechanisms.

Collaborative sampling. The parameter θ, integral to both
the MSE and mechanism parameters, represents the sum of
the true frequencies of all non-sensitive data. In practical sce-
narios, neither users nor servers can ascertain the exact value
of θ. While a priori knowledge might assist in estimating θ,
the mechanism is designed to function effectively even in its
absence. A feasible solution to this challenge is collabora-
tive sampling [17]. Initially, θ is assigned an arbitrary value,
followed by sampling approximately 5% of users to approx-
imate θ. This estimated value of θ is then employed in the
regular frequency estimation process for the remaining users.
The efficacy of this approach is validated by the experimental
results in Section 6.3.

6 Experimental Evaluation

6.1 Experimental Set-up
We conducted experiments on both real and synthetic datasets.
Foursquare dataset. The Foursquare dataset (Global-scale
check-in dataset) [18, 19] contains 33,278,683 global check-
in records, each associated with a POI ID and venue type.
We used 419,959 records from the Manhattan area for our
experiments. Manhattan was divided into a 25×25 grid (|X |=
625), and regions containing hospitals, casinos, or strip clubs
visited by at least 10 users were considered sensitive (s = 25).
Census dataset. The Census dataset [20] contains 2,458,285
records from the U.S. census, with each record containing
68 attributes. We used all users in the dataset and selected
age, income, marital status, sex, and disability as attributes,
with 8, 5, 5, 2, and 3 categories, respectively (|X |= 8∗5∗5∗
2∗3 = 1200). Categories involving divorce, unemployment,
or disability were considered sensitive. As users in the child
age group are not associated with these sensitive attributes
(details in [20]), some categories were excluded, resulting in
s = 424.
Drug dataset. The Drug dataset [21] contains 215,063 patient
reviews of specific drugs, each with 6 attributes. We used all
users in the dataset and selected the rating attribute, which
has 10 categories (|X | = 10). Low ratings were considered
sensitive (s = 3).
Normal dataset. The Normal dataset contains 99,732 sim-
ulated records following a normal distribution, with a total
domain of 1000 (|X |= 1000). We applied the average sensi-
tive proportion from other datasets (23%) to randomly select
sensitive data, resulting in s = 230.
Evaluation details. To mitigate the impact of randomness
on our experimental results, each experiment is repeated 50
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Figure 4: The impact of privacy budget ε on the performance
of each ULDP mechanism under different datasets.

times, and the average is taken as the final result. The MSE of
the mechanism is calculated using the formula 1

m ∑
m
i=1(ci(x)−

ĉi(x))2, where m represents the number of repetitions. During
the execution of the uLH mechanism, |H |= 100000.
Mechanisms for comparison. The experiment involves six
mechanisms in total, among which uRR [9], uRAP [9], and
uHR [11] are existing ULDP mechanisms, while uSS, uUE,
and uLH are the mechanisms proposed in Section 5.

6.2 Impact of Parameters

The impact of the privacy budget. We conducted experi-
ments to assess the impact of ε on mechanism performance.
The experimental results are shown in Fig. 4. It is observed
that the MSE of each mechanism decreases with an increase
in ε. Additionally, comparing Fig. 4(a), Fig. 4(b), Fig. 4(c) and
Fig. 4(d) reveals a significant shift in the performance rank-
ing of the mechanisms across different datasets (essentially,
different s values).

The uSS consistently exhibits the highest data utility across
various datasets. In contrast, the performance of the uRR
differs significantly across datasets. Specifically, under the
Drug dataset, the uRR ranks among those with the highest
data utility, whereas it shows the lowest utility in the Census
and Normal dataset. This difference can be further explained
by the change in the optimal k (a parameter in the uSS) across
scenarios. Notably, the uRR is a special case of the uSS when
k = 1. As s increases, the optimal k diverges from 1, resulting
in degraded performance of the uRR. As ε increases, the
optimal k approaches 1, resulting in improved performance
ranking of the uRR mechanism.
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Figure 5: The impact of sensitive data proportion on the per-
formance of each ULDP mechanism under different datasets.

The uUE and the uRAP use similar encoding methods, but
the former consistently achieves higher data utility than the
latter. This can be attributed to shifts in the optimal p. For
example, in Census dataset, when ε = 0.5, the p for uRAP
and uUE are 0.562 and 0.5, respectively; and when ε = 5, the
p are 0.924 and 0.517, respectively. This demonstrates that
as ε increases, the p used by the uRAP increasingly deviates
from its optimal value.

The data utility of uLH consistently resembles that of uUE,
as expected because "OLH can be viewed as a compact way of
implementing OUE" [12]. Therefore, it is reasonable that their
corresponding ULDP versions exhibit similar performance.

A surprising observation is that as ε increases, the MSE
variation for uHR diminishes, even remaining constant when
ε > 3.5. We cannot theoretically predict this phenomenon
because uHR cannot obtain an accurate theoretical MSE due
to its unique perturbation mechanism. In practice, this poses
a significant drawback, as it hinders the selection of a suitable
privacy budget and prevents reliable error estimation.
The impact of sensitive data proportion and ULDP vs.
LDP. We conducted experiments to assess the impact of
sensitive data proportion on mechanism performance. We
set ε = 2. The experimental results are shown in Fig. 5. The
results show that performance declines with increasing sensi-
tive data proportion, consistent with theoretical predictions.
It can be observed that as the sensitive data proportion in-
creases, the MSE of the uHR increases more rapidly than
other mechanisms. This suggests that the uHR mechanism
is not recommended when the proportion of sensitive data is
high ( s

d ≥ 40%).
Notably, when the sensitive data proportion reaches 100%,

Table 2: Error assessment between the true frequency θ and
the estimated frequency θ̂.

Foursquare Census Drug Normal
uSS 1.23% 0.40% 1.51% 2.45%
uUE 3.35% 4.38% 1.79% 18.09%
uLH 0.83% 0.41% 1.26% 2.90%

the six ULDP mechanisms essentially operate as LDP mecha-
nisms, yielding the lowest utility. This supports the idea that
transforming LDP into ULDP addresses sensitivity distinction
and improves data utility.
Experimental settings highlighting the utility advantage of
our mechanisms. We observe that uSS consistently outper-
forms uRR, and uUE consistently outperforms uRAP across
all settings. This advantage becomes more pronounced as
| s

eε+1 −1| and |0.5− eε/2

eε/2+1
| increase. While uHR performs

similarly to our mechanisms at small privacy budgets, its per-
formance degrades significantly as the budget increases. In
terms of data utility, uSS consistently achieves the best per-
formance. In terms of communication cost, uLH offers the
lowest cost while maintaining high data utility when s is large.

6.3 Effect of Collaborative Sampling

We evaluated the efficacy of cooperative sampling without
prior knowledge. For the Foursquare, Census, Drug, and Nor-
mal datasets, the actual θ values are 0.95, 0.56, 0.78, and
0.77, respectively. In our experimental setup, we initially set
θ = 0 and randomly selected 5% of users to implement the
mechanisms, yielding an estimate θ̂. The privacy budget ε

was varied from 0.5 to 5. The accuracy of θ̂ is measured by
|θ−θ̂|

θ
, with results shown in Tab. 2. The findings reveal that

the discrepancy between θ̂ and the true θ is less than 4.38%
for all mechanisms except uUE, which shows significant de-
viation on the Normal dataset. This inaccuracy aligns with
theoretical expectations. It is evident that a larger z∗ leads to
a more accurate estimate of θ. For example, when ε = 0.5 in
the Normal dataset, the z∗ values for uSS, uUE, and uLH are
0.20, 0.0028 and 0.18, respectively.

Then, θ̂ was used to estimate the frequency of the remaining
95% of users. In the same setting, we executed the mecha-
nisms using the true θ and 100% of users, and compared the
results, as shown in Fig. 6. The findings indicate that the MSE
of cooperative sampling is close to the MSE using the true
θ, across various datasets and ε. This demonstrates that the
mechanism remains effective even without prior knowledge.
This effectiveness can be attributed to two factors: a relatively
accurate θ can still be achieved with just 5% of users, and θ

precision has minimal impact on results, as shown by uUE
performance on the Normal dataset.
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Figure 6: The impact of privacy budget ε on the performance
of each ULDP mechanism under different datasets by using
estimated frequency θ̂ or true frequency θ.

6.4 Evaluation of Maximizing z

In Section 3, we advocated the maximization of the value
z to enhance data utility. We empirically examine whether
this practice effectively reduces the MSE. We compared the
cases where z was set as normal and where it was forced to
zero, with the corresponding MSEs denoted as mse1 and mse2,
respectively. We used metric mse2−mse1

mse2
to determine whether

the MSE was reduced. The experimental results are presented
in Fig. 7. We observed that across different datasets, privacy
budgets, and mechanisms, the MSE decreased by an average
of 9% ∼ 26%. This indicates that maximizing z in GLUTF
can indeed significantly reduce the MSE.

The results in Fig. 7(a) and 7(g) differ significantly from
those of other settings. At certain privacy budgets, the re-
duction in MSE is minimal and may even increase. This is
consistent with theoretical expectations. For the uSS, when
applied to the Foursquare dataset (ε> 3.5) or the Drug dataset
(ε > 0), the optimal k is 1, resulting in the maximum possible
z being 0. It should be noted that the increase in MSE is not
caused by our mechanism, but rather by the noise introduced
by random perturbation.

1 2 3 4 5

privacy budget ε

0

10

20

30

M
S
E
 R

e
d
u
c
ti

o
n
 (

%
)

(a) uSS-Foursquare

1 2 3 4 5

privacy budget ε

0

10

20

(b) uUE-Foursquare

1 2 3 4 5

privacy budget ε

0

10

20

30

40

(c) uLH-Foursquare

1 2 3 4 5

privacy budget ε

0

10

20

30

M
S
E
 R

e
d
u
c
ti

o
n
 (

%
)

(d) uSS-Census

1 2 3 4 5

privacy budget ε

0

5

10

15

(e) uUE-Census

1 2 3 4 5

privacy budget ε

0

5

10

15

20

(f) uLH-Census

1 2 3 4 5

privacy budget ε

−4

−2

0

2

M
S
E
 R

e
d
u
c
ti

o
n
 (

%
)

(g) uSS-Drug

1 2 3 4 5

privacy budget ε

0

10

20

30

(h) uUE-Drug

1 2 3 4 5

privacy budget ε

0

10

20

30

(i) uLH-Drug

1 2 3 4 5

privacy budget ε

0

10

20

30

M
S
E
 R

e
d
u
c
ti

o
n
 (

%
)

(j) uSS-Normal

1 2 3 4 5

privacy budget ε

0

5

10

15

(k) uUE-Normal

1 2 3 4 5

privacy budget ε

0

10

20

(l) uLH-Normal

Figure 7: The impact of maximizing z on the performance of
each ULDP mechanism under different datasets.

6.5 Extended utility metrics

In the preceding experiments, we used MSE to evaluate the
mechanisms’ performance. While MSE is a reasonable metric,
it is not sufficient. Since our mechanisms are theoretically
optimized for MSE, their superior performance on this metric
is unsurprising. To multi-perspectively assess the performance
of our mechanisms, we extend utility metrics.
Evaluation on MAE. We used Mean Absolute Error (MAE,
computed as 1

m ∑
m
i=1 |ci(x)− ĉi(x)|) to evaluate the utility of

the mechanisms, with the results shown in Fig. 8. Many con-
clusions drawn in Section 6.2 still hold: uSS remains superior
to uRR, and uUE and uLH exhibit similar utility. However,
two surprising observations were made. First, in Fig. 8(a)
and 8(d), uUE does not consistently outperform uRAP. This
is because the parameter p in uUE was optimized to minimize
MSE, which, to some extent, caused an "overfitting" to MSE.
Second, in Fig. 8(a), uHR emerged as the best-performing
mechanism under MAE, in contrast to its performance under
MSE. This difference occurs because large errors, which are
more common in uHR, are more heavily penalized in MSE.
Evaluation on frequent item mining. We conducted fre-
quent item mining experiments to identify the top 30 most
frequent data items, using F1 [7] and NDCG [22] as metrics.
F1 measures the accuracy of identified items, while NDCG
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Figure 8: Performance of ULDP mechanisms on MAE.
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Figure 9: Performance of ULDP mechanisms on frequent
item mining.

focuses on ranking. As shown in Fig. 9, uRR performs the
worst because its estimation error increases with s, distorting
the frequency ranking. In contrast, other mechanisms perform
similarly, as F1 and NDCG are less sensitive to absolute fre-
quency errors and mainly reflect relative ranking, which stays
relatively stable across mechanisms. This suggests placing
more emphasis on non-utility factors, such as communica-
tion and computation cost, in real-world ULDP frequent item
mining.

7 Related work

Frequency estimation for categorical data is one of the fun-
damental tasks under LDP [3]. Various mechanisms have
been proposed for LDP frequency estimation, including
GRR [13], RAPPOR [4], SS [14, 15], OUE [12], OLH [12]
and Wheel [16]. However, LDP assumes all private data are
equally sensitive, leading to excessive obfuscation and poten-
tial loss of utility.

To address the issue of sensitivity distinction, several vari-
ants of LDP have been proposed. The ULDP [9] model takes
into account the difference in data sensitivity and greatly im-
proves the data utility. However, its full potential has yet to
be reached (see Section 1). [11] proposed the High-Low LDP
model, which is fundamentally equivalent to ULDP. Some
researchers have proposed assigning different sensitivity lev-
els to each data. Motivated by this idea, [10] proposed ID-
LDP model, and [23] proposed IPLDP. However, assigning
different sensitivity levels to each data item is a significant
challenge in real-world scenarios, as it is difficult for all users
to reach a consensus on the sensitivity ranking of the data.
Furthermore, ID-LDP offers lower data utility compared to
ULDP [24], while IPLDP can only be applied to the same
direct encoding method as in GRR. We believe that among
the aforementioned models, only ULDP achieves the most
balanced performance, which also motivates our work.

Under the ULDP model, mechanisms such as uRR [9],
uRAP [9] and uHR [11] have been proposed for frequency
estimation of categorical data, which is the focus of this study.
However, they either perform poorly when the sensitive do-
main is large or fail to obtain accurate theoretical error bounds
(see Section 1). [25, 26] extended the ULDP model and pro-
posed (ε,δ)-ULDP model. However, this model does not pro-
vide strict LDP-level privacy protection for sensitive data. [27]
extends the ULDP model to key-value data and proposes the
UKVLDP model. This work is orthogonal to ours.

8 Conclusion

To systematically address the issue of sensitivity distinc-
tion in the LDP model, we propose the GLUTF framework
that enables the conversion of any LDP mechanism into its
corresponding ULDP mechanism while preserving order-
optimality and unbiased estimation. We propose the pure
ULDP framework and develop a general aggregation and
utility analysis method applicable to all ULDP mechanisms
generated by GLUTF. We also propose three new ULDP
mechanisms and demonstrate through theoretical analysis
and experimental validation that these mechanisms achieve
better utility than existing ULDP mechanisms. This work es-
tablishes a substantial bridge between LDP model and ULDP
model.
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Appendices

A Proof for Theorem 7 and Theorem 8

The following is the proof of Theorem 7.

Proof. For x ∈ XN , we have:

E[ĉx] =
ncx(1− f )
n(1− f )

= cx. (50)

For x ∈ XS, we have:

E[ĉx] = cx +
f (1− z)

s
θ− f (1− z)

s
θ = cx. (51)

In summary, ĉx is an unbiased estimate of cx.

The following is the proof of Theorem 8.

Proof. For non-sensitive data, the variance can be calculated
as follows:

Var[ĉx] =Var[
∑

n
i=1 1x(yi)

n(1− f )
] = cx

f
n(1− f )

(52)

In Eq. (30), we use θ′ to approximate the proportion of users
holding non-sensitive data. First, let’s analyze its variance:

Var[θ′] =Var[ ∑
x∈XN

ĉx] = θ
f

n(1− f )
(53)

Now, we can calculate the variance of the estimated frequency
of the sensitive data.

Var[ĉx]≈UA(Agg(Y ′))+
f 2(1− z)2

s2 Var[θ′] (54)

=UA(Agg(Y ′))+
f 3(1− z)2

ns2(1− f )
θ (55)



B uWheel

We propose the uWheel mechanism based on the Wheel
mechanism. The Wheel mechanism also employs a hash
function to convert private data into numerical data within
[0,1), and has similar performance to the OLH mechanism.
Given privacy budget ε and input domain XS, in the Wheel
mechanism, it follows that p∗LDP = leε

leε−l+1 , q∗LDP = l and
YLDP = {⟨H,y⟩|H ∈ H ,y ∈ [0,1)}. Here, H denotes a col-
lection of hash functions, where each H ∈ H outputs a value
in the range of [0,1). Additionally, l is defined as a cover-
age parameter, which is used to adjust the true/false coverage
probability of an item.
Encoding. According to Eq. (9), we can calculate that

f =
s(leε +1− l)

eε +(s−1)(leε +1− l)
. (56)

Then, for any x ∈ XN , It will be transformed into sensitive
data or keep itself.

Next, for x ∈ XS, the user randomly selects a hash function
H ∈ H to hash x into [0,1). Conversely, for x ∈ XN , it remains
unchanged.

ẋ = Encode(x) =

{
⟨H,H(x)⟩, if x ∈ XS

x, if x ∈ XN .
(57)

Perturbation. It is evident that in the uWheel mechanism,
YP = {⟨H,y⟩|H ∈ H ,y ∈ [0,1)} and YI = XN ∪{⟨y1,y2⟩|y1 ∈
YP,y2 ∈ XN}.

If ẋ ∈ XN , it is output directly. For ẋ /∈ XN , i.e., ẋ =
⟨H,H(x)⟩, it outputs y according to the following probability
density function (pdf):

pd f (⟨H,y⟩|⟨H,H(x)) =
eε

leε +1− l
, if y ∈CH(x)

1
leε +1− l

, if y ∈ [0,1)\CH(x),

(58)

where CH(x) = {y|H(x)≤ y < H(x)+ l or 0 ≤ y < H(x)+ l−
1}.

For any ⟨H,y⟩ ∈YP, it is obvious that Eq. (15) can be maxi-
mized when y ∈CH(x1). At this point, p1 =

eε

leε+1−l and pi = 1
(i = 2,3, . . . ,s). Thus, we have:

Pr[A(x1) = y]
Pr[A(x2) = y]

= eε 1
(1− z)(leε +(1− l))

= eε. (59)

Therefore, the maximum value of z is l(eε−1)
leε+1−l . If a non-

sensitive data x is transformed into a sensitive data during
the encoding process, it will have a probability of l(eε−1)

leε+1−l to
additionally output x after the perturbation.

The Supp function for uWheel is defined as follows:

Supp(y) =
{x|y ∈CH(x)}, if y = ⟨H,y′⟩ ∈ YP

{y}, if y ∈ XN

{x|y1 ∈CH(x)}∪{y2}, if y = ⟨⟨H,y1⟩,y2⟩.
(60)

Theorem 9. Given the Supp function, the uWheel mechanism
satisfies ULDP and is pure, with p∗ = leε

leε+1−l , q∗ = l and

z∗ = (eε−1)(sl−l+1)
(eε−1)(s−1)l+(eε+s−1) .

Aggregation. By substituting p∗, q∗, and z∗ into Eq. (28),
we can calculate the MSE of the estimated frequency of the
uWheel mechanism.

MSE[ĉcc] =
1
n
(s

(eεl − l +1)2

(eε −1)2(1− l)l
+(1−θ)

(l −1)2 − eεl2

(eε −1)(1− l)l

+θ
s

(eε −1)(ls− l +1)
). (61)

Considering the application scenario of the uWheel mecha-
nism, it is known that s ≫ 1

l −1. To simplify the process of
calculating partial derivatives and to avoid overly complex
results, we let MSE ≈ 1

n (s
(eεl−l+1)2

(eε−1)2(1−l)l +(1−θ) (l−1)2−eεl2

(eε−1)(1−l)l

+θ
1

(eε−1)l ). Then, we take the partial derivative of the MSE.

∂MSE[ĉcc]
∂g

=
1

(eε −1)2(l −1)2l2n
(e2εl2(s+θ−1)

− eε(l(lθ−2)+1)− (l −1)2(s−1)). (62)

We denote the MSE as m(l). Setting m′(l) = 0, we obtain two
solutions and the only solution within (0,1) is as follows:

l =
1

eε

√
eε(s+θ−1)−θ+1

eε(eε+s−1) +1
. (63)

We observe that lim
l→0+

m′(l)< 0 and lim
l→1−

m′(l)> 0, indicating

that Eq. (63) represents the optimal value for l.
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